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A B S T R A C T

This paper presents some initial results on the use of hyperspectral imaging technology and machine learning to
characterise the surface composition of space objects and reconstruct their attitude motion. The paper provides
a preliminary demonstration that hyperspectral and multispectral analysis of the light absorbed, emitted and
reflected by space objects can be used to identify, with some degree of accuracy, the materials composing their
surface. The paper introduces a high-fidelity simulation model, developed to test this concept, and a validation
of the model against experimental tests in a laboratory environment. The paper shows how to unmix the spectra
to provide an estimation of the materials composing the surface facing the sensor. A machine learning approach
is then proposed to reconstruct the attitude motion from the time series of spectra.
1. Introduction

The use of spectroscopy, spectral analysis and colour photometry
to characterise the composition of space objects have been proposed
since the late nineties [1–7]. Although in these references the authors
considered the use of spectroscopy for the characterisation of the
material composition of space objects, the work was mainly observa-
tional: spectra were observed for known objects and were associated to
material types. A first classification approach based on colour indexes
and on the characteristics of the spectra has also been proposed, see
for example [4,6]. Likewise, the use of colour photometry in [5]
as proposed to differentiate between different objects but not used
o identify materials on different surfaces or reconstruct the attitude
otion. At the same time, the use of hyperspectral technology and
pectrometry have found important applications in astronomy, to clas-
ify and characterise asteroids [8] for example. In parallel, a body of
ork has focused on the use of light curve analysis to reconstruct the
ttitude motion or the shape of space objects [9–14]. More recently,
achine Learning (ML) was introduced to classify objects starting from
heir light curves [15,16]. Hyperspectral imaging for close-proximity
avigation was studied in [17] and some literature exists on the use of
yperspectral imaging for the identification and classification of targets
n ground [18]. Furthermore, a large body of work exists on the use of
yperspectral imaging for various applications in Earth Observation.
This paper will present some preliminary results on the use of hyper-

pectral imaging techniques to infer the surface composition of space
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objects and estimate their attitude motion. As previously done with
spectroscopy, the core idea is to analyse the spectral composition of the
light reflected and emitted by each surface of a space object to identify
the materials composing that surface. By tracking the variation of the
intensity at different wavelengths over time, one can then identify the
attitude motion. The end goal is to associate a material distribution and
a pointing direction to a given surface at any one time.

The work in this paper differs from the existing literature on spec-
troscopy of space objects in two ways: (i) it proposes a signal processing
technique used in hyperspectral imaging to unmix the spectral com-
position of the received light and estimate the relative abundance of
materials on the surface facing the sensor and (ii) it demonstrates the
use of machine learning to estimate the attitude motion by associating
time series of spectral responses to the corresponding quaternion time
history.

The paper will first present a high-fidelity simulation model of the
variation of intensity per wavelength. We will consider both the case
in which the sensor is in space and the one in which the sensor is on
Earth. For the latter, we will include the attenuation introduced by
the atmosphere at different elevation angles. The high-fidelity model
was essential to experiment with the unmixing of the spectra and the
attitude reconstruction from spectra time series. Alongside the high-
fidelity model, some laboratory experiments were used to calibrate
the model and assess the feasibility of detecting different materials on
different surfaces. After the description of the laboratory experiments,
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Fig. 1. Earth reference frame and position vector. For each of the two cases, a few observer-to-target vectors 𝜌 are represented.
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he paper will present a methodology to unmix the spectra and relate
he unmixed spectra to the attitude motion of an object. We will focus
n an equivalent cube and test the idea on a nanosat in orbit and
bserved either from ground or from a sensor in space. The paper
ill then show how one can train a machine learning algorithm to
econstruct the attitude from the time series of the spectra.

. Simulation framework

In order to develop the signal processing methodology that is re-
uired to characterise objects from their light curve decomposition, we
eveloped a high fidelity simulator of the light emitted and reflected
y the surface of objects in space. The simulator implements a six-
egrees-of-freedom dynamic model used to propagate both orbital and
otational motion, as well as a model of the position of the observer.
he observer can either be a telescope on the ground or a satellite
n orbit. This allows all auxiliary quantities required to be calculated
irectly from the state vector at time 𝑡 corresponding to individual ex-
osures of the hyperspectral imaging system. For observations acquired
rom ground, we included the attenuation effect of the atmosphere. No
eathering effects on the materials in orbit have yet been included [2].
lthough the space environment has been shown to affect the re-
lectance spectra of satellites over extended periods of time, where they
xhibit a fairly significant ‘redenning’ of the spectra [19], the process
s not yet understood well enough to incorporate aging into the sim-
lation model. However, it is trivial to update the reflectance spectra
n the model’s library, for example to use spectra corresponding to a
articular exposure duration, once these effects are better understood
nd can be accurately modelled.

.1. Observer and target equations of motion

The position of the observed object, the target, is defined in an
arth Centred Inertial (ECI) reference frame at epoch by the vector
𝑡 = [𝑥𝑡, 𝑦𝑡, 𝑧𝑡]𝑇 . The observer is defined in the same reference frame
y the vector 𝐫𝑜 = [𝑥𝑜, 𝑦𝑜, 𝑧𝑜]𝑇 . The observer to target vector is simply

𝝆 = 𝐫𝑡 − 𝐫𝑜. For observations acquired from ground, the position of
the observer is defined by its latitude and longitude, assuming that
the Earth rotates around the 𝑧-axis with constant angular velocity 𝜔𝐸 .
Thus, the components of the position of the observer are defined as 𝐫𝑜 =
[𝑅𝐸 cos 𝑙 cos(𝜔𝐸 𝑡), 𝑅𝐸 cos 𝑙 sin(𝜔𝐸 𝑡), 𝑅𝐸 sin 𝑙]𝑇 , where 𝑙 is the latitude and
𝑅𝐸 is the mean Earth radius. The target is assumed to move of pure
Keplerian motion, thus the second time derivative of its position vector
is given by:

𝐫̈𝑡 = −
𝜇𝐸𝐫𝐭
𝑟3𝑡

(1)

ith 𝑟𝑡 the norm of 𝐫𝑡 and 𝜇𝐸 the gravity constant of the Earth. For
bservations acquired from space, the observer is assumed to move of
511
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urely Keplerian motion and subject to the same governing equation
n Eq. (1). No attitude of the in-orbit observer was simulated. The
wo types of simulation with observer on the ground or in space are
epicted in Fig. 1.
The target is assumed to be a rigid body with free attitude dynamics

efined in a principal axis body frame by:

𝝎̇ = −𝝎 ∧ 𝐈𝝎 (2)

with the kinematics expressed in quaternions:

𝐪̇ = 1
2
Ω𝐪 (3)

where Ω is the skew symmetric matrix:

Ω =

⎡

⎢

⎢

⎢

⎢

⎣

0 −𝜔1 −𝜔2 −𝜔3
𝜔1 0 𝜔3 −𝜔2
𝜔2 −𝜔3 0 𝜔1
𝜔3 𝜔2 −𝜔1 0

⎤

⎥

⎥

⎥

⎥

⎦

(4)

Eqs. (1), (2) and (3) are propagated using discrete time steps corre-
ponding to each sample time of the sensor using Matlab’s ode45 solver.
uaternions are then converted into Euler angles to identify which face
s illuminated and the projection on the target–observer direction.

.2. Light emission and reflection model

Objects are represented by a triangulated point cloud in .obj format,
ith information about the material corresponding to each face stored
n its RGB colour value. This allows the correct material properties and
eflectance spectra to be paired with each element in the model at a
ater stage.
Light reflection is modelled as entirely diffuse, following Lambert’s

osine law: the light reflected by a surface element of area 𝑑𝐴 falls with
he cosine of the angle 𝜃0 between the local surface element normal and
he direction of the observer (see Fig. 2). Explicitly, for an aperture
hich subtends a solid angle 𝑑𝛩 from the viewpoint of a given surface
lement, the collected light power is calculated according to:

(𝜃) = 𝑃0 cos 𝜃0𝑑𝐴𝑑𝛩 (5)

here the power per unit solid angle per unit surface area in the normal
irection can be calculated by integrating over a hemisphere:

0 =
𝑅𝑃𝑖𝑛𝑐 cos 𝜃𝑖

𝜋
(6)

where 𝑃𝑖𝑛𝑐 is the intensity of incident light, 𝜃𝑖 is the angle between
the direction of incident light 𝐒̂ and the local normal 𝐧, and 𝑅 is the
eflectivity of the material comprising the element. By defining 𝑃𝑖𝑛𝑐(𝜆)
nd 𝑅(𝜆) as a function of the wavelength 𝜆, Eq. (5) returns the spectrum
eceived from each surface element.
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Fig. 2. Illustration of the Lambertian reflectance model. The amount of light reflected
nto solid angle d𝛩 is dependent only on the angle 𝜃0 from the local surface normal,
and is axisymmetric about 𝐧̂.

Making this substitution, and integrating across some finite wave-
length band defined by the sensor, the total collected power from some
element 𝑒 is:

𝑑𝑃 (𝑒)
𝑅 |

𝜆0+𝑑𝜆
𝜆0

=
cos 𝜃(𝑒)𝑖 cos 𝜃(𝑒)0 𝑑𝛩𝑑𝐴(𝑒)

𝜋 ∫

𝜆0+𝑑𝜆

𝜆0
𝑅𝑚𝑒 (𝜆)𝑃𝑖𝑛𝑐(𝜆)𝑑𝜆 (7)

here the subscript 𝑚𝑒 denotes the material comprising element 𝑒
nd implies that different materials will have different shaped curves
𝑚𝑒 (𝜆). The total collected power in the band due to light reflection
𝑅|
𝜆0+𝑑𝜆
𝜆0

is then simply a sum over elements 𝑒 in the triangulation,
ultiplied by a term 𝑠(𝑒)𝑠 𝑠

(𝑒)
𝑜 which reduces an element’s contribution

ccording to its visibility from the location of the illumination source
nd the observer:

𝑅|
𝜆0+𝑑𝜆
𝜆0

=
∑

𝑒
𝑠(𝑒)𝑠 𝑠

(𝑒)
𝑜 𝑑𝑃

(𝑒)
𝑅 |

𝜆0+𝑑𝜆
𝜆0

(8)

The terms 𝑠(𝑒)𝑠 and 𝑠(𝑒)𝑜 are defined by looking at each vertex in the 3D
model, and determining if it has a clear line of sight to the illumination
source and the observer respectively, unobstructed by the object’s own
geometry. Since each element has three vertices, the contribution from
element 𝑒 is reduced by 1

3 times the number of occluded vertices. Thus,
both 𝑠(𝑒)𝑠 and 𝑠(𝑒)𝑜 take values in the set [0, 1

3 ,
2
3 , 1]. For example, if

ne vertex is occluded from the viewpoint of the observer, 𝑠(𝑒)𝑜 = 2
3 , as

llustrated in Fig. 3. The total reduction to the power contribution of
lement 𝑒 is then their product 𝑠(𝑒)𝑠 𝑠

(𝑒)
𝑜 . This approach was chosen over

triangle-ray intersection algorithm with respect to element centroids
ue to computation speed. Additionally, although imperfect (shadow-
ng of one vertex does not always reduce the effective area by exactly
1
3 ), this approach offers a higher degree of detail than binary visibility
based on the centroid, for equivalent polygon size. Point visibility with
respect to the two viewpoints is determined using Katz’ hidden point
removal algorithm [20]. As a precaution for elements residing on sharp
dges, back-face culling was used to set 𝑠(𝑒)𝑠 and/or 𝑠(𝑒)𝑜 to zero if 𝜃𝑖
nd/or 𝜃𝑜 are greater than 90 degrees, respectively.
A similar expression exists for the emitted light. In this case, the

ntegral term in Eq. (8) is replaced with an integral of the black body
pectrum over the band, multiplied by the emissivity 𝜖𝑚 of material
𝑚. Since element visibility in the context of emitted light does not
depend on the source direction, the factor 𝑠(𝑒)𝑠 is also removed. Making
these modifications to Eqs. (7) and (8), we have the equations for the
emission component:

𝑑𝑃𝐸 |
𝜆0+𝑑𝜆
𝜆0

=
∑

𝑒

cos 𝜃(𝑒)0 𝑑𝛩𝑑𝐴(𝑒)𝜖(𝑒)𝑚
𝜋 ∫

𝜆0+𝑑𝜆

𝜆0
𝐵𝜆(𝜆, 𝑇 )𝑑𝜆 (9)

nd

𝐸 |
𝜆0+𝑑𝜆
𝜆 =

∑

𝑠(𝑒)𝑜 𝑑𝑃
(𝑒)
𝑅 |

𝜆0+𝑑𝜆
𝜆 (10)
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0 𝑒 0
Fig. 3. Illustration of vertex-based partial element visibility model. If only vertex v1
is in shadow or occluded as illustrated, the visibility state 𝑠(𝑒) from the viewpoint in
question is 2

3
.

where 𝐵𝜆(𝜆, 𝑇 ) is the black body spectrum calculated according to
Planck’s law for temperature 𝑇 . Thus, the total power collected in the
band 𝑃 |𝜆0+𝑑𝜆𝜆0

is

𝑃 |𝜆0+𝑑𝜆𝜆0
=
∑

𝑒

(

𝑃 (𝑒)
𝑅 |

𝜆0+𝑑𝜆
𝜆0

+ 𝑃 (𝑒)
𝐸 |

𝜆0+𝑑𝜆
𝜆0

)

(11)

2.3. Atmospheric effects

Earth’s atmosphere absorbs light differently at different wavelengths.
Additionally, the amount of atmosphere traversed by light before reach-
ing a sensor directly affects the reduction in signal due to scattering.
These two effects must be accounted for in the model. Atmospheric
attenuation spectra for the zenith direction were obtained from the
MODTRAN software package [21], which gives the fraction of light
that reaches ground after traversing the atmosphere. The attenuation
spectrum for a zenith-pointing camera can be seen in Fig. 4.

When the telescope points off-zenith at some angle, however, the
amount of atmosphere that is traversed by the signal light increases,
and so must the atmospheric attenuation. In astronomy, this is captured
by the number of ‘airmasses’ that the signal traverses [22], which
as defined as equal to 1 for a zenith-pointing telescope at sea level.
The number of airmasses traversed for a given zenith/elevation angle
can be approximated with the Kasten and Young 1989 model (see
Fig. 5) [23]. The total attenuation is then 𝑆(𝜆)𝐴(𝜃𝑒𝑙 ), where 𝑆(𝜆) is
the zenith-pointing attenuation spectrum, 𝐴(𝜃𝑒𝑙) is the airmass number
corresponding to elevation angle 𝜃𝑒𝑙. This causes a further reduction to
the light collected by the aperture:

𝑃 |𝜆0+𝑑𝜆𝜆0
= 𝑆(𝜆)𝐴(𝜃𝑒𝑙 )

∑

𝑒

(

𝑃 (𝑒)
𝑅 |

𝜆0+𝑑𝜆
𝜆0

+ 𝑃 (𝑒)
𝐸 |

𝜆0+𝑑𝜆
𝜆0

)

(12)

2.4. Sensor model

The sensor was modelled as comprising a single pixel per wave-
length band — the collected light is split by a prism or grating onto
a single strip of pixels, where their spatial separation allows each pixel
to measure the light in that particular wavelength band. This approach
was chosen because of the small size of the targeted objects and the
large distance at which they will be imaged, making it unlikely for
structures to be resolved spatially. Using a 1024-by-1024 array and a
1-degree field of view gives a pixel separation distance of 42 metres
at 500 km — far too coarse to resolve objects of size on the order
of satellites, even in such a low orbit. For the work in this paper, the
wavelength bands chosen were 5 nm wide. Various wavelength ranges
were simulated in the simulations in this paper, however in deployment
the chosen range of wavelengths will depend on the materials expected
to be present in the object being observed, and the wavelengths at
which these materials have distinct spectral features. The expected
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Fig. 4. Atmospheric attenuation spectrum from MODTRAN.
Fig. 5. Kasten/Young model of airmass w.r.t. zenith angle.
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photon count in each band is obtained from Eq. (12), and dividing by
the photon energy corresponding to the middle of the wavelength band.

Optical efficiency was modelled by an overall efficiency parameter
𝜂𝑜𝑝𝑡𝑖𝑐𝑠 = 0.5, which represents all photon losses from the aperture to
the sensor. Sensor noise was modelled as shot noise dominated, and
expected photon counts were converted to noisy, simulated photon
counts by use of a Poisson random number generator with the expected
count in each band as the mean. Thus, the final photon count in the
band is

𝑛𝑝ℎ|
𝜆0+𝑑𝜆
𝜆0

= 

(

𝜂𝑜𝑝𝑡𝑖𝑐𝑠
𝜆0 +

𝑑𝜆
2

ℎ𝑐
𝑃 |𝜆0+𝑑𝜆𝜆0

)

(13)

here (𝑥) denotes a random number generated according to the
oisson distribution with mean value 𝑥, ℎ is Planck’s constant and 𝑐
s the speed of light.

.5. Parametric analyses

To estimate the magnitude of returned signal intensity, test simula-
ions for two cubes of different sizes were performed, for the case of
oth ground-based and space-based telescopes. These test cases were
imulated using conditions close to what is expected in deployment
f the system: in the ground case, this means imaging in twilight
onditions, i.e. a phase angle of close to 90 degrees, with the object
tarting its observation arc near the telescope’s zenith direction such
hat atmospheric extinction is minimised. In the orbital observer case,
he observer is on a close approach trajectory with slightly different
rbital elements, as will be described. The orbit of the target object
ad semi-major axis 7650 km, eccentricity 0.005 and inclination 23
egrees. The initial true anomaly was 345 degrees, i.e. slightly sun-
ard of the ground station at the beginning of the observation arc.
ther orbital elements were zero. For the space-based observer, the
513
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Table 1
Summary of key parameters in the test simulations. Orbital state vectors are
written in the standard form for Keplerian elements, with the true anomaly
denoting the value at the start of the simulation: [𝑎, 𝑒, 𝑖, 𝛺𝑅𝐴𝐴𝑁 , 𝜔𝑝 , 𝜈0].

Parameter/property Value (s)

Cube side length 30 cm, 2 m
Present materials Steel, aluminium, PVC
Orbital elements (target) [7650 km, 0.005, 23◦, 0, 0, 345◦ ]
Cube rotation rate (random axis) 1

2𝜋
rads−1

Orbital elements (observer) [7500 km, 0.0003, 10◦, 0, 0, 345◦ ]
Telescope latitude 5◦
Telescope longitude 0◦
Zenith direction [0.9962 0.0872 0]
Illumination direction [0 1 0]

semi-major axis was 7500 km, eccentricity 0.0003, inclination 10 de-
grees, and the remaining orbital elements zero. This led to a close
approach on the order of several hundred kilometres from the object.
A summary of the key parameters for these tests can be found in
Table 1. Material distribution across the cube surface was two opposing
faces composed entirely of each of the three materials. More complex
material distributions were used in later simulations.

Spectral snapshots for a 30 cm cube can be seen in Figs. 6 to 7,
or both ground-based and space-based telescopes, which show the
pectral response at a random time during the observation arc in each
ase. Equivalent results for a larger, 2 m cube in the IR region are
hown in Figs. 8 to 9. These examples give an estimate of the power
xpected to be received by the system in deployment, which informs
elescope design. The telescope size for the space cases was chosen to
epresent cubesat compatible optics (diameter 9 cm), and the ground
ase was chosen to match that of a telescope available for future
xperimental work at the Fraunhofer Centre for Applied Photonics
Celestron Edge HD 1400: focal length 391 cm, diameter 35.6 cm).
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Fig. 6. Simulated signal from a ground-based telescope with radius 17.8 cm observing a 30 cm cube in visible/near infrared.

Fig. 7. Simulated signal from a satellite-mounted telescope with radius 4.5 cm observing a 30 cm cube in visible/near infrared.
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Fig. 8. Simulated signal from a ground-based telescope with radius 17.8 cm observing a 2 m cube in infrared.

Fig. 9. Simulated signal from a satellite-mounted telescope with radius 4.5 cm observing a 2 m cube in infrared.
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Fig. 10. The lab prototype of the hyperspectral surveillance system assembled in Fraunhofer-CAP.
Fig. 11. Characteristic reflectivity spectra of Al and gold foil measured using the setup
shown in Fig. 10. The spectra are shown for different time from the start of experiment
time stamps), which correspond to different rotation angle of the cube. Timestamps
orresponding to the maximum signal in the spectrometer were chosen.

owever, larger telescopes may be desirable in the ground-based case
o better leverage the lack of size and mass restrictions inherent in
round-based operation compared with space-based operation.

. Experimental testing

A proof-of-concept hyperspectral telescope was designed and assem-
led by the Fraunhofer Centre for Applied Photonics. This lab-based
ystem comprises a telescope, a camera for object visualisation and
n off-the-shelf spectrometer (Fig. 10). A cube with various materials
(aluminium, Al, glass, gold foil, Teflon, white enamel, titanium) at-
tached to its surfaces was used as the object. The object was positioned
on the motorised rotation stage. It was illuminated by a tungsten-
halogen lamp. Reflected light collected by the telescope was split into
2 channels: visualisation, with a CCD camera, and measurement, with
the monochromator for temporal analysis of the spectral response from
the object.

Some preliminary experimental results were obtained with this
setup. The cube was covered with Al and gold foil. It was rotated with
the speed of 6 degrees per second. Reflectivity spectra of surfaces were
recorded by the spectrometer. The characteristic reflectivity spectra
of Al and gold foil corresponding to the maximum signal on the
spectrometer at certain times (the so-called time stamps) are shown in
Fig. 11.

One can pick up two characteristic wavelengths in these spectra,
where a significant difference in the ratio of reflectivity coefficients be-
tween Al and gold was observed: 461 nm and 800 nm. The wavelength
of 461 nm corresponds to a dip in the reflectivity spectrum of gold
516
Fig. 12. The ratio of reflectivity of Al and gold foil at the wavelengths of 461 and
800 nm (squares) as a function of rotation time. Solid lines represent the actual signal
at these two wavelengths recorded by the spectrometer. The ratio is shown only at
the time stamps corresponding to max signal at these two wavelengths, otherwise the
signal-to-noise ratio is too small.

foil and 800 nm corresponds to a shoulder in the reflectivity spectrum
of gold foil, while no specific features are observed in the reflectivity
spectrum of Al foil at these two wavelengths. The ratio of reflectivity
coefficients at 461 and 800 nm was plotted as a function of time in
Fig. 12 (black squares), together with the actual reflectivity values at
these two wavelengths (solid lines).

Analysis of the ratio of the reflectivity coefficients as a function
of time at specific wavelengths can provide some information about
the material the object of observation is made of. These test results
confirmed the hypothesis that by looking at the spectral signature we
could identify the combination of materials presented to the camera.
Since the hyperspectral imager gives us the full range of intensities at
different wavelengths, in the following the intensity over a wide range
of wavelengths will be considered to identify materials and material
mixtures through a process of spectral unmixing.

3.1. Unified reflection model and laboratory test validation

The model used to test the endmember decomposition and the atti-
tude estimation was based on a simple Lambertian surface hypothesis.
While for some materials this is a good approximation, for others such
as glass, polished metal etc. it is important to also model the specular
components of the reflected light. Additionally, for materials with a
complex refractive index (metals, dielectrics), the Fresnel equations
predict a reflectance fraction that varies not only in wavelength, but
also in the angle of incidence to the surface. Thus, we also implemented
the model presented in [24]. This model unlike many in the field of
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Fig. 13. Unified reflection model applied to crinkled foil surface, modelled by non-
flat foil with low roughness. Brighter regions indicate more reflected light from those
elements.

computer graphics is physically-based, and does not require the use
of a physically meaningless and arbitrarily-chosen ‘specular fraction’
which dictates the proportion of light that is reflected specularly vs
diffusely. The model is based on the common microfacet model of
rough surfaces, whereby a macroscopically flat but rough surface is
represented by a collection of specularly-reflecting microfacets whose
517
orientation relative to the local macro normal vector follows some
statistical distribution. Specular reflection from individual microfacets
is governed by the Fresnel equations. The only required inputs for
this model are the complex refractive index of the material, its surface
roughness parameter 𝜈 (RMS slope of the microfacets), and its ‘intrinsic
reflectivity’, i.e. the proportion of absorbed light predicted by the
Fresnel equation which is then scattered by the first few atomic layers
of the surface and exits again — effectively Lambertian reflectance.

Although the original paper on this model contained validation
against some materials, the materials expected to be encountered in
space objects may be quite different from the macroscopically flat
surfaces. For example, crinkled thermal blankets clearly occupy an in-
termediate regime of being microscopically smooth (low surface rough-
ness), however macroscopically there are relatively large, millimetre-
scale bumps and imperfections. It is unclear how such materials should
be best modelled, since these surface features may be too large to treat
statistically by use of a high roughness parameter. In order to deter-
mine how to best model such materials, we compared two modelling
techniques with lab data. The first method treats the crinkled foil as
flat, with a high roughness parameter 𝜈 = 0.15. The second method
involves refinement of the mesh and the addition of noise to vertex
locations in 3D space. This creates a surface with many imperfections
as can be seen in Fig. 13 which approximates the real foil surface. The
oughness parameter in this case is set to a lower value of 𝜈 = 0.06,
orresponding to a microscopically smooth, reflective surface.
A laboratory setup was designed to collect data for the model vali-

ation. Here we had a cube placed on a rotation stage, with different
aterials on each face, illuminated obliquely with a tungsten lamp and
iffuser. For testing a thermal blanket analogue, one side of the cube
as covered with crinkled aluminium foil, and the rest with black paint.
Fig. 14. Comparison of simulated measurements and lab measurements for rotating cube at 985 nm, using non-flat, low roughness foil approximation (𝜈 = 0.06).
Fig. 15. Comparison of simulated measurements and lab measurements for rotating cube at 985 nm, using flat, high roughness foil approximation (𝜈 = 0.15).
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Fig. 16. Block diagram of material contribution analysis method. Contribution time series data can also be used for attitude estimation.
Fig. 17. Spectral light curve for a simulated test cube rotating at 1 rpm, with faces consisting of a mixture of three materials (aluminium foil, gold foil and solar panels).
The cube was set to rotate under a fixed point of the spectrometer
camera, which collected spectra from the object at 200 ms intervals as
it rotated. Light was collected from a small circular area in the centre of
the camera’s field of view, through which the cube surfaces passed. This
lab scenario was simulated using the previously mentioned model, by
updating the rotation state of the cube at each time step, and matching
all physical dimensions, angles and distances. Refractive index data for
thin film aluminium oxide was used as the input in this case, since
the validation is being carried out in an oxygenated environment and
bare aluminium is not the reality of the sample being used. In the lab
measurements, one full rotation of the cube was measured, resulting in
small specular peaks for each painted face, and one much larger peak
due to the foil side.

The results of the two methods superimposed on the smoothed lab
data at an arbitrarily chosen wavelength can be seen in Figs. 14 to 15.
lthough both provide a reasonable approximation of the light curve
f the rotating foil face, the high roughness method appears to be a
etter model. Since this method requires fewer polygons in the 3D
odel, the simulation is also significantly faster. For these reasons, we
onclude that crinkled foil surfaces should be modelled as flat, with
igh roughness, rather than non-flat with low roughness.
518
4. Spectral light curve analysis

The aim of the spectral analysis is to obtain the contribution of
spectrally distinct materials to the spectrum received by the sensor. The
unmixed contribution of each material together with information about
the illumination source will be used to construct a model of the object
and deduce the pointing direction of its surfaces.

The proposed spectral analysis process progresses through a number
of steps, summarised in Fig. 16. As an illustrative example of the
process in Fig. 16, Fig. 17 shows the light curve for a test cube, sim-
ulated with the model described in the previous section, with surfaces
consisting of three materials, rotating about a fixed axis passing through
opposing corners. The distribution of materials across the six faces
are shown in Table 2. In the table, the axes indicated in the first
column correspond to the six faces of the cube, notated in the body
frame. A complex distribution of materials was chosen to verify that
the unmixing (endmember decomposition in the following) would be
capable of extracting material spectra even when some materials are
not isolated (100% contribution to signal) at any time point in the
integration.

These simulations were performed under simulated laboratory con-
ditions, as a proof of concept - i.e. using fixed-axis rotation and an
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Fig. 18. Preprocessing steps applied to a simulated spectrum taken from the test object represented in Fig. 17 and a reference spectrum for gold material. Spectra are first
ormalised to the mean solar spectrum, and then further normalised using continuum removal, which is achieved by dividing each point of the spectrum by the point on the line
hat forms a convex hull over the top of the spectral curve.
Table 2
Abundances of each material for the first test cube. Material spectra
collected in lab experiments.
Cube face
(body axis)

Aluminium foil
fraction

Gold foil
fraction

Solar panel
fraction

+𝑥 0.5 0 0.5
+𝑦 0 0 1
+𝑧 0.5 0.5 0
−𝑥 0.75 0 0.25
−𝑦 0 0.135 0.865
−𝑧 0 0.5 0.5

object whose centre of mass does not move with respect to the observer.
The camera was simulated to be looking toward the cube along the
positive 𝑥 axis, at a distance of 0.5 metres, thus the unit vector in the
view direction is 𝐕̂ = [1, 0, 0]𝑇 . The illumination direction 𝐒̂ was chosen
to be behind the observer, i.e. 𝐒̂ = 𝐕̂. The MODTRAN extraterrestrial
olar spectrum (corresponding to the intensity at 1 astronomical unit)
as used as the illumination source. Cube side length was 6 centimetres
nd aligned such that the 𝑧 axis (also the constant axis of rotation) was
ligned with two opposing corners, such that all faces are visible to the
amera at some point in a full revolution.
The data is preprocessed in two stages, as shown in Fig. 18. The

olar illumination is corrected for by dividing each sample of the
ata by the mean solar spectrum, after which continuum removal is
erformed on both the data and the reference spectra, in order to
ormalise the spectra and remove any deviating baselines.
After preprocessing, endmember decomposition is performed using

he N-FINDR algorithm, which maximises the volume of a simplex with
ndmember spectra at the corners [25]. This results in a collection
f 𝑁 endmember spectra, which are candidate spectra that should
orrespond to individual materials present on the surface of the ob-
519

ect. As 𝑁 is an input to N-FINDR, an estimate for the number of
candidate spectra must first be determined. One option is to use a noise-
whitened Harsanyi–Farrand–Chang (HFC) algorithm [26,27], which
will be discussed in more detail in Section 4.1. Endmember analysis,
using non-negative constrained least-squares regression (NCLS), then
determines the relative contribution of each endmember to the overall
spectrum for each point in time [28]. This is analogous to abundance
estimation in conventional 2-dimensional hyperspectral scenes.

Fig. 19 shows the results of applying this analysis to the simulated
cube. The ground truth contribution curves represent the fraction of
the object facing the observer that is composed of each material. As
not all of this area is evenly illuminated, the relative contributions
estimated using NCLS are not accurate; however, the peaks of these
curves correlate closely with the peaks in the ground truth curves.

Classification of the endmembers is performed using spectral match-
ing, with reference to known spectra of common materials from a
spectral library. Spectral matching uses the Spectral Angle Mapper
(SAM) algorithm [29], shown in Fig. 20(a). The SAM score 𝛼 is defined
as:

𝛼 = cos−1
⎛
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, (14)

where 𝑋𝑖 is the 𝑖th band of endmember spectrum 𝐗, 𝑅𝑖 is the 𝑖th
band of reference spectrum 𝐑, and 𝑛 is the number of spectral bands.
Lower SAM scores indicate greater spectral similarity. This calculation
is performed for each pair of endmember/reference spectra, and the
endmember is assigned to the material with the lowest score. Fig. 20(b)
shows the results of applying this classification to the endmembers
obtained for the simulated cube. The result is a time series of the
relative contribution of each known material. Smoothing is applied to
obtain the final contribution time series data, using a Gaussian filter
with a window size of 3 samples. Finally, the contributions curves are
normalised to sum to 1 at each point in time, so that they represent the

relative contributions of the materials.
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Fig. 19. Initial results for a cube-shaped test object. In the top row, the extracted endmember spectra are presented in comparison to the ground truth spectra. Fig. 20(b) shows
he SAM scores used to classify the endmembers. The bottom row presents the corresponding smoothed contribution time series curves, extracted using the NCLS method. Although
he relative contributions are not always accurate due to illumination conditions, the peaks in the estimated contribution curves correlate closely with the peaks in the ground
ruth curves obtained from the model.
Fig. 20. The Spectral Angle Mapper (SAM) algorithm measures the angular distance 𝛼 between the bands of two spectra. Applying this method to each pair of endmember/reference
spectra from the cube simulation results in the heatmap in (b), with the lowest score in each row highlighted. Lower scores indicate greater spectral similarity. Using these scores,
endmembers A, B, and C can be assigned to the gold foil, solar panel, and aluminium foil classes, respectively.
Fig. 21 demonstrates the advantages of using contribution curves for
attitude estimation over a panchromatic light curve. Not only are peaks
in the frequency domain more pronounced using the contribution data,
but differences in the peaks between contribution curves for separate
materials are indicative of faces with different material compositions,
making it feasible to correct for harmonics in the frequency domain
caused by object symmetry.

4.1. Estimation of the number of materials

One significant limitation of the N-FINDR algorithm is its reliance
on prior knowledge about the ground truth number of materials 𝑁𝐺𝑇
present in the scene. Fig. 22 shows the effects of using an incorrect
520
value 𝑁 to guess 𝑁𝐺𝑇 . When 𝑁 < 𝑁𝐺𝑇 , two or more materials may be
combined in a single endmember, or less dominant materials may be
omitted altogether. In a situation in which specific materials are sought,
this is not a limitation. If 𝑁 > 𝑁𝐺𝑇 , some materials will have shadow
spectra. In this case, material classification will result in multiple
materials associated to the same endmember. Once they have been
identified using SAM, these endmembers may be combined into a single
spectrum prior to contribution analysis. For this reason, it is generally
preferable to overestimate the value of 𝑁 than to underestimate it.

In practice, the correct value of 𝑁 is unlikely to be known a priori,
so an algorithm is required to determine the value from the available
data. An option is to use the noise-whitened HFC (NWHFC) algorithm to
estimate the number of endmembers present in the scene [26]. NWHFC
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Fig. 21. Fast Fourier transform (FFT) of the mean light curve data compared with each of the contribution curves. Differences between the heights of the peaks in these frequency
domain curves (such as the relatively higher peak in gold foil at 4 rpm) can be leveraged to obtain additional information about the object’s rotation.
Fig. 22. Comparison of results using the incorrect number of endmembers as an input to the N-FINDR algorithm. When 𝑁 < 𝑁𝐺𝑇 , as in the middle pane (𝑁 = 2), endmembers
will comprise features of multiple ground truth materials. Note that endmember A in this example is similar to the gold foil spectrum, and B is similar to the aluminium spectrum,
but both endmembers also contain features of the solar panel spectrum, such as a narrow absorbance band at around 680 nm. When 𝑁 > 𝑁𝐺𝑇 , as in the right pane (𝑁 = 5),
multiple endmembers are found for some ground truth materials. In this case, endmembers A and C are representative of gold foil, and B and D are representative of solar panels.
i
o

estimates the virtual dimensionality (VD) of the signal, a measure
that represents the number of spectrally distinct signal sources, by
comparing the eigenvalues of the correlation matrix and the covariance
matrix of the signal. For a noise component, these values will be the
same. Therefore, the VD can be estimated as the number of spectral
components for which the difference between the eigenvalues is above
some small threshold value. The sensitivity of the algorithm can be
adjusted using the probability of false alarm (PFA) parameter, which
controls this threshold value.

NWHFC performs best when the number of hyperpixels 𝑠 is signifi-
cantly higher than the number of bands 𝑛. For time series consisting of
few sample points, the number of endmembers is significantly overesti-
mated. One approach to solving this problem is to artificially augment
the data available during this stage by adding Gaussian noise to re-
peated copies of the input data. In our test case, consisting of 121
samples, three repetitions of the input data were sufficient to overcome
the lack of a sufficient number of hyperpixels. The number of end-
members may still be underestimated in cases where multiple materials
have similar spectral signatures. For this reason, larger quantities of
source data are still preferred for greater reliability. Increasing the
PFA parameter may significantly alleviate this problem, as shown in
Fig. 23, but comes at the expense of an increased risk of false positives.
The number of false positives varies depending on numerous factors,
including the signal-to-noise ratio; for this reason, it is necessary to
revisit the tuning of this parameter when working on new datasets.
521
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Table 3
Material distribution of the full pipeline simulation.
Cube face
(body axis)

Steel
fraction

Aluminium
fraction

PVC
fraction

+𝑥 0 0.5 0.5
+𝑦 0 0 1
+𝑧 0.5 0 0.5
−𝑥 0 1 0
−𝑦 0 0 1
−𝑧 0.5 0.5 0

A new case was simulated to test the full pipeline of sensor sim-
ulation – endmember decomposition – attitude estimation, using a
different cube-shaped object with the material distribution shown in
Table 3. As well as the simulated hyperspectral imager signal, the
sensor simulation also outputs the ground truth of the material contri-
bution curves — the fraction of the object’s projection onto the image
plane that is composed of each constituent material.

Conditions for the simulations in this case were the same as for
the previous case, except for a different illumination vector 𝐒̂ =
[0.0995, 0.995, 0]𝑇 , i.e. a phase angle of just less than 90 degrees.
Additionally, the cube’s body-frame +𝑧 axis/face is aligned with the
nertial +𝑧 axis rather than rotating about an axis passing through
pposing corners. The cube is again fixed-axis rotating at 1 revolution

er minute.
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Fig. 23. Number of endmembers predicted by the NWHFC algorithm for the simulated cube, which has 121 samples points across 239 bands. Without data augmentation, there
are too few sample points to obtain a reasonable estimate (the predicted value for one repetition is in the region of 60–120). For small numbers of repetitions, the value is
underestimated, as one of the spectral components has a flat profile that is difficult to detect. For large numbers of repetitions, the correct result is obtained. Increasing the
probability of false alarm (PFA) lowers the number of repetitions required to achieve the correct result; however, this also significantly increases the risk of false positives in noisy
data.
Fig. 24. Spectra recovered from endmember decomposition compared to the true spectra. Since steel was not present on the object, no corresponding endmember was identified.
Beneath that, the contribution estimation determined by endmember analysis is shown. As in the other example, the overall shape of each curve closely resembles the ground truth,
but the relative contributions at each point in time contains inaccuracies resulting from illumination conditions (e.g. from 30–42 s, the proportion of PVC relative to aluminium
is underestimated.
Fig. 24 shows the decomposed spectra and contribution curves for
this test case. The large phase angle in this case combined with the
different orientation of the rotation axis with respect to the body frame
causes a much more rapid transition between materials in Fig. 24
ompared with the more gradual transitions in Fig. 19. Since the cube
otates about +𝑧 and the view direction is along the inertial +𝑥, only
luminium and PVC are visible during the simulation. The endmember
ecomposition successfully recovered two spectra which matched the
522
input spectra of aluminium and PVC, as well as abundance curves
which match well with the ground truth (see Fig. 24).

In Fig. 24 one can see the normalised relative abundance of ma-
terials in view. The view from the camera at four discrete points in
time is shown in Fig. 25. From this plot, one can see that there are two
different combinations of materials that periodically come in view, with
one of the two with double the frequency of the others. This suggests

four different faces with a mix of Aluminium and PVC.
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Fig. 25. Cube as viewed from sensor location at various times, illustrating material distribution and visible elements. Illumination vector is [0.0995, 0.995, 0]𝑇 , i.e. phase angle
close to 90 degrees. On the material maps, cyan corresponds to aluminium, and yellow to PVC. Steel is present only on the top and bottom faces, which are out of view. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Attitude estimation

Once the time series of the spectra are received and unmixed, one
can associate the spectral response of each surface to a particular
attitude. In this section, we investigate two conceptually different
approaches. In the first approach, we try to identify the pointing
direction of a particular combination of materials that we associate to a
virtual face with a corresponding normal vector 𝐧̂. Thus, we exploit the
unmixing and attempt an association of endmembers to surfaces. In the
second approach, we start directly from the mixed spectra and associate
their time series to the time series of the corresponding quaternions
through a machine learning model.

5.1. Estimation with least square regression

Under the assumption that the object we are observing is equivalent
to a cube with six faces, what we call an eCube, and assuming that the
unit observation vector (observer to object direction) 𝐕̂ and illumina-

̂
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tion vector (illuminator to object direction) 𝐒 are known we can build w
the following simple observation model:

𝐲(𝜆) =
6
∑

𝑖=1
max(0,−𝐒̂ ⋅ 𝐧̂𝑖) max(0,−𝐕̂ ⋅ 𝐧̂𝑖)𝐅𝑖◦𝐑(𝜆) , (15)

here 𝐲(𝜆) is an 𝑚-element vector containing the m material-wise
ontributions at wavelength 𝜆, 𝐧̂𝑖 is the normal vector of face 𝑖, 𝐅𝑖 is the
th column of an 𝑚 × 6 matrix 𝐅 containing the fractions (normalised
o 1) of detected materials on an e-face coming from the endmember
nalysis, 𝐑(𝜆) is an 𝑚 × 1 vector containing the reference spectra of
ach material. Thus, the Hadamard product of 𝐅𝑖 and 𝐑(𝜆) gives the
eference intensity due to each material. We can now look for the global
inimiser of the following cost function:

(𝐧) =
∑

𝑘

∑

𝑗
(𝑇𝑗 (𝜆𝑘) −

∑

𝑖
𝑦𝑖𝑗 (𝐧))2 , (16)

hich is minimised with respect to the pointing direction of one of the
Cube faces only, 𝐧̂. Since the other 5 are rigidly attached, aligning one
ace correctly is sufficient to recover the rotation state of the eCube.
ere, 𝑇 (𝜆) is the measured intensity per identified material at a given

avelength 𝜆, which we sum over a number of wavelengths and m
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Fig. 26. Definition of angles used in the attitude cost function. eCube attitude is
defined by three angles, 𝜃𝑏, 𝜙𝑏 and 𝜓𝑏. 𝜃𝑏 and 𝜙𝑏 are the azimuth and elevation of the
𝑥 face normal with respect to the inertial frame (𝐱̂𝑖, 𝐲̂𝑖, 𝐳̂𝑖), and 𝜓𝑏 is the rotation
f the other two body axes about the +𝑥 face normal 𝐱̂𝑏. Here the body frame unit
ectors 𝐱̂𝑏, 𝐲̂𝑏, 𝐳̂𝑏 are aligned with the +𝑥, +𝑦 and +𝑧 faces respectively. 𝜃𝑏, 𝜙𝑏, 𝑝𝑠𝑖𝑏
qual to zero implies the body axes are aligned with the inertial axes.

aterials. As a first experiment, we minimise the cost function 𝐽 with
espect to the angles 𝜃 and 𝜙 defining the azimuth and elevation of the
𝑥 face normal of the eCube 𝐧1 with respect to the inertial reference
rame in which 𝐕̂ and 𝐒̂ are defined, as illustrated in Fig. 26.
The global minimum is sought by using a multi-start procedure com-

ining Latin hypercube sampling with the Matlab fmincon function.
he cost function 𝐽 often has a complex landscape depending on the
aterial distribution and illumination conditions, but in some cases it
resents a nice shape with clear minima.
Fig. 27 shows an example corresponding to the case depicted in

ig. 17, with a cube rotating around the 𝑧 axis. Here, the simulation
as performed for the same lab conditions as the pipeline test, with
he illumination vector 𝐒̂ = [0.7071, 0.7071, 0]𝑇 giving a phase angle of
5 degrees. We consider the normal to the face initially pointing in the
𝑥 direction and assume a rotation of 32 degrees around 𝑧. This would
orrespond to a 𝜃𝑏 angle of 32 degrees, 𝜙𝑏 = 90 degrees and 𝜓𝑏 = 0.
ig. 27 on the right shows the landscape of J for this configuration. The
lobal minimum is correctly identified at 𝜃𝑏 = 32 and 𝜙𝑏 = 90.
These two angles are not sufficient to account for all rotations. Thus,

e introduce a further rotation angle 𝜓𝑏 around the normal vector 𝐧.
Thus, the solution needs to globally minimise J, with respect to 𝜃𝑏, 𝜙𝑏
nd 𝜓𝑏. Fig. 28 shows the variation J with respect to 𝜓𝑏 for the same
524

case study. Also in this case the global minimum is correctly identified
Table 4
Range of orbital elements used in training set pro-
duction. 𝛺𝑅𝐴𝐴𝑁 was always set to zero such that
the ascending node was at the same longitude as
the telescope. 𝜃 is bounded such that the object is
overhead (±15 degrees) at the start of the simulation.
Orbital element Value range

𝑎 (km) 7471–7671
𝑒 0–0.01
𝑖 (◦) −45–+45
𝛺 (◦) 0
𝜔 (◦) 0-359.9
𝜃 (◦) (360 − 𝜔 − 15)–(360 − 𝜔 + 15)

Table 5
Material distribution for the 3U cubesat simulation.
Cubesat Face
(body axis)

Aluminium
fraction

Solar Panel
fraction

+𝑥 0 1
+𝑦 1 0
+𝑧 1 0
−𝑥 0 1
−𝑦 1 0
−𝑧 1 0

as 0 degrees. After applying the multi-start search, the optimisation
algorithm was able to correctly identify the direction of the normal
vector.

For the simple case analysed in this paper and a regular attitude
motion, this approach has given good results that are easily explainable.
For more complex geometries, material distributions and irregular
attitude motions, the number of minima multiplies and a correct iden-
tification is not always easy. Future work is needed to account for
the time variation of the spectra of the individual materials. This is
expected to eliminate alternative minima and reduce the number of
feasible solutions.

5.2. Attitude estimation with machine learning

We also propose an alternative approach for estimating the attitude
which bypasses the unmixing of the spectra, and directly associates
individual spectra to particular orientations of a given object.
Fig. 27. Example of variation of 𝐽 with respect to 𝜃𝑏, 𝜙𝑏 for the true values of 𝜃𝑏 = 32 and 𝜙𝑏 = 90 and a phase angle of 45 degrees.
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Fig. 28. Example of variation of J with respect to 𝜓𝑏.
Fig. 29. Use of machine learning models for predicting quaternion values based on single spectral responses. In the initial experiment, the 60 spectra shown on the left side led
o the predicted quaternion values on the right side with 𝑅2 = 99.49 and RMSE = 0.0755. Each time point corresponds to a 1-second integration from the sensor simulation.
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5.2.1. 3U CubeSat
Initial simulations were performed for a more realistic scenario

of a 3U cubesat in Earth orbit, with the telescope on ground. The
cubesat was modelled as a 30 cm × 10 cm × 10 cm cuboid, with
a simple distribution of materials as shown in Table 5, i.e. with two
body-mounted solar panels covering two opposing long faces.

A series of simulations were performed to build a set of training
data with which to train the machine learning models. To increase
diversity of the training data, the orbital elements of the cubesat were
initialised with uniform random variation within a range that allows a
line of sight from the ground telescope. Table 4 shows the range used
or each element. This range of orbital elements was chosen such that
t the start of each observation arc, the object is within 15 degrees
f the telescope zenith direction. The relatively high elevation angle
as chosen due to the rapidly increasing atmospheric attenuation at
ower elevation, likely rendering such small objects invisible before
hey cross the horizon. This approach results in range-bound random
nitial elevation rather than starting all simulations at some minimum
levation, as it is not known whether the orbits of objects will be known
n advance of observations. Telescope location was held constant for
ach simulation at zero longitude and 5 degrees latitude. In these sim-
lations, atmospheric attenuation is enabled, and the same wavelength
ands as before are used.
In each simulation, the cubesat was set rotating about an axis

ffset from its long axis by 5 degrees to introduce a small nutation
525
motion. The magnitude of the angular velocity was randomly generated
between 0 and 1 revolution per minute. The object’s rotation was
simulated for 5 min sampled at 1 Hz, yielding 300 quaternions and
300 corresponding spectra.

For this initial experiment, we developed a Support Vector Machine
(SVM) regression model implemented using libsvm [30]. This was
trained to extract the elements of the quaternions (one separate model
for each quaternion element) representing the orientation at time 𝑡, 𝐪(𝑡),
given only the corresponding received spectrum 𝐬(𝑡, 𝜆). where 𝐬(𝑡, 𝜆𝑟𝑒𝑓 )
is the measured intensity at time 𝑡 in an arbitrary reference band 𝜆𝑟𝑒𝑓 .
This transformation is a higher-resolution implementation of the colour
indexing approach often used in astronomical observations [5].

Since predictions are made on a point-by-point basis, the data can be
plit 50–50 into training and testing sets by alternating assignment into
ach set, i.e. samples 1, 3, 5... comprised the training set and samples
, 4, 6... comprised the test set. This ensures both sets contain samples
rom the full range of each parameter so that the model is not required
o extrapolate [31–34].
Using this time-point-based prediction, Fig. 29 shows the results

f an initial experiment in which a relatively small amount of data
a subset of one simulation instance, with 121 spectral responses,
ampled at 1 s intervals, i.e., 0–120 s), with a promising prediction
chieved with 𝑅2 = 99.49 and RMSE = 0.0755. This SVM model was
mplemented using a reduced dimensionality of the spectral responses
from 46 spectral bands to 5 main features) via Principal Component
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Fig. 30. Extended results of SVM regression (for quaternion 𝑞1) with progressive addition of new data. The right side of the green dashed line indicates where new data is
introduced with relation to the previous experiment, showing that the addition of new data challenges the ability of the regression models to generalise: (a) 𝑅2 = 98.72, (b) 𝑅2

= 98.79, (c) 𝑅2 = 74.73, and (d) 𝑅2 = 34.09.

Fig. 31. Extended results of SVM regression (for quaternion 𝑞2) with progressive addition of new data. The right side of the green dashed line indicates where new data is
introduced with relation to the previous experiment, showing that the addition of new data challenges the ability of the regression models to generalise: (a) 𝑅2 = 94.06, (b) 𝑅2

= 95.66, (c) 𝑅2 = 82.51, and (d) 𝑅2 = 56.79.
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Fig. 32. Extended results of SVM regression (for quaternion 𝑞3) with progressive addition of new data. The right side of the green dashed line indicates where new data is
introduced with relation to the previous experiment, showing that the addition of new data challenges the ability of the regression models to generalise: (a) 𝑅2 = 93.34, (b) 𝑅2

= 95.39, (c) 𝑅2 = 80.52, and (d) 𝑅2 = 58.61.

Fig. 33. Extended results of SVM regression (for quaternion 𝑞4) with progressive addition of new data. The right side of the green dashed line indicates where new data is
introduced with relation to the previous experiment, showing that the addition of new data challenges the ability of the regression models to generalise: (a) 𝑅2 = 98.31, (b) 𝑅2

= 98.56, (c) 𝑅2 = 92.56, and (d) 𝑅2 = 31.84.
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Fig. 34. Comparison of spectral responses corresponding to equivalent quaternions. While the value of the quaternions repeats cyclically, the spectral responses show an evolution
over the time which challenges the ability of the regression models to generalise. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 35. Improved SVM prediction (for quaternion 𝑞1) with the inclusion of observation conditions and geometry: (a) result without observation conditions achieved 𝑅2 = 74.73
nd RMSE = 0.3271, (b) result with observation conditions achieved 𝑅2 = 97.97 and RMSE = 0.0999. Similar improvement was found for the other quaternions.
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nalysis (PCA) [35], which is a common feature extraction method
sed in combination with SVM regression.
After this initial experiment, we extended the SVM datasets to

nclude multiple simulations (where we follow the same train–test split
nd only test on spectra from ‘seen’ simulations). We then attempted
o make predictions on a totally unseen simulation instance which had
ot been used as a source of training samples using the alternating
rain–test split. Here we also increased the number of components from
he PCA to 50. These results can be seen in Figs. 30–33 where the
reen dashed line indicates the addition of new data in the experiments.
hile the performance of the models was acceptable for a limited
mount of data, the inclusion of larger data from different instances
or training the models eventually led to worse performance. Taking
uaternion 𝑞1 as example, Fig. 30(a) and (b) show a good performance
ith 𝑅2 = 98.72 and 𝑅2 = 98.79, respectively, using the first half of
528
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simulation instance and the complete instance, with 301 time points
0–300 s). However, experiment in (c) shows how the addition of more
ata (a second simulation instance) can affect the performance (𝑅2 =
4.73), as the model is not able to generalise well. Finally, experiment
n (d) shows that the model fails to predict the quaternion (𝑅2 = 34.09)
or a third simulation instance which, in this particular experiment, was
ot considered in the training. A similar behaviour was found for the
ther quaternions.
The main reason why the SVM failed to generalise, was that the

ame quaternion, reoccurring at a later time, produced a different
pectral response. This was due to the change in relative position of the
bject with respect to the observer, meaning for the same orientation,
different face may be visible. As well as this, the solar aspect angle

hanges as the object progresses along its orbit. This is illustrated
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Fig. 36. Comparison between SVM and ANN prediction for quaternion 𝑞1 with the inclusion of observation conditions and geometry: (a) prediction results with SVM give an 𝑅2

= 93.08 and RMSE = 0.1752, (b) prediction results with ANN under the same conditions give an 𝑅2 = 98.29 and RMSE = 0.0861.
Fig. 37. Comparison between SVM and ANN prediction for quaternion 𝑞2 with the inclusion of observation conditions and geometry: (a) prediction results with SVM give an 𝑅2

= 84.54 and RMSE = 0.1125, (b) prediction results with ANN under the same conditions give an 𝑅2 = 96.18 and RMSE = 0.0563.
Fig. 38. Comparison between SVM and ANN prediction for quaternion 𝑞3 with the inclusion of observation conditions and geometry: (a) prediction results with SVM give an 𝑅2

= 85.20 and RMSE = 0.1104, (b) prediction results with ANN under the same conditions give an 𝑅2 = 73.93 and RMSE = 0.1642.
in Fig. 34, where an equivalent set of quaternions present different
spectral responses (in blue and red colour, respectively).

To account for this, three additional features were included at each
time point: the solar aspect angle, the distance to the object, and the
unit vector pointing from the observer to the object.

Fig. 35 shows a comparison of the results obtained for the same
train and test sets, with and without these additional observation
parameters. This experiment included a total of 602 spectral responses
(two independent simulation instances of 301 time points each, from
0–300 s). While the original prediction in Fig. 35(a) achieved 𝑅2 =
74.73 and RMSE = 0.3271, the inclusion of these parameters led to
an improved 𝑅2 = 97.97 and RMSE = 0.0999 in Fig. 35(b), showing
529
a significant improvement. Similar enhancement was achieved when
predicting the other quaternions, demonstrating that prior knowledge
can be used to refine the model prediction.

All previous machine learning experiments used SVM for regres-
sion tasks. However, machine learning regression could also be im-
plemented via Artificial Neural Networks (ANN) [36], more powerful
algorithms with, presumably, higher generalisation ability. In the next
experiment see Figs. 36–39, more data (a total of 1505 spectral re-
sponses, five independent simulation instances of 301 time points each,
from 0–300 s) is evaluated under the same conditions with the only
difference that, in (a), the machine learning is based on SVM regression,
while in (b), it is based on ANN regression. The NN consisted of
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Fig. 39. Comparison between SVM and ANN prediction for quaternion 𝑞4 with the inclusion of observation conditions and geometry: (a) prediction results with SVM give an 𝑅2

= 94.56 and RMSE = 0.1505, (b) prediction results with ANN under the same conditions give an 𝑅2 = 97.69 and RMSE = 0.0971.
Fig. 40. True and predicted quaternions for the cube in orbit test case, using the ANN.
i
r
a
s

a relatively basic architecture, a feedforward fully-connected NN for
regression (ReLU activation function), with input layer of the same
dimensionality as the PCA components (50), a hidden layer with 100
nodes, plus a second hidden layer with 10 nodes, and an output layer of
1 node or value (the regression prediction). A separate NN was trained
for each quaternion element. These were implemented and trained
through the Matlab fitrnet function (LBFGS solver). By replacing SVM
regression with ANN regression, the prediction clearly improved in 3
of the 4 quaternions, going from 𝑅2 = 93.08 to 98.29 and from RSME
= 0.1752 to 0.0861 for quaternion 𝑞1. This improvement is in line with
expectations and shows that NNs, yet more complex than SVMs, are
able to provide more accurate predictions of the quaternions.

5.2.2. Asymmetric cube
A concern with the previous results is that the oversimplified, highly

symmetrical nature of the 3U cubesat model causes an ever-present
one-to-many mapping between spectra and orientations: for any ori-
entation 𝐪 there are always 3 alternative orientations (rotations of 180
530

e

degrees) which appear the same to an observer and will result in the
same spectrum. While the observation parameters help to disambiguate
in a small dataset (since one of these alternative orientations must
occur at a later time with different observation parameters), when
the dataset becomes large enough (in an attempt to develop a more
generalised model), the ambiguity will reappear and prevent good
model convergence.

We then developed a more generalised model, using train/test data
from simulations of a simple 30 cm cube with an asymmetrical material
distribution, as described by Table 7. The cube’s motion is simulated
in Earth orbit, with orbital elements in Table 6. The diagonal elements
of the inertia tensor were [0.6, 0.6, 1], and the initial axis of rotation
n the body frame was [0.1483, 0, 0.9889], which induced a precessing
otation. The magnitude of the initial angular velocity was 2𝜋 rads−1
nd the body axes are aligned with the inertial axes at the start of the
imulation.
Since the quaternions 𝐪 and −𝐪 both correspond to the same ori-

ntation [37], in order to achieve robust convergence with machine
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Fig. 41. True and predicted quaternions for the cube in orbit test case, using gradient boosted tree ensembles.
u
t
>

s
o
e
i

m
a
u
i
F
o
d
v
r

Table 6
Orbital elements for the cube in orbit.
𝑎 (km) 𝑒 𝑖(𝑜) 𝛺(𝑜) 𝜔(𝑜) 𝜃(𝑜)

7596.3 0.0072 5.93 355.43 143.1 202.6

Table 7
Material distribution for ML-based attitude estimation.
Cube face (body axis) Material

+𝑥 Gold thermal blanket
+𝑦 Aluminium
+𝑧 GaAs solar panel
−𝑥 Titanium
−𝑦 White paint
−𝑧 Red paint

learning models employing gradient descent such as ANNs, one must
restrict the solution space to remove this duplication of valid solutions.
In this case we chose to restrict solutions to the half of 𝐪-space where
the first element of 𝐪, 𝑞1, is non-negative, by making the transformation
𝐪(𝑡) → −𝐪(𝑡) when 𝑞1(𝑡) < 0.

A new sample scaling method was also introduced which removes
the effect of distance on signal magnitude, while preserving band-to-
band magnitude relationships within the same sample, was applied by
making the transformation in Eq. (17).

𝐬(𝑡, 𝜆) → −2.5 log10(
𝐬(𝑡, 𝜆)

𝐬(𝑡, 𝜆𝑟𝑒𝑓 )
) (17)

Two regression models — an ANN [36], and a gradient boosted tree
nsemble [38] were trained to predict the quaternion elements in a
similar manner as before. The hyperparameters of the new ANN can
be found in Table 8. The model was trained until 100 epochs of no
improvement, at which point the weights and biases were reverted to
the best found set during training.

The boosted tree models used a minimalist architecture to control
overfitting, with a maximum tree depth of 2, and a maximum of 100
531

f

Table 8
Hyperparameters for the ANN model.
Hyperparameter Value

# Hidden layers 2
Dropout fraction 0.2
# Hidden nodes 200, 50
# Output nodes 4
Activation functions ReLU - tanh - linear
Mini-batch size 16 samples
Optimiser Adam

trees per ensemble. One ensemble was trained per element of the
quaternion to be predicted. The final number of trees in each model
after training were 100, 56, 97 and 60 for 𝑞1,2,3,4 respectively.

The results for both models can be seen in Figs. 40–41, in this case
sing the same alternating train–test split as before. It can be seen that
he quality of the predictions is very good, with an R2 coefficient of
0.9 for all elements of the quaternions.
To test the models’ ability to generalise, we generated multiple in-

tances of the same cube, each following a different trajectory (different
rbital elements), but with the same rotational dynamics. Initial orbital
lements were randomly generated in the same ranges specified before
n Table 4.
In this experiment we changed the train/test split such that the
odel is trained on all time points from 98 instances, and tested on
ll time points from a separate 2 instances which can be considered
nseen. The results of the predictions for both models can be seen
n Figs. 42–43. Although the performance is reduced compared with
igs. 40–41, it is clear that there is transfer between the different
rbits and illumination conditions, and that likely with an increased
ataset size spanning a wider range of orbits the model could generalise
ery well. However, the training set still consisted of the same set of
otational dynamics, and likely a new model would need to be trained

or different rotational motions.
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Fig. 42. ANN predictions of quaternions for the cube in orbit, testing on unseen instances.
Fig. 43. Boosted tree ensemble predictions of quaternions for the cube in orbit, testing on unseen instances.
6. Final remarks

The paper presented some initial results on the use of hyperspectral
imaging technology to characterise space objects. It was demonstrated,
532
through high fidelity simulations and laboratory tests, how one can
extract the surface composition of unknown objects from single pixel
observations. By looking at the spectrum received from a space object,
one can unmix the signal and identify individual spectral components.
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By comparing the individual spectra against a library of possible ma-
terials, one can infer the surface composition. Furthermore, it was
demonstrated how an analysis of the time variation of the spectra
can provide important indications on the attitude motion of the object
in view, with a much richer information than traditional light curve
methods. The paper proposed a simple measurement model that allows,
under suitable assumptions on the expected shape of the object, the
correct identification of the pointing direction of the outer faces of the
object. Furthermore, we showed how the use of machine learning could
offer a promising model-free solution to estimate the attitude motion by
directly associating the spectra generated with our high fidelity model
to corresponding quaternions at given times.

Although the simulation model presented in this paper accounts for
a number of sources of attenuation and noise in the received spectra,
the matching with a library of materials requires further steps to
include weathering effects of the materials in space. Since the literature
suggests much of the weathering effects manifest in the > 700 nm
pectral region, it is possible that shorter wavelengths contain sufficient
nformation to match materials to observations. This would mean an
ccurate model may be constructed without the need to include these
ffects, however future work should verify this by attempting matching
n the ultraviolet/visible regions. If this proves impossible, an accurate
odel of space weathering will likely be required to perform spectral
atching as described in this paper. The next step is to produce a
roper classification system that allows one to associate object classes
o spectral signatures. This association will improve also the estimation
f the attitude motion as different classes correspond to objects with
eference shapes (cubesat, rocket bodies, telecom satellites, etc.) and
xpected components. A similar association of materials to surfaces can
e derived from the endmember decomposition. This aspect will also
e investigated in future work. Further work is also required to identify
he most appropriate parameterisation to associate spectra to attitude
otion and enable to learning the attitude kinematics from the time
eries of spectra.
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