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Markov-Switching Poisson Generalized
Autoregressive Conditional Heteroscedastic
Models

Jichun Liu, Yue Pan, Jiazhu Pan∗, and Abdullah Almarashi

We consider a kind of regime-switching autoregressive
models for nonnegative integer-valued time series when the
conditional distribution given historical information is Pois-
son distribution. In this type of models the link between
the conditional variance (i.e. the conditional mean for Pois-
son distribution) and its past values as well as the observed
values of the Poisson process may be different when an un-
observable (hidden) variable, which is a Markovian Chain,
takes different states. We study the stationarity and ergodic-
ity of Markov-switching Poisson generalized autoregressive
heteroscedastic (MS-PGARCH) models, and give a condi-
tion on parameters under which a MS-PGARCH process
can be approximated by a geometrically ergodic process.
Under this condition we discuss maximum likelihood esti-
mation for MS-PGARCH models. Simulation studies and
application to modelling financial count time series are pre-
sented to support our methodology.
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1. INTRODUCTION

An important topic in econometrics and statistics is to
analyze the dynamic behaviour of economic and financial
variables. Fortunately, there are many leading choices of
linear and nonlinear models for conditional mean and con-
ditional variance. In the past few decades, there has been
growing interest in nonlinear time series models[20, 40, 18,
10, 42].

Regime-switching has been introduced in different mod-
els, including threshold models[41] and ARCH/GARCH
models[22], and has various applications in economics, such
as analyzing business circle[29], GNP[24], interest rate[19]
and monetary policy[37]. Regime-switching models such as
the Markov switching autoregressive (MSAR) models and
the threshold autoregressive (TAR) have become increas-
ingly popular for nonlinear time series and have been used
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to describe regime switching phenomena in various fields in
science and social science. There are many studies on these
kinds of models in literature[41, 27, 31, 5, 33, 34, 8, 25].
These models consist of different regimes which can describe
the time series pattern in various states. The switching be-
tween states is according to an unobservable (hidden) vari-
able or a time-delayed variable, and each state follows a
linear model.

Markov switching refers to regime-switching based on a
hidden Markov chain. The main purpose of the Markov
switching model is to study the mean behaviour of variables.
Therefore, many authors have used conditional mean mod-
els with Markov switching[20, 9, 17, 16, 36]. Since this type
of models have been used satisfactorily with high success, it
is informative to consider incorporating the switching into
a conditional heteroscedasticity model. The best choices for
conditional heteroscedasticity are the ARCH/GARCH mod-
els. So the ARCH/GARCH with Markov switching has been
introduced. For example, Markov switching has been intro-
duced to the stochastic volatility model[38], and maximum
likelihood estimation for Markov switching autoregressive
conditional heteroscedasticity model has been discussed[35].

Many papers have appeared in economic applications of
switching conditional mean and conditional variance mod-
els, especially in applying this type of models to analysis
of financial time series[22, 23, 31]. Almost all references on
Markov switching are about continuous type of time series
data. However, many discrete-valued data are needed to be
analyzed in finance, economics, network modelling, medicine
and other fields. Although there have been some papers on
discrete type of data in the literature[32, 11, 14, 13, 43], the
Markov-switching has not been combined to discrete-valued
time series models yet. In this paper, we discuss Poisson
Markov switching models for count time series with nonneg-
ative integer values. Because the conditional mean coincides
with the conditional variance for a Poisson process, we call
our model a Markov switching Poisson generalized autore-
gressive conditional heteroscedastic (MS-PGARCH) model.

The contents of this paper are organized as follows. Sec-
tion 2 introduces the model and discusses its probabilistic
properties such as geometric ergodicity. We overcome math-
ematical difficulties to obtain a geometrically ergodic ap-
proximation to the MS-PGARCH model. We use the idea
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of the “perturbation” approach[14] but our proof process is
more tricky because we have Markov-switching in the model.
Section 3 gives the maximum likelihood estimation for the
proposed model. Section 4 presents simulation results and a
real data example to assess the modelling process by numer-
ical evidence. Appendix A provides proofs of all the theoret-
ical results and Appendix B gives details of the “collapsing
procedure” to overcome “path dependence” problem in es-
timation of the model.

2. MODEL AND METHODOLOGY

2.1 Definition of the Model

Suppose that {Yt} is a nonnegative integer-valued time
series. Consider the model defined by

(1)

{
Yt|FY,λ,S

t−1 ∼ Poisson(λt),

λt = c(St) + a(St)λt−1 + b(St)Yt−1

where Ft−1 denotes the information set available
at time t − 1, which is a σ−field generated by
{(Yt−1, St−1), (Yt−2, St−2), ..., (Y0, S0), (λ0, S0)}, and St

is an irreducible and aperiodic stationary Markov chain
with finite state space S = {1, 2, ...m} and an m × m
transition matrix P . A typical element of P is denoted by
pij = Pr(St = j|St−1 = i), i.e. P = [pij ] where

pij = Pr(St = j|St−1 = i), i, j = 1, 2, ...,m.

The stationary distribution {St} is denoted by π =
(π1, π2, π3, ..., πm)T . The states of St represent the different
regimes of the model. The coefficients ci = c(i), ai = a(i)
and bi = b(i), i = 1, 2, ..,m are assumed to be positive. Note
that the model defined by (1) is a model for the conditional
variance of Yt given the historical information. We call this
model a Markov-switching Poisson generalized autoregres-
sive heteroscedastic (MS-PGARCH) model, denoted by MS-
PGARCH (m;1,1), where m is called the number of regimes
of the model.

The model (1) can be rewritten in a form of Poisson pro-
cess by assuming that Yt represents the number of events
Nt(λt) of a Poisson process Nt(·) with unit intensity in time
interval (0, λt] as follows

(2)

{
Yt = Nt(λt),

λt = c(St) + a(St)λt−1 + b(St)Yt−1

for t ≥ 1, where the initial values Y0 and λ0 are assumed to
be fixed, Nt(λt) denotes the Poisson process with intensity
λt, and λt is defined by (1).

2.2 Ergodicity of a Perturbed Model

We study the stationarity and ergodicity of {Yt} by prov-
ing these properties for {(λt, St)}, given a suitable initial dis-
tribution for (λ0, S0). However, establishing ψ-irreducibility

and finding a small set is quite complicated because of the
fact that λt has discrete-valued random innovations. Given
the value of λ0, the set of possible values for λ1 is count-
able. In fact, the set of states that are reachable from a fixed
starting state is also countable, and distinct initial values
can have distinct sets of reachable locations. To avoid this
issue, we consider a model with ε-perturbation defined by

(3)

{
Y n
t = Nt(λ

n
t ),

λnt = c(St) + a(St)λ
n
t−1 + b(St)Y

n
t−1 + εt,n

where

(4) εt,n = cnUt, cn > 0, cn → 0, as n→ ∞,

and {Ut} is a sequence of iid uniform random variables on

(0, 1) and such that Ut is independent of FY,λ,S
t−1 .

We have the following results on the ergodicity of model
(3). Their proofs all are postponed to Appendix A. There
it is first proved that the unobserved process {(λnt , St)} is
geometrically ergodic.

Before stating main results, we need some notations. Let

Mu := [pji(a(i) + b(i))u], i, j = 1, 2, . . . ,m; u ≥ 0.

Define a norm ∥D∥ =
∑

ij dij for a nonnegative vector or
matrix D = [dij ], and ρ(D) for the spectral radius of matrix
D.

Theorem 2.1. Suppose that ρ(M1) < 1. Then, given an
appropriate initial distribution for (λn0 , S0), the process
{(λnt , St)} defined in (3) is a stationary and geometrically
ergodic Markov chain with finite first moment. Moreover,
{Y n

t } defined in (3) is a stationary and ergodic process with
finite first moment.

Remark 2.1. It is not difficult to verify that ρ(M1) = a+b,
if a(St) ≡ a and b(St) ≡ b.

For the existence of high moments for the process {Y n
t },

we have the following proposition.

Theorem 2.2. Suppose that ρ(Mk) < 1, where k ≥ 1 is
a positive integer. Given an appropriate initial distribution
for (λn0 , S0), the process {Y n

t } defined in (3) is a stationary
and ergodic process with finite moment of order k.

Remark 2.2. A similar argument as Remark 2.1, we easily
know that ρ(Mk) = (a + b)k, if a(St) ≡ a and b(St) ≡ b.
Obviously, a + b < 1 if and only if (a + b)k < 1. Hence,
Theorems 2.1 and 2.2 above will reduce to Propositions 2.1
and 2.2 in [14], if a(St) ≡ a and b(St) ≡ b.

The following lemma quantifies the difference between (2)
and (3), as n→ ∞, and shows that the perturbed model can
be made arbitrarily close to the unperturbed model.
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Lemma 2.1. Suppose that ρ(M2) < 1 and {(Yt, λt)} and
{(Y n

t , λ
n
t )} are defined by (2) and (3) respectively, and

(λn0 , S0) =d (λ0, S0), then the following statements hold:
(1). |E(λnt − λt)| = |E(Y n

t − Yt)| ≤ δ1,n,
(2). E(λnt − λt)

2 ≤ δ2,n,
(3). E(Y n

t − Yt)
2 ≤ δ3,n

where δi,n → 0 as n → ∞ for i = 1, 2, 3, and “=d” denotes
“equality in distribution”. Furthermore, almost surely for
any δ > 0, with n large enough

|λnt − λt| ≤ δ and |Y n
t − Yt| ≤ δ.

To make the analysis simple, we describe the model
(1) with two regimes in detail next. Assume that the un-
observable Markov chain St has two states: 1 and 2. A
simple Markov switching model for the process λt con-
tains two GARCH specifications: each of them follows a
GARCH(1, 1) model. The process λt switches between two
regimes according to the value of the state variable St. The
limiting unconditional mean (as t→ ∞) of the process is

c1P (st = 1) + c2P (st = 2)

1− [(a1 + b1)P (st = 1) + (a2 + b2)P (st = 2)]
.

The process λt is governed by two regimes with special
means, and the transition between regimes is determined
by the value of the state variable St. Lemma 2.1 shows the
MS-PGARCH (2; 1, 1) can be approximated by the following
process

Y n
t = Nt(λ

n
t ),

λnt =

{
c1 + a1λ

n
t−1 + b1Y

n
t−1 + ε1,tn, if St = 1,

c2 + a2λ
n
t−1 + b2Y

n
t−1 + ε2,tn, if St = 2,

(5)

where εt,n satisfies (4).
Assume St in follows a first-order Markov chain with the

transition matrix

P2 =:

[
p11 p12

p21 p22

]
=

[
p11 1− p11

1− p22 p22

]

where pij , (i, j = 1, 2) denote the transition probabilities of
the state variable St = j given St−1 = i. The transition
probabilities satisfy

∑2
j=1 pij = 1, and 0 ≤ pij ≤ 1, i =

1, 2. A small value of the transition probabilities p12 and p21
means that the process tends to stay longer in state 1 and 2
respectively. In general, the expected duration of the model
to stay in the state 1 is

∑∞
k=1 kp

k−1
11 (1 − p11) =

1
1−p11

, and

the expected duration of the other state is 1
1−p22

[20]. The
transition matrix P2 above contains only two parameters
(p11, p22). The stationary distribution of the Markov chain
{St} is

π =

[
Pr(St = 1)

Pr(St = 2)

]
=

[ 1−p22

2−p11−p22

1−p11

2−p11−p22

]
.

According to (1), the MS-PGARCH(2; 1, 1) model uses an
unobservable Markov chain to govern the transition from
one conditional mean (i.e. variance) to another. Note that
the state variable St is independent of Yt−1 (over time) and
this consequently may make it difficult for people to apply
this model to analyzing time series data.

3. MAXIMUM LIKELIHOOD ESTIMATION
OF MS-PGARCH MODEL

In the last few decades, many authors have discussed
the different methods to estimate the Markov switching
model[20, 21, 23, 28, 29, 15, 35]. Here, we concentrate on
the MS-PGARCH(2;1,1) model of order (1,1). However, the
procedure for high order MS-PGARCH model would be
straightforward.

Because the states of the hidden Markov chain are
not directly observable, it is quite difficult to estimate a
MS-GARCH model. The EM algorithm[20] and the Gibbs
sampler[1] could be applied by treating the hidden Markov
process as parameters. The first method is more difficult to
implement in the presence of AR lags[12], while the second
approach requires heavy computation. Nevertheless, in this
section, we show that it is possible to numerically approx-
imate the maximum likelihood estimates of our model by
adopting the collapsing procedure.

Denote the parameter vector as

θ′ = (γ′, η′)

where {
γ′ = (a1, a2, b1, b2, c1, c2),
η′ = (p11, p22).

The intensity λt could be written in an alternative form as
λt(S1:t) to demonstrate its dependence on past trajectory
of the Markov process {St}, where S1:t := {S1, S2, ..., St}.
[23] proposed a filtering algorithm to evaluate the likeli-
hood function for certain types of Markov switching models.
Given T samples Y1:T := {Y1, Y2, ..., YT }, the log-likelihood
function of (Y1:T , S1:T ) is

(6) LT (θ) =
T∑

t=1

ℓt−1(θ) :=
T∑

t=1

log{f(Yt|Y1:t−1, θ)}.

In the remaining part of this section, the symbol θ is omitted
from the likelihood functions for simplicity.

Since S1:T are not observable and the distribution of Yt
depends on the trajectory of S1:t, the likelihood function of
Yt could only be evaluated by integrating over all possible
realizations of S1:t:
(7)

f(Yt|Y1:t−1)
=

∑
S1:t

f(Yt, S1:t|Y1:t−1)
=

∑
S1:t

f(Yt|Y1:t−1, S1:t)Pr{St|St−1}g(S1:t−1|Y1:t−1)
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where

(8) f(Yt|Y1:t−1, S1:t) =
{λt(S1:t)}Ytexp{−λt(S1:t)}

Yt!

and g(S1:t|Y1:t) is called the filtering probability of S1:t given
Y1:t, which could easily be derived as

(9) g(S1:t|Y1:t) =
f(Yt, S1:t|Y1:t−1)

f(Yt|Y1:t−1)
.

Given an initial distribution of S0, the likelihood func-
tion (6) could be evaluated iteratively according to (7) −
(9). However, note that the number of potential trajectories
is 2t in the evaluation of (7), hence such filtering algorithm
would become numerically infeasible as t becomes large. To
address this computational problem caused by the path de-
pendence of λt on the hidden Markov process, a widely used
technique in the literature is to approximate model (1) by a
collapsed version where the intensity process only depends
on a segment instead of the entire history of {St}. Different
such approximations of Markov switching GARCH has been
proposed[19, 7, 30], and then been generalized as the Gen-
eral Collapsing Procedure [2], which could also be applied
to the ML estimation of our MSPGARCH model.

Set the length of segment as q, at t = 1, 2, ..., q. The
Hamilton filtering procedure (7) − (9) are adopted to cal-
culate the exact likelihood function of model (1). Starting
from t = q+1, the likelhood function is evaluated using the
collapsed model

(10)

{
λ̃t(St−q+1:t) = c(St) + a(St)Et−1 + b(St)Yt−1,

Et = E
{
λ̃t(St−q+1:t)|Y1:t, St−q+2:t+1

}
.

Note that at each t, the dependence of λ̃t(St−q+1:t) on
St−q+1 is removed by taking expectation conditioning on
Y1:t and one-step-ahead moving segment of St−q+2:t+1, such
that the approximated intensity process only depends on a
window of lenghth q of its past trajectory. Similar to (7) −
(9) we could approximate the likelihood function starting
from t = q + 1 by iterating (11) to (13) as follows:

(11)
f̃(Yt|Y1:t−1) =

∑
St−q+1:t

f̃(Yt|Y1:t−1, St−q+1:t)

×Pr{St|St−1}g̃(St−q:t−1|Y1:t−1),

where

(12)
f̃(Yt|Y1:t−1, St−q+1:t) = {λ̃t(St−q+1:t)}Yt

× exp{−λ̃t(St−q+1:t)}
Yt!

and

(13) g̃(St−q+1:t|Y1:t) =
f̃(Yt, St−q+1:t|Y1:t−1)

f̃(Yt|Y1:t−1)
.

The calculation of this conditional expectaion in (10) is ac-
tually a by-product of the filtering probabilities in the iter-
ation of (11) to (13) since

(14)
E
{
λ̃t(St−q+1:t)|Y1:t, St−q+2:t+1

}
=

∑
St−q+1

λ̃t(St−q+1:t)g̃(St−q+1|St−q+2:t+1, Y1:t)

where

(15)

g̃(St−q+1|St−q+2:t+1, Y1:t)

=


Pr{St+1|St}g̃(St|Y1:t)∑
St

Pr{St+1|St}g̃(St|Y1:t)
, if q = 1,

g̃(St−q+1:t|Y1:t)∑
St−q+1

g̃(St−q+1:t|Y1:t)
, if q ≥ 2.

Since the summation in (11) is over 2q of segments, the com-
putational complexity remain fixed for t = q + 1, q + 2, · · · .
According to [2], there is a deterministic bias in the estima-
tion results produced in this approach due to the collapsing
procedure, such bias is proved to be neglectable with suffi-
ciently large q nevertheless. Thus there is a trade-off between
accuracy and efficiency when it comes to the choice of q.

The collapsing procedure is discussed more in detail in
Appendix B of this paper.

4. NUMERICAL RESULTS: SIMULATION
STUDY AND A REAL DATA EXAMPLE

4.1 Simulations

In this section, we carry out simulation studies to show
the finite sample properties of the MLEs for the MS-
PGARCH model. Datasets with sizes of T = 500, 1500, 5000
are generated by following data generating process:

λt =

{
0.3 + 0.2λt−1 + 0.1Yt−1, if St = 1,
2 + 0.4λt−1 + 0.3Yt−1, if St = 2,

(16)

P =

[
0.98 0.02

0.04 0.96

]
.(17)

The MLEs are obtained by optimizing the log likelihood
function derived based on the filtering algorithm with col-
lapsing procedure, which we introduced in section 3 and the
details of such algorithm are presented in Appendix B. The
simulation is repeated for 1000 times with q = 8 and dif-
ferent initial values of θ, and the results are summarized in
Table 1 and Table 2.

The mean values of estimates are presented in Table 1,
the root-mean-square errors (RMSE) are given in the paren-
theses to evaluate the performance of the results. As it is
indicated by the decreasing trend of RMSE as the sample
size becomes larger, the MLEs based on the collapsed model
approximate the true parameters of model (16) quite well,
hence the deterministic bias caused by the collapsing proce-
dure is neglectable as expected with sufficiently large sample
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Table 1. Maximum likelihood estimates with their RMSEs (in parentheses) for model (16) for different sample sizes.

Sample size MLEs

T a1 a2 b1 b2 c1 c2 p11 p22
500 0.2024 0.4169 0.0970 0.2761 0.2990 2.0655 0.9787 0.9564

(0.1241) (0.1374) (0.0588) (0.0922) (0.0660) (0.5587) (0.0100) (0.0248)

1500 0.1979 0.3971 0.0961 0.2973 0.3028 2.0371 0.9786 0.9585
(0.0826) (0.0731) (0.0360) (0.0480) (0.0370) (0.2949) (0.0057) (0.0091)

5000 0.2049 0.3993 0.0986 0.3016 0.2973 1.9909 0.9804 0.9598
(0.0426) (0.0399) (0.0230) (0.0236) (0.0186) (0.1658) (0.0025) (0.0055)

θ0 0.2 0.4 0.1 0.3 0.3 2 0.98 0.96

Table 2. The simulated standard error for model (16) for different sample sizes.

Sample size Simulated Standard Error

T a1 a2 b1 b2 c1 c2 p11 p22
500 0.0125 0.0137 0.0059 0.0090 0.0066 0.0558 0.0010 0.0025

1500 0.0083 0.0073 0.0036 0.0048 0.0037 0.0294 0.0006 0.0009

5000 0.0043 0.0040 0.0023 0.0024 0.0019 0.0166 0.0002 0.0006

size. On the other hand, the estimation approach we use be-
come more efficient as the standard error of estimates from
100 replications is significantly lower with larger sample size
according to Table 2.

4.2 A Real Data Example

As illustration of our model and methodology, we fit a
MS-PGARCH(2;1,1) to a real data set consisting of 650 ob-
servations of the number of transactions per minute for the
stock Ericsson B which conveys around 11 hours of trans-
actions in the period 2-3 July, 2002. The sample mean of
this particular realization was 10.08, with a standard devi-
ation of 5.6207. Figure 1 presents the observation numbers,
histogram and sample autocorrelation function. From Fig-
ure 1, it can be seen that this time series does not exhibit
any trending behaviour. The plot of sample autocorrelation
function of the number of transactions suggests significant
serial correlation between transactions.

Table 3 below shows the estimates of parameters in the
model defined by (1) for m = 2.

The steady-state distribution of the Markov chain St is
also estimated as

π = (0.721, 0.279)τ .

The results in Table 3 can be expressed as

λ̂t =

{
0.053 + 0.870λ̂t−1 + 0.099Yt−1, if St = 1,

3.484 + 0.915λ̂t−1 + 0.084Yt−1, if St = 2

with transition matrix

P2 =

[
0.716 0.284

0.820 0.180

]
.

From Table 3, it can be seen that there are several inter-
esting findings. First, the limiting unconditional mean (as
t → ∞) of the number of transactions per minute for the
stock Ericsson B in the period July 2-22,2002 is

c1P (St = 1) + c2P (St = 2)

1− [(a1 + b1)P (St = 1) + (a2 + b2)P (St = 2)]
= 40.136.

Second, the transition probabilities appear to be different
for different states. The process tends to stay longer in
state 1 than of the state 2 . Third, there are two regimes
of this transactions: one is called “contraction period” in
which the process stays in the state 1, the other one is
called “expansion period” in which the process stays in
the state 2. Note that the expected duration of state 1 is

1
1−p11

= 3.3501, while the expected duration of the other

state is 1
1−p22

= 1.3005. That is, the expected duration for
a contraction period and an expansion period are approxi-
mately 3.3501 and 1.3005 minutes respectively.

5. CONCLUSION

This paper incorporates Markov regime-switching into
Poisson process and proposes the Markov-switching Pois-
son generalized autoregressive conditional heteroscedastic
(MS-PGARCH) model. This model can be used to describe
the dynamics of an integer-valued time series whose con-
ditional variance/mean varies over time switching between
different patterns. In theory, we mainly studied the fun-
damental properties such as stationarity and ergodicity of
MS-PGARCH models. It is proved that the proposed model
can be approximated by a series of geometrically ergodic
processes under mild condition on parameters. This enables
the statistical inference about this model. For practical em-
pirical implementation, the maximum likelihood estimate
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Figure 1. From top to bottom: Time plot of the number of transactions per minute for the stock Ericsson B in the period 2-3
July,2002, histogram of the observation number and the sample autocorrelation function.

Table 3. The estimates of parameters for MS-PGARCH(2;1,1).

Parameters a1 a2 b1 b2 c1 c2 p11 p22
Estimated value 0.870 0.915 0.099 0.084 0.053 3.484 0.716 0.180

Note: The estimates are obtained by using starting values from the uniform distribution. The results are based on 1000
simulations.
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for this model was approximated by collapsing procedure to
overcome so called “path dependence” problem. The accu-
racy of estimation is evaluated by simulation studies, and
the methodology is illustrated by a real data example.

APPENDIX A. PROOFS OF THEORETICAL
RESULTS

Let A := {i : 0 < a(i) < 1, 1 ≤ i ≤ m} and λ∗ :=
mini∈A{c(i)/(1 − a(i))}, and ϕ and v denote the Lebesgue
and the counting measure of a set, respectively. If A ̸= ∅,
without loss of generality, write λ∗ := c(1)/(1−a(1)). More-
over, for convenience, write

At := [1(St = i, St−1 = j)a(i)],

Bt := [1(St = i, St−1 = j)b(i)],

Ct,kl := [1(St = i, St−1 = j)ak(i)bl(i)],

Mkl := [pjia
k(i)bl(i)],

i, j = 1, . . . ,m,

where 1(·) is the indicator function. Again, let 1St
:=

(1(St = 1), . . . , 1(St = m))τ , |J | denote the length of the
interval J , and Zn

t := (λnt , St).

We are now ready to state the ergodicity of the process
{Y n

t } defined by (3). But, for the proof of ergodicity, we
need the following lemma.

Lemma A-1 Let {Zn
t } be a Markov chain defined by

(3). If A ̸= ∅, then every point in D = {(λ, s) ∈ R+ × R+ :
(λ, s) ∈

⋃m
i=1Di} is reachable, where Di = {(λ, s) ∈ R+ ×

R+ : λ ≥ c(i) + a(i)λ∗, s ∈ Ti} with Ti = {j ∈ S : c(j) +
a(j)λ∗ ≤ c(i) + a(i)λ∗}, i = 1, 2, . . . ,m.

Proof. Notice that if λnt−1 = λ ≥ λ∗, then

λnt

=c(St) + a(St)λ+ b(St)Nt−1(λ) + εt,n

≥c(St) + a(St)λ

=(c(St) + a(St)λ)(1(a(St) ≥ 1) + 1(a(St) < 1))

=(c(St) + a(St)λ)1(a(St) ≥ 1)

+ (c(St) + a(St)λ)1(a(St < 1))

≥λ∗1(a(St) ≥ 1) + (c(St) + a(St)λ
∗)1(a(St < 1))

=λ∗1(a(St) ≥ 1)

+ (1− a(St))

(
c(St)

1− a(St)
+

a(St)

1− a(St)
λ∗

)
× 1(a(St < 1))

≥λ∗1(a(St) ≥ 1)

+ (1− a(St))

(
λ∗ +

a(St)

1− a(St)
λ∗

)
1(a(St < 1))

=λ∗.

Hence, if λn0 = λ ≥ λ∗, we know that λnt ≥ λ∗ for all t ≥ 1.
Now consider a point (d, si) ∈ Di ⊂ D. We will show that
there exists a j ≥ 1 and an interval Jd such that d ∈ Jd,
|Jd| ≤ ε for sufficiently small ε > 0, and P j(z0, G) > 0,
where z0 = (λ, s0) ∈ D and G = {(λ, s) ∈ D : λ ∈ Jd, s =
si}.

First assume that d = c(i) + a(i)λ∗ and si = i. In this
case, define j to be the smallest positive integer such that
a(1)ja(i)(λ− λ∗) < ε, since a(1) < 1. Consider a path such
that λn0 = λ, S0 = s0, Y

n
0 = Y n

1 = . . . = Y n
j = 0, S1 = S2 =

. . . = Sj = 1, and Sj+1 = i. This implies that

(A.1)
λnj+1 = c(i) + a(i)λ∗ + a(1)ja(i)(λ− λ∗)

+a(i)
∑j−1

i=0 a(1)
iεj−i,n + εj+1,n.

From (A.1)together with

P (S1 = S2 = . . . = Sj = 1, Sj+1 = i|Zn
0 = z0) > 0,

P (Y n
0 = Y n

1 = . . . = Y n
j = 0|Zn

0 = z0,Wij) > 0,

P (a(i)

j−1∑
i=0

a(1)iεj−i,n + εj+1,n < ε− a(1)ja(i)(λ− λ∗)) > 0,

we conclude that for G = {(λ, s) ∈ D : λ ∈ Jd, s = i} with
Jd = [d, d+ ε),

P j+1(z0, G)

≥P (Y n
0 = Y n

1 = . . . = Y n
j = 0,

S1 = S2 = . . . = Sj = 1, Sj+1 = i,

a(i)

j−1∑
i=0

a(1)iεj−i,n + εj+1,n < ε− a(1)ja(i)(λ− λ∗)|Zn
0 = z0)

=P (Y n
0 = . . . = Y n

j = 0|Zn
0 = z0,Wij)

× P (S1 = . . . = Sj = 1, Sj+1 = i|Zn
0 = z0)

× P (a(i)

j−1∑
i=0

a(1)iεj−i,n + εj+1,n < ε− a(1)ja(i)(λ− λ∗))

>0,

where Wij = {ω : S1 = . . . = Sj = 1, Sj+1 =

i, a(i)
∑j−1

i=0 a(1)
iεj−i,n + εj+1,n < ε− a(1)ja(i)(λ− λ∗)}.

Next assume that d = c(i) + a(i)λ∗ and si = k ̸= i.
Obviously, c(k) + a(k)λ∗ ≤ c(i) + a(i)λ∗. Hence δ := c(i) +
a(i)λ∗ − c(k) − a(k)λ∗ ≥ 0. If δ = 0, replace i with k in
(A.1), the assertion is also true. If δ > 0, define j to be the
smallest positive integer such that a(1)j−1a(k)b(1) < ε and
a(1)ja(k)(λ − λ∗) < δ/2, since a(1) < 1. Consider a path
such that λn0 = λ, S0 = s0, Y

n
0 = N , Y n

1 = . . . = Y n
j = 0,

S1 = S2 = . . . = Sj = 1, and Sj+1 = k. This shows that

λnj+1 =c(k) + a(k)(λ∗ + a(1)j(λ− λ∗)

+ a(1)j−1b(1)N +

j−1∑
i=0

a(1)iεj−i,n) + εj+1,n
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=λnk,j+1(N) + a(k)

j−1∑
i=0

a(1)iεj−i,n + εj+1,n,

where λnk,j+1(N) := c(k) + a(k)(λ∗ + a(1)j(λ − λ∗) +

a(1)j−1b(1)N). If there exists anN such that λnk,j+1(N) = d,
in an analogous way as above s = i case, one can show that
P j+1(z0, G) > 0, where G = {(λ, s) ∈ D : λ ∈ Jd, s = k}
with Jd = [d, d+ε). Otherwise, letN := Nj+1 be the least in-
teger such that λnk,j+1(N−1) < d < λnk,j+1(N) (λnk,j+1(0) <
d). Taking Jd = [λnk,j+1(N−1), λnk,j+1(N)), we easily obtain

that P j+1(z0, G) > 0 and |Jd| = a(1)j−1a(k)b(1) < ε, where
G = {(λ, s) : λ ∈ Jd, s = k}.

Now, we consider the case that d > c(i) + a(i)λ∗. If
si = i, define j to be the smallest positive integer such
that a(1)j−1b(1)a(i) < ε and a(1)ja(i)(λ−λ∗) < (d− c(i)−
a(i)λ∗)/2, and consider a path such that Zn

0 = z0, Y
n
0 = N ,

Y n
1 = Y n

2 = . . . = Y n
j = 0, S1 = S2 = . . . = Sj = 1, and

Sj+1 = i. We can also obtain that there exists a j ≥ 1 and
|Jd| ≤ ε such that P j+1(z0, G) > 0, where G = {(λ, s) ∈
D : λ ∈ Jd, s = i} with Jd = [d, d + ε) if there exists an
N such that λni,j+1(N) = d, otherwise Jd = [λni,j+1(N −
1), λni,j+1(N)) with N := Nj+1 being the least integer such
that λni,j+1(N − 1) < d < λni,j+1(N) (λni,j+1(0) < d). If
s = k ̸= i and c(k) + a(k)λ∗ < c(i) + a(i)λ∗, define j to be
the smallest positive integer such that a(1)j−1b(1)a(k) < ε
and a(1)ja(k)(λ−λ∗) < (d−c(k)−a(k)λ∗)/2, and consider a
path such that Z0

0 = z0, Y
n
0 = N , Y n

1 = Y n
2 = . . . = Y n

j = 0,
S1 = S2 = . . . = Sj = 1, and Sj+1 = k. If there exists an
N such that λnk,j+1(N) = d, in an analogous way as above,

one can show that P j(z0, G) > 0, where G = {(λ, s) ∈
D : λ ∈ [d, d + ε), s = k}. Otherwise, let N := Nj+1 be
the least integer such that λnk,j+1(N − 1) < d < λnk,j+1(N)
(λnk,j+1(0) < d). Taking G = {(λ, s) ∈ D : λ ∈ [λnk,j+1(N −
1), λnk,j+1(N)), s = k}, we easily obtain that P j(z0, G) > 0

and |[λnk,j+1(N − 1), λnk,j+1(N))| = a(1)j−1a(k)b(1) < ε.

Similarly, we may get that P j(z0, G) > 0 if s = k ̸= i
and c(k) + a(k)λ∗ = c(i) + a(i)λ∗, where G is defined as
above in the same manner. Since ε is arbitrary, (d, si) can
be approximated arbitrarily closely, and (d, si) is reachable
if (d, si) ∈ D. This completes the proof of Lemma A-1.

A.1 Proof of Theorem 2.1.

We will first prove that the Markov chain {Zn
t } is ψ-

irreducible, aperiodic, and positive Harris recurrent. These
properties will imply that {Zn

t } has a unique stationary dis-
tribution π(λ, S), and that if Zn

0 ∼ π(λ, S), then {Zn
t } is

stationary and geometrically ergodic.
First note that A ̸= ∅ if ρ(M1) < 1. The state space

is equipped with FD, the Borel σ-algebra on R+ × R+ re-
stricted toD. The measure ψ is the product measure ϕ⊗v on
(D,FD). Let G ∈ FD such that ψ(G) > 0. Then there exists
a point (d, k) ∈ G ⊂ Di such that ψ(D+

δ ) > 0, where D+
δ =

G ∩B+
δ with B+

δ = {(λ, s) : λ ∈ [d, d+ δ/2), s = k} for any

δ > 0. WriteDd+
δ = {(x, s) : x = y−d, y ∈ D+

δ , s = k}. Since

d ≥ c(i)+a(i)λ∗ ≥ c(k)+a(k)λ∗, then (d−c(k))/a(k) ≥ λ∗.
Thus using the technique of proof of Lemma A-1 for some
j, (λnj , Sj) will be arbitrarily close to ((d− c(k))/a(k), 1) by
choosing j large enough and Sj = 1. In particular, j can
be chosen so that |c(k) + a(k)λnj − d| < ε/2, where ε < δ.
Consider a path of the next step such that Y n

j = 0 and
Sj+1 = k, we have

P ((λ′, 1), G) ≥ P ((λ′, 1), D+
δ )

≥P (εj+1,n ∈ Dd+
δ−ε(1))P (Sj+1 = k|Sj = 1)P (Y n

j = 0|λnj = λ′)

=
1

cn
ϕ(Dd+

δ−ε(1) ∩ (0, cn))P (Sj+1 = k|Sj = 1)P (Y n
j = 0|λnj = λ′)

>0,

where Dd+
δ−ε(1) = {x : (x, s) ∈ Dd+

δ−ε}. Hence P j+1(z0, G) >
0, which implies ψ-irreducibility. It remains to prove the
existence of a small set, aperiodicity and positive Harris re-
current.

Let C = {(λ, s) ∈ D : λ ≤ M∗} for any M∗ > λ∗,
and define j to be the smallest positive integer such that
a(1)j−1(M∗ − λ∗) < ε/2 for sufficiently small ε. Then

inf
λ∈C

P (S1 = S2 = . . . = Sj−1 = 1|Zn
0 = z0) > 0,

inf
λ∈C

P (Y n
0 = Y n

1 = . . . = Y n
j−2 = 0|Zn

0 = z0,Wj−1) > 0,

P (ε1,n + ε2,n + . . .+ εj−1,n <
ε

2
− a(1)j−1(M∗ − λ∗)) > 0,

where Wj−1 = {ω : S1 = . . . = Sj−1 = 1, ε1,n +
ε2,n + . . . + εj−1,n < ε/2 − a(1)j−1(M∗ − λ∗)}. Thus
infz∈C P

j−1(z,H) > 0, where H = {(λ, s) ∈ D : λ ∈
[λ∗, λ∗ + ε/2]}. Taking µ = Unif(λ∗ + ε/2, λ∗ + ε) and

γ =
1

cn
inf
z∈C

P j−1(z,H)

× inf
z∈H

{P (Y n
j−1 = 0|Zn

j−1 = z)P (Sj = 1|Zn
j−1 = z)}

>0,

then, for all G ∈ B(R+ × R+),

P j(z,G)

≥P j(z,G ∩Hε)

=

∫
R+×R+

P (y,G ∩Hε)P
j−1(z, dy)

≥
∫
H

P (y,G ∩Hε)P
j−1(z, dy)

≥ inf
z∈H

{P (Y n
j−1 = 0|Zn

j−1 = z)P (Sj = 1|Zn
j−1 = z)}

×
∫
H

P (εj,n ∈ Gy ∩ (ε/2− a(1)(y − λ∗), ε− a(1)(y − λ∗)))

× P j−1(z, dy)

≥γP (Uj ∈ Gλ∗ ∩ (ε/2, ε))

=γµ(G),
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which establishes C as a small set, where Hε = {(λ, s) ∈ D :
λ ∈ (λ∗+ε/2, λ∗+ε)} and Gu = {x : x = z1−λ∗−a(1)(u−
λ∗), (z1, z2) ∈ G}.

We now show that {Zn
t } is aperiodic. Consider the small

set C = {(λ, s) ∈ D : λ ≤ M∗} with M∗ > λ∗. Note that
ψ(C) > 0. If Zn

t−1 = (λ, s) ∈ C, consider a path such that
Y n
t−1 = 0, St = 1, and εt,n ≤ (1− a(1))(M∗ − λ∗), then

λ∗ ≤λnt
=c(1) + a(1)λ+ εt,n

≤c(1) + a(1)M∗ + (1− a(1))(M∗ − λ∗)

=M∗.

This implies

P (Zn
t ∈ C|Zn

t−1 = (λ, s) ∈ C)

≥P
{
Y n
t−1 = 0, St = 1,

εt,n ≤ (1− a(1))(M∗ − λ∗)|Zn
t−1 = (λ, s) ∈ C

}
=P (Nt−1(λ) = 0)P (St = 1|St−1 = s)

× P {εt,n ≤ (1− a(1))(M∗ − λ∗)}
>0.

Similarly,

P (Zn
t+1 ∈ C|Zn

t−1 = (λ, s) ∈ C)

≥P
{
Y n
t = Y n

t−1 = 0, St+1 = St = 1,

εt+1,n ≤ (1− a(1))(M∗ − λ∗),

εt,n ≤ (1− a(1))(M∗ − λ∗)

|Zn
t−1 = (λ, s) ∈ C

}
>0.

It follows that {Zn
t } is aperiodic by Proposition A1.1 in [6].

Finally, we prove that {Zn
t } is positive Harris recurrent. It

is well-known that Mk
1 → 0 as k → ∞, if ρ(M1) < 1. Thus,

for some positive constant α < 1, there exists a positive
integer N such that ∥Mk

1 ∥ ≤ α for all k ≥ N . Consider
V (x) = 1 + x1, where x = (x1, x2) with x1 > 0. Define
the small set C = {(λ, s) ∈ D : λ ≤ M∗, s ∈ S}, where
M∗ = K/(1− 2ε− α) with ε > 0 such that 1− 2ε− α > 0,
M∗ = K/(1 − 2ε − α) > max{1, λ∗}, and constant K :=

(cn/2+c)
∑N

i=1 ∥M i−1∥ with c = max{c(1), . . . , c(m)}. First
note that St and Y

n
t−1 are conditionally independent under

given (St−1, λ
n
t−1), which implies that

E(∥Bt1St−1
Y n
t−1∥λnt−1, St−1)

=E(∥Bt1St−1
∥|λnt−1, St−1)E(Y n

t−1|λnt−1, St−1)

=λnt−1E(∥Bt1St−1
∥|λnt−1, St−1)

=λnt−1∥M011St−1
∥.

In addition,

E(∥At1St−1λ
n
t−1∥|λnt−1, St−1) = λnt−1∥M101St−1∥.

It follows that

E(∥At1St−1
λnt−1 +Bt1St−1

Y n
t−1∥|λnt−1, St−1)

=λnt−1∥M11St−1
∥.

Therefore, for any λ > M∗,

E[V (Zn
Nt)|Zn

N(t−1) = z = (λ, s)]

=E[1 + λnNt|Zn
N(t−1) = z]

=1 + E[∥1SNt
λnNt∥|Zn

N(t−1) = z]

=1 + E[∥1SNt
c(SNt) +ANt1SNt−1

λnNt−1

+BNt1SNt−1
Y n
Nt−1 + 1SNt

εNt,n∥|Zn
N(t−1) = z]

=1 + EεNt,n + E[c(SNt)|Zn
N(t−1) = z]

+ E[E(∥ANt1SNt−1
λnNt−1 +BNt1SNt−1

Y n
Nt−1∥|F

λn,S
N(t−1),Nt−1)

|Zn
N(t−1) = z)]

=1 + EεNt,n + E[c(SNt)|Zn
N(t−1) = z]

+ E[∥M11SNt−1
λnNt−1∥|Zn

N(t−1) = z]

= . . .

=1 +

N∑
i=1

∥M i−1
1 E[1SNt−i+1

εNt−i+1,n|Zn
N(t−1) = z]∥

+

N∑
i=1

∥M i−1
1 E[1SNt−i+1

c(SNt−i+1)|Zn
N(t−1) = z]∥

+ ∥MN
1 E[1SN(t−1)

λ|Zn
N(t−1) = z]∥

≤1 +
cn
2

N∑
i=1

∥M i−1
1 ∥+ c

N∑
i=1

∥M i−1
1 ∥+ ∥MN

1 ∥λ

=1 +K + ∥MN
1 ∥λ

≤1 + λ

(
α+

K

λ

)
≤1 + λ (α+K)

≤1 + λ (1− 2ε)

=1− λε+ λ(1− ε)

≤1− ε+ λ(1− ε)

=(1− ε)V (λ, s),

where Fλn,S
u,t is the σ-algebra generated by {Zn

v , u ≤ v ≤ t}.
Furthermore, it is easy to see that, for λ ∈ C,

E[V (Zn
Nt)|Zn

N(t−1) = z] ≤ 1 +K + ∥MN
1 ∥λ ≤ L

for some constant L. This implies that the chain {Zn
Nt} has

a unique stationary distribution π(λ, s), and that if Zn
0 ∼

π(λ, s) then {Zn
Nt} is stationary and geometrically ergodic,

and that EλnNt < ∞. Furthermore, by Lemma 3.1 in [39],
{Zn

t } is also stationary and geometrically ergodic. Finally,
note that

Y n
t =b−1(St+1)(λ

n
t+1 − c(St+1)− a(St+1)λ

n
t − εt+1,n)
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:=g(Zn
t+1, Z

n
t , εt+1,n),

which shows that Y n
t depends on {Zn

t } only through Zn
t and

Zn
t+1. Since {(Zn

t , εt,n)} is stationary and ergodic, Theorem
36.4 of [4] gives rise to that {Y n

t } is stationary and ergodic.
It is not difficult to see that EY n

t <∞. This completes the
proof of Proposition 2.1.

In order to prove Theorem 2.2, we need the following
lemma.

Lemma A-2. If ρ(Mu2) < 1, then ρ(Mu1) < 1 for 0 < u1 <
u2.

Proof. Firstly recall some properties of nonnegative matri-
ces and nonnegative irreducible matrices[3, 26]. For a m×m
nonnegative matrix R = [rij ],

(A.2) min
j

{
m∑
i=1

rij

}
≤ ρ(R) ≤ max

j

{
m∑
i=1

rij

}
.

In particular, for two nonnegative irreducible matrices Q =
[qij ] and R = [rij ], if qij ≥ rij , i, j = 1, 2, . . . ,m, and Q ̸=
R, then ρ(Q) > ρ(R). This immediately implies that if R
is a nonnegative irreducible matrix and minj {

∑m
i=1 rij} <

maxj {
∑m

i=1 rij}, then, by (A.2),

(A.3) min
j

{
m∑
i=1

rij

}
< ρ(R) < max

j

{
m∑
i=1

rij

}
.

Next notice that the transition matrix P is nonnegative
irreducible and a(St) + b(St) > 0. Hence it is easy to prove
that Mu is nonnegative irreducible for any u ≥ 0. From
(A.3) and ρ(Mu2) < 1, we conclude that there exists some
1 ≤ i1 ≤ m such that a(i1)+b(i1) < 1. If maxi{a(i)+b(i)} ≤
1, by (A.2) and (A.3), we know that Lemma A-2 is true.
Otherwise suppose that there exists some 1 ≤ i2 ≤ m such
that a(i2)+b(i2) > 1. For convenience, now define a function

f(u) = ρ(Mu), u ≥ 0.

We will show that log f(u) is a convex function on [0,∞).
Since the transition matrix P is irreducible and aperiodic,

and a(i) + b(i) > 0, i = 1, 2, . . . ,m, this implies that Mu is
also an irreducible and aperiodic m×m matrix. Therefore,
by Theorem 8.5.1 in [26], we may get that

lim
n→∞

f−n(u)Mn
u = Lu,

where Lu is a constant positive matrix. It follows that

lim
n→∞

[1τMn
u π]

1/n
= f(u),

where 1 = (1, 1, . . . , 1)τ .

Again write M
(n)
u (δ) = [((Mn

u )ij)
δ], where (Mn

u )ij de-
notes the (i, j)-element of Mn

u . Then, we have

log f(γv1 + (1− γ)v2)

= lim
n→∞

1

n
log(1τMn

γv1+(1−γ)v2
π)

≤ lim
n→∞

1

n
log[1τ (M (n)

v1
(γ) ◦M (n)

v2
(1− γ))π)]

≤ lim
n→∞

1

n
log[(1τMn

v1
π)γ(1τMn

v2
π)1−γ ]

= γ lim
n→∞

1

n
log(1τMn

v1
π) + (1− γ) lim

n→∞

1

n
log(1τMn

v2
π)

= γ log f(v1) + (1− γ) log f(v2),

where 0 < γ < 1 and v1, v2 ≥ 0, v1 ̸= v2, and ◦ denotes
the Hadamard product of matrices, the two inequalities
are applications of the Hölder’s inequality. This shows that
log f(u) is a convex function. Hence, together with f(0) = 1
and f(u2) < 1,

ρ(Mu1
) = f(u1)

= exp{log f(u1)}

= exp{log f(γ × 0 + (1− γ)u2)}

≤ exp{γ log f(0) + (1− γ) log f(u2)}

< 1,

where γ = 1− u1/u2.

A.2 Proof of Theorem 2.2

By Lemma A-2 and Theorem 2.1, we can obtain the sta-
tionarity and ergodicity of the process {Y n

t } defined as in
(3). A similar argument of the proof of Proposition 2.1 can
be used to show the process {Y n

t } has finite moment of order
k.

By ρ(Mk) < 1, we know that there exists a positive inte-
ger N such that ∥M l

k∥ ≤ αk with some αk < 1 for all l ≥ N .
Consider V (x) = 1+xk1 , where x = (x1, x2) with x1 > 0. De-
fine the small set C = {(λ, s) ∈ D : λ ≤ M∗, s ∈ S}, where
M∗ = β/(1− 2ε−αk) with ε > 0 such that 1− 2ε−αk > 0,

β/(1 − 2ε − αk) > max{1, λ∗}, and constant β =
∑k−1

j=0 dj
is defined as follows. Note that

E[∥ANt1SNt−1
λnNt−1∥i∥BNt1SNt−1

Y n
Nt−1∥k−i|λnNt−1, SNt−1]

=(λnNt−1)
iE[(1τANt1SNt−1

)i(1τBNt1SNt−1
)k−i)|λnNt−1, SNt−1]

× E[(Y n
Nt−1)

k−i|λnNt−1, SNt−1]

=(λnNt−1)
kE[1τCNt,i,k−i1SNt−1

|λnNt−1, SNt−1]

+
k−1∑
l=1

(λnNt−1)
lfl(a(SNt−1), b(SNt−1))

=∥Mi,k−i1SNt−1
(λnNt−1)

k∥

+
k−1∑
l=1

(λnNt−1)
lfl(a(SNt−1), b(SNt−1))
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and

k∑
i=0

Ci
kMi,k−i =Mk.

Therefore, for any λ > M∗,

E[V (Zn
Nt)|Zn

N(t−1) = z = (λ, s)]

=E[1 + (λnNt)
k|Zn

N(t−1) = z]

=1 + E[∥1SNt
λnNt∥k|Zn

N(t−1) = z]

=1 + E[∥1SNt
c(SNt) +ANt1SNt−1

λnNt−1

+BNt1SNt−1
Y n
Nt−1 + 1SNt

εNt,n∥k|Zn
N(t−1) = z]

=1 + E[∥ANt1SNt−1
λnNt−1

+BNt1SNt−1
Y n
Nt−1∥k|Zn

N(t−1) = z]

+
k∑

j=1

Cj
kE[∥1SNt

c(SNt) + 1SNt
εNt,n∥j

× ∥ANt1SNt−1
λnNt−1 +BNt1SNt−1

Y n
Nt−1∥k−j

|Zn
N(t−1) = z]

=1 +
k∑

i=0

Ci
kE[E(∥ANt1SNt−1

λnNt−1∥i

× ∥BNt1SNt−1
Y n
Nt−1∥k−i|Fλn,S

N(t−1),Nt−1)|Z
n
N(t−1) = z]

+

k∑
j=1

Cj
kE[E(∥1SNt

c(SNt) + 1SNt
εNt,n∥j

× ∥ANt1SNt−1
λnNt−1 +BNt1SNt−1

Y n
Nt−1∥k−j

|Fλn,S
N(t−1),Nt−1)|Z

n
N(t−1) = z]

=1 +
k∑

i=0

Ci
kE[∥Mi,k−i1SNt−1

(λnNt−1)
k∥|Zn

N(t−1) = z]

+
k−1∑
l=1

E[(λnNt−1)
lfl(a(SNt−1), b(SNt−1))|Zn

N(t−1) = z]

+
k∑

j=1

Cj
kE[E(∥1SNt

c(SNt) + 1SNt
εNt,n∥j

× ∥ANt1SNt−1
λnNt−1 +BNt1SNt−1

Y n
Nt−1∥k−j

|Fλn,S
N(t−1),Nt−1)|Z

n
N(t−1) = z]

= . . .

=1 + ∥MN
k E[1SN(t−1)

λk|Zn
N(t−1) = z∥+

k−1∑
j=0

djλ
j

≤1 + λk

αk +
k−1∑
j=0

dj
λk−j



≤1 + λk (αk + β)

≤1 + λk (1− 2ε)

=(1− ε)V (λ, s).

Furthermore, it is easy to see that, for λ ≤M∗,

E[V (Zn
Nt)|Zn

N(t−1) = z] ≤ L1

for some constant L1. This implies that there exists finite
moment of order k for {Zn

Nt, t ≥ 0}. It follows that there
exists finite moment of order k for {Y n

t , t ≥ 0}.

A.3 Proof of Lemma 2.1

Since ρ(M2) < 1, by Lemma A-2, we have that ρ(M1) < 1
and

∞∑
k=0

Mk
1 = (I −M1)

−1,
∞∑
k=0

Mk
2 = (I −M2)

−1,

where I denotes the identity matrix. By the equations (2)
and (3),
(A.4)
λnt − λt = a(St)(λ

n
t−1 − λt−1) + b(St)(Y

n
t−1 − Yt−1) + εt,n.

Therefore, by using (A.4),

E(λnt − λt)

=E[E∥At1St−1(λ
n
t−1 − λt−1) +Bt1St−1(Y

n
t−1 − Yt−1)∥

|St−1, λ
n
t−1, λt−1] + E(εt,n)

=E[∥M11St−1
(λnt−1 − λt−1)∥] + E(εt,n)

=∥M1E[1St−1
(λnt−1 − λt−1)]∥+ E(εt,n)

=∥M1E[1St−1
∥At−11St−2

(λnt−2 − λt−2)

+Bt−11St−2
(Y n

t−2 − Yt−2) + εt−1,n∥]∥+ E(εt,n)

=∥M1E[At−11St−2(λ
n
t−2 − λt−2) +Bt−11St−2(Y

n
t−2 − Yt−2)∥]∥

+ E(εt,n) + ∥M1E[1St−1εt−1,n]∥
= . . .

=E(εt,n)
∥∥(I +M1 + . . .+M t−1

1 )
∥∥+ ∥M t

1E[1S0(λ
n
0 − λ0)]∥

=
cn
2

∥∥(I +M1 + . . .+M t−1
1 )

∥∥
≤cn

2

∥∥(I +M1 + . . .+M t−1
1 + . . .)

∥∥
=
cn
2

∥∥(I −M1)
−1

∥∥ ≤ cn
2

∥∥(I −M1)
−1

∥∥
:=δ1,n → 0

as n→ ∞, which implies the first assertion.
Next consider the second statement. By using (A.4)

again,

E(λnt − λt)
2

=E[a2(St)(λ
n
t−1 − λt−1)

2] + E[b2(St)(Y
n
t−1 − Yt−1)

2]

+ 2E[a(St)b(St)(λ
n
t−1 − λt−1)(Y

n
t−1 − Yt−1)] + E(ε2t,n)
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+ 2E[a(St)(λ
n
t−1 − λt−1)εt,n]

+ 2E[b(St)(Y
n
t−1 − Yt−1)εt,n].

We first calculate the second term of the above expres-
sion, by using the properties of the Poisson process and
the conditional expectation, assuming that λnt−1 ≥ λt−1

and Y n
t−1 − Yt−1 ∼ Poisson(λnt−1 − λt−1) independently of

Yt−1 ∼ Poisson(λt−1) (i.e λ
n
1 > λ1, say λ

n
1 = λ1 + µ1, then

Y n
1 = Y1+Z1, Z1 ∼ Poisson(µ1) and Y

n
1 > Y1; λ

n
2 > λ2, say

λn2 = λ2 + µ2, then Y n
2 = Y2 + Z2 and Z2 ∼ Poisson(µ2);

and so on). Now we have that

E[b2(St)(Y
n
t−1 − Yt−1)

2]

= E[E(b2(St)(Y
n
t−1 − Yt−1)

2|St−1, λ
n
t−1, λt−1)]

= E[E(b2(St)|St−1, λ
n
t−1, λt−1)E(Y n

t−1 − Yt−1)
2

|St−1, λ
n
t−1, λt−1)]

= E[∥M021St−1
∥E(Nt−1(λ

n
t−1)−Nt−1(λt−1))

2]

= E[∥M021St−1
∥(λnt−1 − λt−1)

2]

+E[∥M021St−1
∥(λnt−1 − λt−1)]

≤ ∥M02∥[E(λnt−1 − λt−1)
2 + E(λnt−1 − λt−1)].

Similarly,

E[a2(St)(λ
n
t−1 − λt−1)

2] ≤ ∥M20∥E(λnt−1 − λt−1)
2

and

2E[a(St)b(St)(λ
n
t−1 − λt−1)(Y

n
t−1 − Yt−1)]

≤ 2∥M11∥E(λnt−1 − λt−1)
2.

Finally, with a positive constant K,

E(ε2t,n) + 2E[a(St)(λ
n
t−1 − λt−1)εt,n]

+ 2E[b(St)(Y
n
t−1 − Yt−1)εt,n]

≤c2n/3 + c2n∥M10∥
∥∥(I −M1)

−1
∥∥

+ c2n∥M01∥
∥∥(I −M1)

−1
∥∥

=

(
1

3
+ ∥M1∥

∥∥(I −M1)
−1

∥∥) c2n := Kc2n.

Thus, by simple recursion,

E(λnt − λt)
2

≤ ∥M2∥E(λnt−1 − λt−1)
2 + ∥M02∥δ1,n +Kc2n

≤ ∥(I −M2)
−1∥(∥M02∥δ1,n +Kc2n)

:= δ2,n → 0

as n → ∞, which implies the second assertion. The third
assertion follows that

E(Y n
t−1 − Yt−1)

2

= E(Nt−1(λ
n
t−1)−Nt−1(λt−1))

2

= E(λnt−1 − λt−1)
2 + E(λnt−1 − λt−1)

≤ δ2,n + δ1,n := δ3,n.

The last statement of this lemma follows from the second
and the third assertions.

□

APPENDIX B. ALGORITHM OF MAXIMUM
LIKELIHOOD ESTIMATION BASED ON

COLLAPSING PROCEDURE

B.1 Exact filtering stage

For t = 1, 2, ..., q:

1. When t = 1, for k = 1, 2, calculate

λ
(k)
1 = ck + akλ0 + bkY0,

g
(k)
1 = f(Y1|S1 = k)Pr{S1 = k},

w
(k)
1 =

g
(k)
1

g
(1)
1 + g

(2)
1

.

An initial distribution of S0 should be specified to cal-
culate Pr{S1 = k} = p1kPr{S0 = 1}+p2kPr{S0 = 2}.

2. When t = 2, 3, ..., q, for k = 1, 2, ..., 2t−1 and j = 1, 2,

set S
(k,j)
1:t := (S

(k)
1:t−1, St = j) and calculate

λ
(k,j)
t = cj + ajλ

(k)
t−1 + bjYt−1,

g
(k,j)
t = ft−1(Yt|St = j, S

(k)
1:t−1)Pr{St = j|S(k)

t−1}w
(k)
t−1,

w
(k,j)
t =

g
(k,j)
t∑2t−1

k=1

∑2
j=1 g

(k,j)
t

.

Combining indices (k, j) into a single index k, we have{
λ
(k)
t

}2t

k=1
and

{
S
(k)
1:t , w

(k)
t

}2t

k=1
. The latter is an exact

representation of filtering probabilities.

B.2 Approximated filtering stage

Let λ̃
(k)
q = λ

(k)
q for k = 1, 2, ..., 2q. Then, for t = q+1, q+

2, ..., T :

3. Let S
(k)
t−q:t−1 = (St−q = j, S

(m)
t−q+1:t−1), i.e. re-index k ∈

{1, 2, ..., 2q} as (j,m) ∈ {1, 2} ×
{
1, 2, ..., 2q−1

}
. Then

re-index the corresponding λ̃
(k)
t−1 and w

(k)
t−1 as λ̃

(j,m)
t−1 and

w
(j,m)
t−1 .

4. Integrate out St−q from λ̃
(j,m)
t−1 based on (15):

E
(m)
t−1 =

K∑
j=1

{
λ̃
(j,m)
t−1

w
(j,m)
t−1

w
(1,m)
t−1 + w

(2,m)
t−1

}
.
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5. Let S
(m,j)
t−q+1:t = (S

(m)
t−q+1:t−1, St = j). Calculate

λ̃
(m,j)
t =cj + ajE

(m)
t−1 + bjYt−1,

g
(m,j)
t =f̃t−1(Yt|St = j, S

(m)
t−q+1:t−1)

× Pr{St = j|S(m)
t−1}w

(m)
t−1 ,

w
(m,j)
t =

g
(m,j)
t∑2t−1

m=1

∑2
j=1 g

(m,j)
t

.

Combining indices (m, j) into a single index k, we have{
λ̃
(k)
it

}2t

k=1
and

{
S
(k)
t−q+1:t, w

(k)
t

}2t

k=1
.

After iterating 1-5 for t = 1, 2, ..., T , the log likelihood
function could be evaluated as

T∑
t=1

log(

2t−1∑
m=1

2∑
j=1

g
(m,j)
t ).
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