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ABSTRACT: The arylboronic acid catalyzed dehydrative C-
alkylation of 1,3-diketones and 1,3-ketoesters using secondary
benzylic alcohols as the electrophile is reported, forming new C−C
bonds (19 examples, up to 98% yield) with the release of water as
the only byproduct. The process is also applicable to the allylation
of benzylic alcohols using allyltrimethylsilane as the nucleophile
(12 examples, up to 96% yield).

The formation of carbon−carbon bonds is central to the
synthesis of organic molecules, with the alkylation of

carbon-based pro-nucleophiles an important strategy within
this area. Traditionally, alkylation reactions are performed
using either alkyl halides or stoichiometrically activated alcohol
derivatives as the electrophile. However, with the drive to
develop more efficient and sustainable organic reactions,1 there
has been increasing interest in catalytic methods for the direct
use of alcohols as electrophiles in alkylation processes,
releasing water as the only byproduct.2 Catalytic dehydrative
substitutions can occur by a number of general mechanistic
pathways including nucleophilic substitution, “borrowing
hydrogen” via a redox reaction of primary or secondary
alcohols,3 or addition to metal π-allyl complexes formed from
allylic alcohols.4

Recently, arylboronic acids have gained increasing attention
as catalysts that can activate hydroxyl groups toward both
electrophilic and nucleophilic reactivity.5 Boronic acids are
attractive as catalysts due to their wide availability, tractability,
and generally low toxicity.6 Of particular relevance is the use of
arylboronic acid catalysis for the activation of alcohols toward
C−C bond formations through either complete or partial
ionization of the C(sp3)−OH bond. In this regard, dehydrative
Friedel−Crafts alkylation processes have been most widely
explored to date (Scheme 1a).7 Seminal work by McCubbin7a,b

and Hall7c showed that electron-deficient arylboronic acids
catalyze the Friedel−Crafts alkylation of electron-rich arenes
and heteroarenes using either allylic or benzylic alcohols as the
electrophile. The reaction scope has recently been extended to
the use of electron-deficient arenes using 2,3,4,5-tetrafluoro-
phenylboronic acid as the catalyst alongside perfluoropinacol
as a cocatalyst.7g Arylboronic acid catalysis can also be
combined with enamine catalysis for the enantioselective α-
alkylation of aldehydes using tertiary allylic alcohols.8 Other
C−C bond formations promoted by the catalytic arylboronic
acid activation of alcohols include dehydrative Nazarov

cyclizations of divinyl alcohols,9 and [4 + 3] cycloadditions
promoted by the ionization of indolyl alcohols.10

We recently reported the use of catalytic pentafluorophenyl-
boronic acid 1 alongside cocatalytic oxalic acid 2 for the
activation of benzylic alcohols toward inter- and intramolecular
dehydrative etherification reactions (Scheme 1b).11 Mecha-
nistic investigations suggest that pentafluorophenylboronic
acid 1 and oxalic acid 2 condense in situ to form a Brønsted
acid catalyst that promotes SN1-type reactivity. We therefore
questioned whether this system could be applied to the C-
alkylation of 1,3-diketone derivatives and allylation reactions,
which have not previously been explored using arylboronic
acid catalysis. Various Brønsted acid catalysts have previously
been reported for dehydrative C−C bond formations.2,12

However, the use of a tractable arylboronic acid would avoid
the direct handling of strong acids and further expand the
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Scheme 1. Boronic Acid Catalyzed Dehydrative
Substitutions
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scope of reactions promoted by these readily available catalytic
systems.
First, the use of enolizable 1,3-diketones as potential pro-

nucleophiles was investigated with the reaction of benzhydrol
with dibenzoylmethane. Reaction optimization showed that a
combination of pentafluorophenylboronic acid 1 (5 mol %)
and oxalic acid 2 (10 mol %) in MeNO2,

13 a catalytic system
first reported by Moran for a dehydrative Friedel−Crafts
alkylation reaction,7f gave the desired C-alkylation product 3 in
76% yield after 3 h at room temperature. In the absence of any
catalyst or with pentafluorophenylboronic acid 1 alone, no
reaction was observed, while using only oxalic acid 2 (10 mol
%) gave 5% conversion into 3 over 3 h.13 The reaction scope
was first investigated through variation of the 1,3-diketone
component (Scheme 2). Symmetrical diketones bearing both
electron-donating and electron-withdrawing substituents were
tolerated under the standard reaction conditions, forming
products 4 and 5 in good yields. Heterocycle containing acyl
benzothiazoles and acyl benzoxazoles were also competent
pro-nucleophiles, forming products 6 and 7 after extended 48 h
reaction times at 90 °C, although the analogous acyl
benzimidazole was unreactive under these conditions. The
use of a cyclic 1,3-diketone was also possible, forming product
8 bearing a new quaternary carbon center in an excellent 93%
yield. In contrast, the reaction of benzhydrol with 1,3-
cyclohexanedione gave selective O-alkylation into the corre-
sponding β-keto enol ether.13,14 Attempts to extend the scope
to alternative enolizable ketones such as 2-phenylacetophe-
none or benzoylacetonitrile were unsuccessful, with only
starting materials returned at room temperature. Using
dibenzoylmethane (2 equiv) as standard, the use of various
secondary benzylic alcohols as the electrophilic component
was trialed. 1-Arylethanol derivatives bearing either neutral or
electron-donating substituents were well tolerated, forming
products 9−11 in excellent yields. The synthetic potential was

demonstrated by performing the reaction on gram scale (4
mmol of alcohol) to give 1.25 g of 9 in 93% yield. Halogen
substitution on the aryl ring was also possible with 4-fluoro-
and 4-bromophenyl ethanol reacting to give 12 and 13 in 90%
and 71% yield, respectively. Altering the substitution pattern
affected the reactivity, with 1-(2-bromo- and 1-(3-
bromophenyl)ethanol giving products 14 and 15 in slightly
reduced yields. The presence of an alkyne on the reacting
carbinol center was well tolerated, giving 16 in 98% yield.
Limitations included the use of a sterically demanding
secondary and tertiary alcohols, which are unreactive, while
primary benzylic alcohols preferentially form the symmetric
ether product.13

The use of 1,3-ketoesters as pro-nucleophiles was possible
under the standard conditions (Scheme 3). For example,
reacting ethyl benzoylacetate 17 with benzhydrol (2 equiv)
gave product 18 in an excellent 97% yield after heating at 90
°C overnight. In this case, an excess of the alcohol was used to
aid purification, with the symmetrical ether of benzhydrol
formed as a side product. The use of 1-arylethanol derivatives
bearing either electron-donating or halogen substituents as the
electrophile gave C-alkylation products 19−22 in generally
good yield as a mixture of diastereoisomers. Resubjecting an
isolated sample of diastereomerically enriched product 21
(63:37 dr) to the reaction conditions led to equilibration of the
diastereoisomers into the observed 53:47 dr, suggesting
formation of a thermodynamic mixture. The product
epimerization presumably occurs via catalyst-promoted enoli-
zation and protonation of the 1,3-ketoester stereocenter. The
C-alkylation of 1,3-ketoesters could also be performed on gram
scale (3.2 mmol of alcohol), giving 0.97 g of product 20 in 97%
yield.
Furthermore, the isolated diastereomeric mixtures of

products 19−21 could be derivatized into the corresponding

Scheme 2. Dehydrative Alkylation of 1,3-Diektone Derivatives

aUsing 1,3-diketone (5 equiv). bUsing benzhydrol (2 equiv) and 1,3-diketone (1 equiv). cReaction performed on a 4 mmol scale.
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β-aryl ketones 23−25 through decarboxylation under basic
conditions.
Next, we sought to extend the C-alkylation protocol to a

catalytic Hosomi−Sakurai process using allyl silanes as the
nucleophile.15 Initial investigations reacting benzhydrol as the
electrophile with allyltrimethylsilane 26 (2 equiv) using
pentafluorophenylboronic acid 1 (5 mol %) and oxalic acid
2 (10 mol %) exclusively gave the symmetrical ether at room
temperature in nitromethane. However, increasing the temper-
ature to 90 °C gave allylation product 27 in excellent 96% yield
(Scheme 4), with no formation of the unwanted symmetrical
ether. Various secondary alcohols were trialed under the
standard catalytic conditions. Electron-rich and halogen
substituted 1-arylethanol derivatives were suitable electro-
philes, forming allylation products 28−33 in moderate to good
yields. In all cases, complete conversion into the allylation
product was observed, but the nonpolar nature of the products
resulted in loss of material during purification by chromatog-
raphy accounting for some of the moderate yields. Unsub-
stituted 1-phenylethanol derivatives were not reactive,
returning either starting materials or the corresponding
symmetrical ether byproduct under all conditions tested.13 In
contrast to the reactivity observed with 1,3-diketone
nucleophiles, a secondary alcohol bearing a bulky tert-butyl
substituent worked well, forming product 34 in 86% yield.
Alkynyl and extended alkenyl substituents were also well
tolerated, with products 35 and 36 formed in 80% and 90%
yield, respectively. The catalytic allylation of an electron-rich
tertiary alcohol was also possible, forming product 37 with a
new quaternary carbon center in 68% yield. The electron-
donating methoxy substituent on the aryl ring was essential for
reactivity, with the analogous unsubstituted phenyl substrate
returned unreacted under the same conditions. Cinnamyl
trimethylsilane could also be used as a nucleophile, giving 38 in

77% yield as a 64:36 mixture of diastereoisomers at room
temperature.
We have previously shown that pentafluorophenylboronic

acid 1 and oxalic acid 2 condense in situ to form hydrated
boronate ester 39, which acts as a strong Brønsted acid to
promote SN1 type reactivity through formation of an
intermediate benzylic carbocation from the secondary
alcohol.11 This is consistent with the literature on related
arylboronic acid catalyzed reactions and accounts for the
higher reactivity observed for electron-rich secondary benzylic
alcohols in the substrate scope. A possible catalytic cycle for
the dehydrative C-alkylation process is outlined in Scheme 5.

Scheme 3. Use of 1,3-Ketoesters as Pro-nucleophiles

aUsing alcohol (2 equiv) and ethyl benzoylacetate 17 (1 equiv).
bReaction performed on a 3.2 mmol scale. cKOH, MeOH, 70 °C.
dNaOH, EtOH, 80 °C

Scheme 4. Allylation of Benzylic Alcohols

aUsing cinnamyl trimethylsilane (2 equiv).

Scheme 5. Possible Catalytic Cycle
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In solution, pentafluorophenylboronic acid 1 and oxalic acid 2
are in dynamic equilibrium with hydrated boronate 39,16

which is likely to act as a Brønsted acid to protonate the
secondary benzylic alcohol. This is consistent with recent work
by Moran and co-workers, who found that various arylboronic
acid promoted alcohol activation processes are likely to
proceed via either a Brønsted acid or H-bond activation
mode, as opposed to Lewis acid or covalent catalysis.17

Dissociation of ion pair 40 forms benzylic carbocation 41,
which can undergo nucleophilic addition from the enol
tautomer of either the 1,3-diketone derivatives or 1,3-
ketoesters to form the C-alkylation products and release
water as the only byproduct. An analogous mechanism is
plausible using allyltrimethylsilane 26 as the nucleophile
reacting with carbocation 41, with trimethylsilanol released
as the byproduct in this case.18

In conclusion, arylboronic acid catalysis can be used for the
dehydrative C-alkylation of various carbon nucleophiles using
secondary benzylic alcohols as the electrophile. A range of 1,3-
diketones and 1,3-ketoesters can be used as pro-nucleophiles
toward secondary benzylic alcohols activated by a combination
of pentafluorphenylboronic acid 1 (5 mol %) and oxalic acid 2
(10 mol %) to form C-alkylation products in good yields, with
water formed as the only byproduct. The catalytic system is
also compatible with allyltrimethylsilane 26 as the nucleophile,
promoting the direct allylation of various benzylic alcohols.
Further studies into the applicability of arylboronic acid
catalysis toward dehydrative substitution reactions are ongoing
in our laboratory.19
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