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We develop multivariate time-series models using Bayesian additive regression trees that posit nonlineari-
ties among macroeconomic variables, their lags, and possibly their lagged errors. The error variances can be
stable, feature stochastic volatility, or follow a nonparametric specification. We evaluate density and tail fore-
cast performance for a set of U.S. macroeconomic and financial indicators. Our results suggest that the pro-
posed models improve forecast accuracy both overall and in the tails. Another finding is that when allowing for
nonlinearities in the conditional mean, heteroskedasticity becomes less important. A scenario analysis reveals
nonlinear relations between predictive distributions and financial conditions.

1. introduction

Two recent events, the global financial crisis and the COVID-19 pandemic, have increased
interest in tail risks in macroeconomic outcomes. A fast-growing literature has focused on the
risks of significant declines in GDP, with quantile regression being the main method used to
estimate tail risks (see, e.g., Adrian et al., 2019, 2022; Cook and Doh, 2019; Delle Monache
et al., 2020; De Nicolò and Lucchetta, 2017; Ferrara et al., 2022; Giglio et al., 2016; González-
Rivera et al., 2019; Mitchell et al., 2022; Plagborg-Møller et al., 2020; Reichlin et al., 2020).1

Some studies focused on tail risks to unemployment (e.g., Galbraith and van Norden, 2019;
Kiley, 2022) or inflation (e.g., Ghysels et al., 2018) or deal with forecasting the complete distri-
bution of several macroeconomic aggregates (see Manzan, 2015; Korobilis, 2017; Manzan and
Zerom, 2013, 2015).

This article departs from this literature by using Bayesian parametric and nonparametric
time-series models instead of quantile regression. Our focus is motivated by Carriero et al.
(2022, CCM), who evaluate the ability of alternative econometric methods to produce accu-
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1 For output growth, forecasting tail risks has some precedent in the literature on forecasting recessions or just peri-
ods of negative growth (see, e.g., Aastveit et al., 2018).
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rate nowcasts of tail risks to GDP growth, possibly in the presence of a large information set.
They find that Bayesian quantile regression (BQR) performs much better than classical quan-
tile regression and that Bayesian linear regression performs similarly or sometimes better for
tail forecasting, once endowed with stochastic volatility (SV).2

A parallel, and also fast-growing, literature evaluates the use of machine learning tech-
niques for macroeconomic forecasting, with random forests (see Breiman, 2001 and, e.g.,
Masini et al. (2021) for a survey) performing particularly well, also during crisis times, in
a variety of studies and for key variables such as GDP growth and inflation (see, e.g.,
Goulet Coulombe, 2020; Goulet Coulombe et al., 2020, 2021; Medeiros et al., 2021). Although
these papers adopt classical methods, Bayesian techniques are also available. In particular,
Bayesian additive regression trees (BART; see Chipman et al., 2010) provide a flexible ap-
proach popular in many fields of statistics. Huber and Rossini (2022, HR) develop Bayesian
methods that build BART into a vector autoregression (VAR), leading to the Bayesian ad-
ditive vector autoregressive tree model, and demonstrate that it forecasts well. Huber et al.
(2023, HKOPS) develop Bayesian methods for the mixed-frequency version of this model,
showing that it also forecasts well, particularly during the COVID-19 pandemic.

In this article, we combine the tail forecasting focus of CCM with the BART methodology
of HR and HKOPS. The first contribution of this article is methodological and lies in the de-
velopment of a set of novel and easy to use nonparametric econometric models that can be
applied in a variety of contexts. Specifically, in addition to the original model of HR (we use
the acronym BART for this model), we introduce three novel alternative BART-based non-
parametric VARs that, we argue, have properties that make them potentially useful for empir-
ical macroeconomic modeling and forecasting, particularly in unstable times. These competing
specifications arise from a general nonparametric multivariate regression model by choosing
suitable covariates that can be observed or (partially) latent. Each of these nested models has
different implications for how a given model treats nonlinearities in different regions of the
parameter space.

The flexible modeling of the conditional mean in BART-based specifications could make
the error variance more stable than in linear models, and we do consider homoskedastic ver-
sions of our nonparametric models. But this is not necessarily the case. Hence, we also fo-
cus on versions of our models complemented either with SV or with a novel nonparametric
specification for the time variation in the conditional variance, related to that in Pratola et al.
(2020) and labeled heteroskedastic BART (hBART).

Our second contribution is the development of general Markov chain Monte Carlo
(MCMC) estimation algorithms that are applicable to large-dimensional models. These meth-
ods are designed for homoskedastic and heteroskedastic models and build on a parsimonious
factor structure in the shocks to permit fast estimation of large systems. To sample from the
posterior of the hBART volatility model, we propose a novel updating step based on using the
auxiliary sampler for SV models developed in Omori et al. (2007).

Our final contribution is empirical. Using real-time data for a set of U.S. macroeconomic
and financial indicators, we first assess the performance of the various BART models for
density and tail forecasting using several commonly used metrics of tail and density fore-
casting accuracy. The different nonparametric models are benchmarked to several popular
models commonly used in the literature such as Bayesian VARs (BVARs) with SV (Clark
(2011), Clark and Ravazzolo (2015), and Koop (2013)), a BVAR with time-varying parame-
ters (TVPs) and SV (see, e.g., Huber et al., 2021), and a BQR (see Kozumi and Kobayashi,
2011). After showing that BART-based models improve upon the competing models

2 The intuition for this finding, explained more formally in Carriero et al. (2020), is that the explanatory variables
drive changes in the conditional mean of growth, which decreases during crisis times, whereas SV permits an increase
in the conditional variance. Thus, the left tail of the conditional distribution of growth can decrease more than the
right tail during crisis times, generating the kind of asymmetries emphasized in the quantile regression-based litera-
ture. Caldara et al. (2021) make a similar point using a model with leverage, where the estimated SV enters the condi-
tional mean with a negative coefficient.
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tail forecasting with multivariate bayesian additive regression trees 981

(especially so at longer forecast horizons), we drill deeper into the properties of the predictive
distributions of the best-performing BART specification. In addition, we also illustrate how
the model can be used to carry out conditional forecasts to analyze the relationship between
the macroeconomy and financial conditions.

The empirical results can be summarized as follows: BART-based models improve upon the
competing models in terms of joint density forecasting performance. These performance gains
are especially pronounced for higher-order forecasts. Accuracy improvements are mostly
driven by superior point forecasts and higher-order features of the predictive distributions,
with the former being more important than the latter. When the focus is on tail forecasting,
our models display a similarly strong performance, suggesting that taking into account nonlin-
earities in the conditional mean is relevant for producing precise tail forecasts. Once we use a
flexible conditional mean model, controlling for heteroskedasticity becomes less of a concern.
Finally, conditioning on different values of the National Financial Conditions Index (NFCI)
reveals highly nonlinear interactions between one-step-ahead predictive distributions and fi-
nancial conditions.

The article proceeds as follows: Section 2 describes the various multivariate BART models
and Section 3 discusses Bayesian inference. Section 4 considers the data, forecast design, and
evaluation metrics used in the empirical application and discusses empirical findings. Section 5
summarizes and concludes. Additional empirical results are included in an appendix.

2. nonparametric modeling of vars using bart

This section explains the BART formulations considered in this article. In a multivariate
time-series model such as a VAR, specification choices are made for conditional means and
conditional variances. For instance, in the classic BVAR-SV model the conditional means are
linear and log conditional variances follow random walks. In this article, we compare this
model to various models that are partially or completely nonparametric. In various combi-
nations, the models include parametric and nonparametric representations of the conditional
mean of a VAR as well as of the conditional variance.

2.1. Nonparametric VARs. Let {yt}T
t=1 denote an M-dimensional vector of macroeconomic

and financial time series with typical ith element yit . We assume that yt depends on its p lags,
which we store in a K(= Mp)-dimensional vector xt = (y′

t−1, . . . , y
′
t−p)′. The relationship be-

tween yt and xt is assumed to be unknown and potentially highly nonlinear. This is captured
through the following general multivariate model:

yt = F (xt ) + ηt,(1)

ηt = G(zt ) + εt, εt ∼ N (0M,�t ).(2)

Here, we let F : RK → RM and G : RN → RM denote unknown functions with F (xt ) =
( f1(xt ), . . . , fM(xt ))′ and G(zt ) = (g1(zt ), . . . , gM(zt ))′, whereas f j and g j are equation-specific
scalar-valued functions. zt is a vector of additional explanatory variables with dimension N ×
1 that is defined below in the context of our different models.

Although we also consider conditionally homoskedastic implementations, we generally
treat the shocks in εt as following a multivariate Gaussian distribution with a time-varying
variance–covariance matrix �t . To ensure parsimony and allow for fast estimation, we will as-
sume that �t features factor stochastic volatility (FSV; see Aguilar and West (2000)):

�t = ��t�
′ + Ht ⇐⇒ εt = �δt + et, δt ∼ N (0Q,�t ), et ∼ N (0M,Ht ),
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982 clark et al.

with � denoting an M × Q matrix of factor loadings (with Q � M) and diagonal variance–
covariance matrices �t = diag(eu1(wt ), . . . , euQ(wt )) and Ht = diag(ev1(wt ), . . . , evM (wt )) with
ui, v j : RR → R being unknown functions that describe how the error variances are related to
a set of R covariates in wt . Conditionally on the Q factors δt , the shocks in et are uncorrelated
and the model can be estimated on an equation-by-equation basis. This factor specification
is, without further restrictions, not identified. Since our focus is on tail forecasting and we do
not aim to interpret � and δt separately but are exclusively interested in �t , this causes no
additional issues. Suitable identification schemes can be straightforwardly introduced. For the
law of motion of ui, v j, we will use both a standard SV model and a more flexible specification
closely related to the heteroskedastic BART model proposed in Pratola et al. (2020). More
details are provided in Subsection 2.4.

To make this model operational, we need to learn the unknown functions F and G. We will
discuss how we do this in the next subsection.

2.2. Function Learning Using BART. BART approximates the unknown functions F and
G using a sum of regression trees. In what follows, our focus will be on estimating the function
associated with the ith equation.

Let y•i denote the ith column of Y = (y1, . . . , yT )′, X = (x1, . . . , xT )′, Z = (z1, . . . , zT )′

(with x• j denoting the jth column of X), and ε•i = (εi1, . . . , εiT )′. The ith equation of the non-
linear VAR outlined in Equations (1) and (2) is:

y•i = fi(X ) + gi(Z) + ε•i.(3)

BART replaces fi and gi with a sum-of-trees approximation:

fi(X ) ≈
S∑

s=1

lis(X |T f
is ,μ

f
is), gi(Z) ≈

S∑
s=1

lis(Z|T g
is ,μ

g
is).

Here, we let lis denote a (single) regression tree function. A tree is a step function that can be
defined as follows (see Ročková and Saha, 2019):

lis(X |T s
is ,μ

s
is) =

bs
is∑

n=1

μs
is,nI(X ∈ Ss

is,n),(4)

with I(•) denoting an indicator function that equals 1 if its argument is true, Ss
is,n is a set asso-

ciated with a terminal node (for s ∈ { f, g}), and μs
is = (μs

is,1, . . . , μ
s
is,bs

is
)′ are terminal node pa-

rameters of dimension bs
is.

The tree function is fully determined by the terminal node parameters μ
j
is and the tree

structure T s
is = {Ss

is,n}
bs

is
n=1. The partitions are binary, implying that each node can split into two

child nodes (and thus act as an interior node) or end up being a terminal node. Each set Ss
is,n

is constructed by partitioning the data according to splitting rules of the form {x• j ≤ c} or
{x• j > c} for j = 1, . . . ,K (in the case of approximating f ). The threshold c takes a value from
the range of the observed values {xjt}T

t=1. The splitting rules in the case of T s
is are defined anal-

ogously.
The number of trees S should be large to achieve a certain degree of representation flexi-

bility, whereas Bayesian shrinkage priors are used to avoid overfitting. Chipman et al. (2010)
show that, using 42 different data sets, the choice of S is only weakly influential as long as S
is set larger than 50. They recommend a value of S = 200. Huber et al. (2023), using macroe-
conomic time-series data, reinforce this finding. In particular, they show that predictive per-
formance improves with S as long as S is below 50. Once S exceeds 50 the forecast accuracy
(measured through log predictive likelihoods) does not change substantially.
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tail forecasting with multivariate bayesian additive regression trees 983

Before we illustrate BART using a simple example, it is worth discussing why BART is non-
parametric. In general, the key idea of nonparametric inference is to estimate an unknown
quantity (such as the functions F and G) making as few assumptions as possible. Wasserman
(2006, p. 12) loosely defines nonparametric inference as “a set of modern statistical methods
that aim to keep the number of underlying assumptions as weak as possible.” Since BART
builds on few assumptions to infer the unknown functions, it fulfills this definition.

A second definition of a nonparametric model that is frequently used states that, as op-
posed to parametric inference, the number of parameters is not fixed a priori and adapts to
the complexity of the data set. To see this, notice that the topology of the tree structure is de-
termined by a sequence of recursive decision rules. These decision rules imply that the dimen-
sion of the vector of terminal node parameters is not fixed a priori and depends on the size of
the input data set. This immediately implies that BART automatically adapts to the complex-
ity of the data and that the dimension of the parameter space grows with the number of obser-
vations T .

The third definition is that the parameter space is infinite-dimensional. We will use a
Bayesian prior that governs how trees are generated. This process, described below, can be
viewed as a prior over the infinite-dimensional space of possible functions F and G. However,
similar to infinite mixtures and Gaussian processes, once we condition on the data the model
becomes finite-dimensional, permitting estimation.

To illustrate what BART does, we focus on a special case of Equation (3) assuming a single
tree (S = 1). To simplify the notation, we drop the tree and equation-specific subscripts i and s
as well as the superscript j. The corresponding regression tree model is then given by:

y = l(X |T ,μ) + ε.

The conditional mean of this model is similar to Equation (4):

E(y|x) = l(X |T ,μ) =
b∑

n=1

μnI(X ∈ Sn).

This equation suggests that the conditional mean under a single tree is a piecewise constant
function that assigns μn if a specific configuration of X is in the set Sn. Notice that this is a
simple analysis of variance (ANOVA) model that can be stated in terms of a multivariate re-
gression model conditional on the indicators.

In the case where the tree is simple (i.e., if b is small), the corresponding conditional mean
will feature a relatively low number of breaks. Hence, such a model explains only a small frac-
tion of the variation in y. In the machine learning literature, this is often referred to as a weak
learner. Instead of fitting more complex trees, BART builds on the notion that summing over
many simple trees (which are pruned using Bayesian shrinkage) improves upon using a single
complex tree.3 The resulting conditional mean, when the trees are viewed together, allows for
capturing rich dynamics in y, implying strong explanatory power. In this case, regularization
helps to avoid issues related to overfitting.

Before we proceed, one word on statistical identification of BART is necessary. Since we
sum over many trees, each individual tree is, strictly speaking, not identified. That is, different
trees can lead to the same function. This, however, poses no issues, since our interest does not
center on a specific tree but only on the sum over all the trees. In fact, Chipman et al. (2010)
notice that the abundance of unidentified parameters even improves MCMC mixing.

2.3. Nested Model Specifications. In terms of modeling the conditional mean, the specific
choices made for F , G, and zt allow for a wide range of flexible models. We discriminate

3 This is closely related to ensemble methods and model averaging techniques that combine models to obtain more
precise forecasts (see the discussion in Hernández et al., 2018).
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984 clark et al.

between models that assume that either F or G (or both) is unknown and potentially nonlin-
ear functions. The key notion is that xt and zt differ in the way they impact yt .

In this article, we focus on four different model specifications that differ in the choice of
F,G, and zt . The first model is a multivariate nonparametric VAR model. Assuming that
G(zt ) = 0M for all t, the model in Equations (1) and (2) reduces to:

yt = F (xt ) + εt,

which posits a nonlinear relationship between yt and xt and no effect of zt on yt . Since F is ap-
proximated using BART we obtain the model proposed in Huber and Rossini (2022) and ap-
plied to the mixed-frequency case in Huber et al. (2023). In the remainder of the article, this
model is labeled the BART model.

The second model we propose assumes that zt = xt and G(xt ) is unknown and nonlinear,
whereas F (xt ) is linear and depends on an M × K coefficient matrix A. The corresponding
model reads:

yt = Axt + G(xt ) + εt,(5)

which is a multivariate additive regression model that assumes that there exists a linear VAR
part, Axt , and some unknown nonlinear part, G(xt ), which we approximate using BART. In-
tuitively speaking, this model assumes that the shocks ηt follow a nonlinear regression speci-
fication that serves to control for any nonlinear effects that persist after controlling for linear
relations. In the remainder of the article, we label this the mixture BART (mixBART) model.

If we set zt = (η′
t−1, . . . , η

′
t−p)′ and F (xt ) = Axt , the resulting model implies that the

reduced-form shocks ηt depend nonlinearly on their recent past. This specification allows
for flexible adjustments of the conditional mean by exploiting information contained in past
reduced-form shocks. During recessions such as that caused by the COVID-19 pandemic, this
feature could help to quickly adjust forecasts in the presence of large historical forecast errors.
Again, we use BART to approximate G, leading to the errorBART model.4

Finally, the last model we consider assumes that �t = Ht , a diagonal matrix (i.e., � =
0M×Q), implying that the shocks εt are independent. To capture possible nonlinear contempo-
raneous relations across equations, we augment each equation with the shocks of the preced-
ing equations. This gives rise to a model with a nonlinear covariance structure.

The first equation of this model is

y1t = f1(xt ) + ε1t .

The second equation depends nonlinearly on xt and ε1t as follows:

y2t = f2(xt ) + g2(ε1t ) + ε2t .

In general, the ith equation is given by

yit = fi(xt ) + gi(rit ) + εit,(6)

with rit = (ε1t, . . . , εi−1,t )′ being an (i − 1)-dimensional vector of shocks. The model assumes
that the contemporaneous relations across the shocks take a nonlinear form. This specifica-
tion implicitly assumes a nonlinear variance–covariance structure. Modeling the covariances

4 Another feasible option, which would require approximation-based techniques along the lines used in Huber
et al. (2023), would be to specify xt equal to the lags of ηt and εt . This would be a nonparametric variant of a mul-
tivariate autoregressive moving average (ARMA) model (for a Bayesian treatment of ARMA models, see Chib and
Greenberg, 1994).
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tail forecasting with multivariate bayesian additive regression trees 985

in a nonlinear way gives rise to (at least) two convenient features. First, the model is capable
of quickly reacting to large shocks. Second, covariances are allowed to change over time, since
different configurations of rit can yield different fitted values.

Across all models considered, this specification provides the largest degree of flexibility,
since it allows for a nonlinear mean function F as well as a nonlinear covariance function G
with its argument differing across equations. In what follows, both F and G are again approxi-
mated using BART, leading to what we call the fullBART model.5

2.4. Adding Heteroskedasticity to the Model. Up to this point we have not discussed the
specific functional forms of ui and v j or the choice of wt . In principle, we could set wt = 1 and
simply assume ui and v j for all i, j to be linear functions. This would imply a homoskedas-
tic model with a parsimonious specification for the error variance–covariance matrix that al-
lows for fast estimation even in large systems. However, several recent papers have shown
that allowing for conditional heteroskedasticity sharply improves density forecasts of macroe-
conomic aggregates (see, among others, Carriero et al., 2016; Clark, 2011; Clark and Ravaz-
zolo, 2015). In one set of models, we pair the BART formulations described above with con-
ventional FSV of the innovations to the model. These models assume that the latent volatility
process evolves according to a simple stochastic process that is persistent (in our implementa-
tion, an AR(1) model with a persistence parameter close to 1). During a pandemic, this high
persistence in the volatility process could be detrimental for predictive accuracy, since the pre-
dictive variance only slowly adjusts to new information.6

These models allow for richer volatility dynamics but also assume a parametric and known
law of motion. Accordingly, in another set of results for BART models, we propose an alter-
native volatility specification based on hBART (Pratola et al., 2020). The functions ui and v j

are again approximated through BART:

ui(w) ≈
S∑

s=1

lis(w|T u
is ,μ

u
is), for i = 1, . . . ,Q,

v j(w) ≈
S∑

s=1

lis(w|T v
js,μ

v
js), for j = 1, . . . ,M.

We call this model specification (factor) hBART since it assumes that the latent factors δt

and the measurement errors et are conditionally heteroskedastic with volatilities evolving ac-
cording to a flexible BART specification. As compared to SV models that feature separate
shocks to determine the log-volatility process, our specification is closer to a (nonlinear) gen-
eralized autoregressive conditional heteroskedasticity (GARCH) model (see, e.g., Bollerslev,
1990; Sentana, 1995; Engle, 2002), which implies a deterministic law of motion for the volatili-
ties.

Selecting appropriate predictors wt is crucial. In our empirical work, we consider wt =
(t, x′

t )
′. This choice has the advantage that our model allows for a (potentially) nonlinear trend

and it assumes that the lagged values of yt impact not only the conditional mean but also
the error variances. Since the different decision rules might only depend on selected elements
in wt , we do not risk overfitting if M or p is large. Moreover, and this turns out to be a
key advantage, our choice of wt allows for multistep predictions of the error variances. More

5 It is worth stressing that to estimate this model we use an equation-by-equation estimation MCMC algorithm
based on augmenting each equation with the shocks of the previous equations. This approach closely resembles the
algorithm put forth in Carriero et al. (2019) which is approximate in the sense that it does not sample from the exact
full conditionals. Carriero et al. (2022) offer an exact algorithm that is not applicable in our model. Hence, we view
this algorithm as an approximate one.

6 As a solution, Carriero et al. (forthcoming) discuss several alternative volatility models that allow for combining
transitory and persistent changes in the volatility.
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986 clark et al.

precisely, this is achieved by using Equations (1) and (2) to obtain a draw from the one-step-
ahead predictive distribution, labeled ŷT+1, which is then used to compute HT+2 and �T+2

based on wT+2 = (T + 2, ŷ′
T+1, y

′
T , . . . , y

′
T−p+1)′. HT+2, in turn, allows us to generate a draw

from the two-step-ahead predictive distribution, ỹT+2, which is based on HT+2 and �T+2. In
general, the h-step-ahead forecast distribution can be obtained analogously.

3. bayesian inference

We estimate our model using Bayesian techniques. Although classical methods are avail-
able for some nonparametric models (see the studies cited in Section 1), the shrinkage that
comes with Bayesian techniques is generally known to be helpful in macroeconomic forecast-
ing (see, e.g., Carriero et al., 2015; Chan, 2021; Giannone et al., 2015; Huber and Feldkircher,
2019; Stock and Watson, 2012). Our prior setup closely follows Huber et al. (2023). Here, we
focus on the prior associated with the tree structures T j

is and the terminal node parameters μ
j
is.

Chipman et al. (2010) build on Chipman et al. (1998) and propose a benchmark prior that in-
duces shrinkage on the trees as well as on the terminal node parameters. We adopt this prior
since it has been shown to work well for a wide variety of different data sets and for both in-
and out-of-sample applications. Since the priors on the remaining coefficients are relatively
standard, we provide additional information in Appendix A.2.

3.1. Priors on the Trees and Terminal Node Parameters. We do not specify a prior directly
on the trees but instead design a tree-generating stochastic process that serves as a prior (see
Chipman et al., 1998). Ročková and Saha (2019) discuss how this stochastic process is linked
to the Galton–Watson (GW) process, which models how a population of individuals repro-
duces dynamically. The trees can be viewed as the individuals who reproduce and die accord-
ing to laws of chance.

This process features three aspects. The first is related to the probability that a node at
depth d = 1, . . . , is nonterminal. Let α ∈ (0, 1) and β ∈ R+ be hyperparameters. The probabil-
ity that a node at depth d gives rise to two child nodes is given by

α

(1 + d)β
.

In our empirical work, we set α = 0.95 and β = 2 for the trees T j
is for all i, s, j. Chipman et al.

(2010) recommend these values for α and β as a standard choice that works well across a wide
variety of different data sets. This prior implies that the probability that trees grow large de-
creases in d and thus favors smaller trees.

The second aspect of the prior is concerned with the selection of the variables that are used
in a splitting rule. Here, we use a discrete uniform prior, which implies that we do not intro-
duce prior information on which variables show up in a splitting rule. Finally, the third compo-
nent is concerned with the specific value of the thresholds in the splitting rule. For these, we
use a uniform prior over the range of the splitting variable as well.7

On the terminal node parameters, we use independent Gaussian priors that are specified as
follows:

μ
j
is,k ∼ N (0, φ j

is,k), for k = 1, . . . ,bj
is.(7)

7 This tree-generating process prior can generate trees that are more complicated than necessary. For instance, in
the case of a regression with a single binary explanatory variable, a trivial tree would be sufficient. The prior allows
for trivial but also more complicated trees that could fit the data equally well. This property ensures that complicated
trees are not ruled out a priori, allowing our posterior simulator to explore the space of trees efficiently. The parsi-
mony built into the prior, however, will favor simple over complicated trees.
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tail forecasting with multivariate bayesian additive regression trees 987

Following Chipman et al. (2010), we set the prior variance φ j
is,k in a data-based way. The key

idea is to specify the prior such that a certain amount of prior mass is placed on the range of
the data but at the same time set the prior in a way that it introduces more shrinkage if S is
large. A specification for φ j

is,k that achieves this is:

√
φ

j
is,k = max(z j

i ) − min(z j
i )

2γ
√

S
,(8)

where z j
i is a T -dimensional vector that is equal to z f

i = y•i − gi(Z) − δλ′
i if j = f , zg

i = y•i −
fi(X ) − δλ′

i if j = g, zv
i = log((y•i − fi(X ) − gi(Z) − δλ′

i)
2), and zu

k = log(δ2
k) with δk denoting

the kth column of δ = (δ′
1, . . . , δ

′
T )′, and λi is the ith row of �. The parameter γ controls the

tightness of the prior, with smaller values leading to a prior that puts more prior mass on the
range of z j

i .
As noted by Huber et al. (2023), this prior has the advantage of becoming increasingly

loose (for fixed values of S and γ ) if z j
i includes outliers. This leads to a wider predictive dis-

tribution and thus a higher likelihood of observing outlying values. Chipman et al. (2010) pro-
pose γ = 2 in combination with transforming the data such that z j

i ranges from −0.5 to 0.5
(implying that the numerator in Equation (8) is equal to 1). In that case, the actual prior stan-

dard deviation used reduces to
√
φ

j
is,k = 1/(2γ

√
S). These choices translate into a 95% proba-

bility that μ j
is,k is in the range of z j

i .
The prior on the terminal node parameters handles overfitting with respect to setting S too

large. Since S shows up in the denominator of Equation (8), the terminal node parameters for
a huge number of trees are increasingly forced to zero. Hence, if the number of trees increases
each individual tree will contribute less to explaining the overall variation in the endogenous
variables and the corresponding posterior variance of the function estimate will also decrease
given that the prior becomes more informative in such a situation.

In our empirical work, we will use the same prior hyperparameters γ , α, and β for all equa-
tions in the VAR and for all j ∈ { f, g,u, v}. This choice reflects findings in Pratola et al. (2020)
that these hyperparameters also work well for hBART.

It is worth noting that this prior setup uses the actual data to scale the prior and is thus not
a bona fide prior. In principle, it would be possible to not condition on the data and intro-
duce additional scaling parameters. But given the excellent forecasting performance of BART
across a range of applications using the priors stipulated in Chipman et al. (2010), we expect
no substantive improvement in predictive performance and thus leave this option aside.

3.2. Full Conditional Posterior Simulation. Posterior and predictive inference is done us-
ing MCMC methods. The full conditional posterior distributions of the model parameters are
mostly available in closed form or can be obtained using a Metropolis–Hastings (MH) step.
The conditional posteriors of the loadings �, the factors δt , and the VAR coefficients A take
well-known conditionally Gaussian forms and are thus discussed in the technical appendix.
Here, we focus on how to sample the tree-specific structure used to approximate the unknown
functions of the model.

Our MCMC algorithm exploits the fact that conditional on the factors and loadings, the
equations of the model are independent (see also Kastner and Huber, 2020).8 This implies
that the model in Equations (1) and (2) can be written as a system of M independent regres-
sion models. The ith equation closely resembles Equation (6):

yit = fi(xt ) + gi(zt ) + λiδt + eit, eit ∼ N
(

0, ev j (wt )
)
,(9)

8 For the fullBART specification, we estimate the model on an equation-by-equation basis conditional on the
shocks in the previous equations.
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988 clark et al.

which is a very general regression model with a scalar response. In what follows, we will dis-
cuss how to simulate the trees and terminal node parameters using Equation (9), that is, on
an equation-by-equation basis.

3.2.1. Updating the trees. We sample the trees using the Bayesian backfitting strategy dis-
cussed in Chipman et al. (2010). This step samples each tree conditional on the remain-
ing S − 1 trees. Let z̃ f

in = z f
i −∑

n 
=s lis(X |T f
is ,μ

f
is), z̃g

in = zg
i −∑

n 
=s lis(Z|T g
is ,μ

g
is), z̃v

in = zv
i −∑

n 
=s lis(w|T v
is ,μ

v
is), and z̃u

kn = zu
k −∑

n 
=s lks(w|T u
ks,μ

u
ks) denote partial residual vectors with

the nth tree lin excluded.
Conditional on the partial residual vector z̃sin (for s ∈ { f, g}) and the full history of the latent

error variances hi = (vi(w1), . . . , vi(wT ))′, which are modeled using hBART or SV, we simu-
late the tree structures T s

in and terminal node parameters μs
is. Chipman et al. (2010) draw T s

in
marginally of μs

is:

p(T s
in |z̃sin,hi) ∝ p(T s

in )
∫

p(z̃sin|T s
in,μ

s
in,hi) p(μs

in|T s
in,hi)dμs

in.

This integral can be solved analytically (up to a normalizing constant). To draw from
p(T s

in |z̃sin,hi) we use the MH algorithm originally proposed in Chipman et al. (1998). Since the
tree structure features a discrete state space, the MH algorithm specifies a transition kernel
q(T s(a)

in , T s∗
in ) that is used to grow new trees T s∗

in , conditional on the previously accepted tree

structure (T s(a)
in ), using one of four distinct moves with prespecified probabilities:

Grow The first possible move is to grow a terminal node. This move randomly selects a
terminal node of T s(a)

in and then proposes to split this terminal node into two new
terminal nodes based on a random splitting rule. This move is selected with proba-
bility 0.25.

Prune The second move prunes a terminal node. It selects two terminal nodes and merges
by collapsing the nodes below. This move is selected with probability 0.25.

Change This step randomly selects an interior node and changes the previously used split-
ting rule by assigning a new splitting rule. This splitting rule is obtained by ran-
domly drawing a splitting variable from the prior (which follows a discrete uniform
distribution) and a corresponding threshold. We select this move with probability
0.40.

Swap The final step swaps a splitting rule between parent and child nodes (a child node
is one that arises from some other node). This move is used with probability 0.10.

These four moves yield a tree T s∗
in that is then accepted with probability:

min

(
p(T s∗

in |z̃sin,hi)

p(T s(a)
in |z̃sin,hi)

q(T s∗
in , T

s(a)
in )

q(T s(a)
in , T s∗

in )
, 1

)
.(10)

This MH update has the advantage of being independent of the terminal node parameters and
thus avoids issues with computationally involved reversible jump MCMC algorithms.

3.2.2. Updating the error variances. Sampling the trees used to approximate the functions
that determine the conditional variance requires additional attention. Pratola et al. (2020)
propose a model that assumes that the trees enter the likelihood in product form. In this case,
the same algorithm as the one used to approximate F and G can be used. However, if the
number of trees is large, it commonly arises that one of the trees returns a volatility path that
is very close to zero. In such a case, the original sampler of Pratola et al. (2020) can get stuck.
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tail forecasting with multivariate bayesian additive regression trees 989

Table 1
model overview

Abbreviations Specification: F and G Specification: xt , zt , wt

Conditional mean models

BVAR F linear, G omitted xt = (y′
t−1, . . . , y

′
t−p)′

zt excluded
BART F BART, G omitted xt = (y′

t−1, . . . , y
′
t−p)′

zt excluded
mixBART F linear, G BART xt = zt = (y′

t−1, . . . , y
′
t−p)′

errorBART F linear, G BART xt = (y′
t−1, . . . , y

′
t−p)′

zt = (η′
t−1, . . . , η

′
t−p)′

fullBART fi, gi BART; �t = Ht xt = (y′
t−1, . . . , y

′
t−p)′

zit = (ε1t , . . . , εi−1,t )′
Conditional variance models

homosk Homoskedastic model �t = �

SV Standard SV specification, ui and v j linear wt : first lag of latent volatility
hBART ui, v j are approximated with BART wt = (t, x′

t )′
Competing models
TVP-VAR-SV F (xt ) = Atxt , G omitted xt = (y′

t−1, . . . , y
′
t−p)′

Elements in At follow independent random walks zt excluded
BQR Univariate: yit = x′

tβip + εit , εit ∼ ALp(σip) xt = (y′
t−1, . . . , y

′
t−p)′

Shocks follow an asymmetric Laplace (AL) distribution

Note: Written in general form, the model is represented as yt = F (xt ) + G(zt ) + εt , εt ∼ N (0M,�t ). The covariance
matrix is decomposed as �t = ��t�

′ + Ht unless otherwise noted.

Our approach avoids this by first linearizing the model and then using an approximation to
obtain a representation with Gaussian errors.9

To update T v
is , we first render the model conditionally Gaussian using the approximation

proposed in Omori et al. (2007).10 Squaring and taking logs of the ith element of et , eit , yields:

log(e2
it ) =

S∑
is

li(wt |T v
is ,μ

v
is) +	it , 	it ∼ logχ2

1 .

	it is then simply approximated using a scale-location mixture of Gaussians with 10 compo-
nents. The resulting model is a standard BART model with heteroskedasticity and a time-
varying intercept. More precisely,

log(e2
it )|ξt = j ∼ N

(
S∑
is

li(wt |T v
is ,μ

v
is) + m j, v

2
j

)
,(11)

with m j and v2
j being the mean and variance of the jth Gaussian component, respectively. ξt

denotes a component indicator that takes values between 1 and 10 with Prob(ξt = j) = q j.
The values of m j, v

2
j , and q j are known and can be read off table 1 in Omori et al. (2007).

Equation (11) is a standard BART model with time-varying intercept and variance, and the
trees T v

is can be sampled with the same MH step outlined above. The main difference with
respect to the model outlined in Pratola et al. (2020) is that they restrict the trees to be

9 For the conventional SV specification, we use the same linear approximation and assume that the log-volatilities
evolve according to independent AR(1) processes. The prior setup on the coefficients of the state equations mirrors
the one proposed in Kastner and Frühwirth-Schnatter (2014); see also Appendix A.2.

10 Here, we focus on the sampling step for T v
is . The sampling step for T u

is is precisely the same with eit replaced with
δ jt , the jth element in δt .
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990 clark et al.

nonnegative and then, instead of assuming a sum, approximate the unknown positive function
using a product of trees.

Conditional on the tree structures, the terminal node parameters for all of the different
types of BART models we consider are easily simulated from independent Gaussian distribu-
tions. These take a standard form and resemble the one of a simple intercept model.11 The
tree structure serves to allocate observations to different terminal nodes, and these observa-
tions are then consequently used to compute the posterior moments. If yt contains severe out-
liers (such as the ones observed during the pandemic), BART will most likely group them
together and the corresponding terminal node parameter will have a posterior variance that
is equal to the inverse of the number of outliers plus the prior precision (which will be low;
see Equation (8)). Hence, the corresponding posterior variance will be large, which leads to
wider predictive intervals and thus a higher probability of observing outliers under the poste-
rior predictive distribution.

In case of the standard BART-based VAR, these methods are similar to the ones discussed
in Huber and Rossini (2022) and a special case of the one developed in Huber et al. (2023).
The steps necessary to simulate each tree and the corresponding terminal node parameters in-
dividually are then combined with the steps outlined in Appendix A.2. This yields an MCMC
algorithm that operates on an equation-by-equation basis by recursively sampling from the
relevant full conditionals.

In large-scale VARs or regressions, the computational burden of MCMC methods can be a
serious limitation to the implementation of Bayesian methods. The relevant algorithms (even
in their most favorable implementations) result in a situation where the computational bur-
den increases enormously in M and p (and thus K). This has led papers such as Gefang et al.
(2023) to use variational methods or other approximations. In the algorithms used with our
BART models, this is not the case, since the number of explanatory variables has no direct im-
pact on computation times because K only increases the space of possible decision rules that
the algorithm needs to learn. This might cause mixing issues, but we have noticed that in cases
where K is moderate to large (i.e., K up to 100), no mixing issues arise. Specifically, in our em-
pirical work we take 30,000 draws and discard the first 15,000 draws as burn-in. MCMC con-
vergence diagnostics based on the full sample corroborate findings in Chipman et al. (2010)
and illustrate that our algorithm quickly converges toward the desired stationary distribution
(see Table A.2).

In terms of estimation times, our algorithm is fast. Depending on the BART variant, esti-
mating the model with M = 23 equations and T = 190 observations takes between 0.5 to 1.5
hours on a 2020 Macbook Air M1. In light of the fact that larger values of K (i.e., more equa-
tions and/or more lags) do not imply a larger computational burden for the BART-part of the
model, estimation of even larger models is feasible and can be carried out efficiently.

Appendix A.4 contains a Monte Carlo study that presents additional evidence on the prop-
erties of our BART-based models.

4. modeling and forecasting macroeconomic tail risks

After discussing data and evaluation metrics, we first assess the overall forecasting perfor-
mance of the BART-based models, and then consider how well they perform when the fo-
cus is on the marginal predictive distributions of GDP growth, inflation in the GDP price
index, and the unemployment rate. After showing that our different nonparametric models
work well, we illustrate additional model features and qualitative properties of the predictive
densities by focusing on the fullBART specification. Finally, we analyze the role of financial

11 Strictly speaking, this sampling step would require a correction term since we condition on parameter draws to
rescale the dependent variable (and thus have a conditional prior on the terminal node parameters). We do not con-
trol for this since the sampler would become considerably more complicated. Given that the corresponding prior
merely implies a rescaling of the responses, we abstract from this and acknowledge the fact that this step is approxi-
mate.
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tail forecasting with multivariate bayesian additive regression trees 991

conditions in tail forecasting, and then focus on conditional forecasts during the episodes of
the great financial crisis and of the COVID-19 pandemic.

4.1. Data Overview, Competitors, and Model Specification. To assess the efficacy of BART-
based models for macroeconomic forecasting, we evaluate the accuracy of real-time density
and tail risk forecasts. We download our real-time data set from https://fred.stlouisfed.org.
With real-time data vintages available beginning with 1996:Q4, our real-time forecast sample
begins with 1997:Q1 and ends with 2020:Q4.

The models are estimated with a set of 23 quarterly variables for the United States. A num-
ber of studies have found that larger VARs of this dimension forecast as well as or better than
smaller VARs (e.g., Banbura et al. (2010); Koop (2013); and Carriero et al. (2019)). Our vari-
able set is patterned after that of Giannone et al. (2015). Note that we add to their variable
set the broad NFCI published by the Federal Reserve Bank of Chicago, which, starting with
the work of Adrian et al. (2019), is frequently used in the literature on assessing macroeco-
nomic tail risks. With an eye to brevity, we focus our results on a few broad key indicators:
GDP growth (GDPC1), inflation in the GDP price index (GDPCTPI), and the unemployment
rate (UNRATE). Additional details on the data set are provided in Appendix A.1.

Our various BART models are compared to several other popular specifications. Most im-
portantly, we consider various linear BVARs. All of our BVARs are specified (including prior
choices where relevant) as special cases of the mixBART model with G removed and sepa-
rate horseshoe priors used on the linear VAR coefficients and the factor loadings � (see also
Appendix A.2). As a further competitor, we consider a small-scale TVP-VAR-SV12 with FSV
estimated using the noncentered parameterization with a horseshoe prior on the VAR coef-
ficients and the square root of the state-innovation variances (see also Frühwirth-Schnatter
and Wagner, 2010; Huber et al., 2021). The priors on the FSV part of the TVP-VAR-SV are
identical to those used for our BART models to enable direct comparisons. Moreover, in line
with the preceding literature on assessing tail risk to macroeconomic variables, for each of the
variables of interest we also include a BQR (see Kozumi and Kobayashi, 2011) estimated for
our full information set equipped with a horseshoe prior on the quantile-specific coefficients
and a weakly informative prior for the scale parameters.13 Further details on these models can
be found in Appendix A.2. Table 1 provides a brief summary of all the models examined in
the article.

All the models we consider set p = 5, and the number of factors Q is set equal to the Led-
ermann bound, which implies a rather large number of factors; in our application with M = 23
variables, Q = 16.14 Our shrinkage prior on the factor loadings, however, effectively prevents
overfitting. In addition, we follow the general guidance of Chipman et al. (2010) and set the
number of trees S for all our components equal to 250. As discussed in Subsection 2.2, as long
as this number is not set too small, it does not impact forecasting accuracy significantly.

4.2. Forecast Evaluation Metrics. In evaluating real-time out-of-sample forecasts, we con-
sider a range of metrics, many of which focus on tail risk.

As a baseline assessment of overall density accuracy, we use the continuous ranked proba-
bility score (CRPS) for marginal distributions (with equal weights for all quantiles of the pre-
dictive distribution) and the energy score (ES) for joint distributions. These metrics were de-
veloped in Gneiting and Raftery (2007). The CRPS, defined such that a lower number is a bet-
ter score, is given by

CRPSt (yit ) =
∫ ∞

−∞
(F(z) − I{yit ≤ z})2dz = Ef|ŷit − yit | − 0.5Ef|ŷit − ŷ′

it |,

12 TVP-VAR-SV uses GDP growth, inflation, the federal funds rate, unemployment, and the NFCI.
13 Due to its univariate nature, direct-multistep forecasts for the BQR model are used (as opposed to the iterative

forecasts used with all other specifications).
14 The Ledermann bound is the largest positive solution Q∗ of the equation (M − Q∗)2 ≥ M + Q∗.
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where F denotes the cumulative distribution function associated with the predictive density f,
yit (1, . . . ,M) is the realization of the forecasted variable, I{yit ≤ z} is an indicator function
taking value 1 if yit ≤ z and 0 otherwise, and ŷit and ŷ′

it are independent random draws from
the posterior predictive density.

To assess joint forecast performance for the three main variables (GDP growth, inflation,
and unemployment), we rely on the ES. The ES is a generalization of the CRPS, to which it
collapses for M = 1:

ESt (yt ) = Ef||ŷt − yt || − 0.5Ef||ŷt − ŷ′
t ||,

where ŷt and ŷ′
t are independent random vectors with distribution f. The ES provides a mea-

sure of overall density forecasting performance.
As a basic measure of accuracy of the lower tail risk forecast, we use the quantile score

(QS), commonly associated with the tick loss function (see, e.g., Giacomini and Komunjer,
2005). The QS is computed as

QSτ i,t = (yit − Qτ i,t )(τ − I{yit ≤ Qτ i,t}),

where Qτ i,t is the forecast quantile of the ith variable at quantile τ , and the indicator function
I{yt ≤ Qτ i,t} has a value of 1 if the outcome is at or below the forecast quantile and 0 other-
wise. We evaluate the QS using τ = 0.10, 0.25, 0.75, and 0.90. We also evaluate tail forecast
accuracy using two implementations of the quantile-weighted CRPS (qwCRPS) developed by
Gneiting and Ranjan (2011) as a proper scoring function of the entire predictive density. The
qwCRPS is computed as a weighted sum of QSs at a range of J − 1 quantiles:

qwCRPSit = 2
J − 1

J−1∑
j=1

ω(τ j )QSτ j i,t,(12)

with τ j = j/J. We rely on a grid of J − 1 = 19 quantiles τ ∈ {0.05, 0.10, . . . , 0.90, 0.95} to
compute these weighted scores. In one implementation (denoted qwCRPS-left), we set the
weights to ω(τ j ) = (1 − τ j )2 in order to target the left tail (downside risk), and in the other
(denoted qwCRPS-right), we set the weights as ω(τ j ) = τ 2

j to target the right tail of the pre-
dictive distribution (upside risk).

The tables report averages of these score measures over the 1997–2020 period. We report
scores relative to those of the benchmark BVAR-SV model. By all metrics, a ratio of less than
1 means that a given model is improving on the accuracy of the BVAR-SV baseline. To gauge
statistical significance, we rely on Diebold and Mariano (1995) and West (1996) t-tests of sig-
nificance differences of scores, for each model compared to the benchmark.

To give some sense of performance over time, for each forecast metric we also report fig-
ures of mean scores computed recursively, relative to the recursive mean for the BVAR-SV
benchmark. To be precise, the relative recursive mean for model i is 100(FMit/FMbench,t − 1),
where FMit and FMbench,t are the recursive averages of some forecast metric for model i and
the benchmark model, respectively. For example, a value of −20 indicates that model i has
a 20% better forecast performance according to the particular forecast metric used. The first
two years of the holdout are not included, since we use the first eight observations to initial-
ize the recursive means. Moreover, we consider the fluctuation test of Giacomini and Rossi
(2010). This is a test that gauges out-of-sample forecast accuracy in potentially unstable envi-
ronments. It tests for differences in forecast performance using a running window of forecast
losses. We choose the running window to contain 20% of the holdout observations at a time
and include the value of the test statistic and critical values for the 10% level of significance
(positive values mean that we outperform the benchmark BVAR-SV).
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tail forecasting with multivariate bayesian additive regression trees 993

Table 2
es to measure joint forecast performance

1.109

1.011

1.015

1.067

1.035

1.100

0.972

0.975

1.042

0.965

1.089

0.953

0.951

1.033

0.932

1.075

0.933

0.935

1.019

0.917

*** ***

*

*

*

**

***

***

***

***

**

***

***

***

2.194

0.984

0.983

1.003

1.006

2.321

0.976

0.978

1.008

0.976

2.508

0.956

0.955

0.985

0.949

2.658

0.939

0.939

0.958

0.929

*

*

***

***

***

***

***

**

***

1.002

0.981

0.983

1.060

1.007

0.985

0.972

0.970

1.019

0.970

0.990

0.946

0.948

0.999

0.926

0.984

0.933

0.933

0.974

0.908

**

**

**

**

***

***

***

**

***

***

**

***

ho
m

os
k.

S
V

hB
A

R
T

h=1 h=4 h=8 h=12

fullBART

errorBART

mixBART

BART

BVAR

fullBART

errorBART

mixBART

BART

BVAR

fullBART

errorBART

mixBART

BART

BVAR

0.977 1.004 0.980 0.947

h=1 h=4 h=8 h=12

TVP−VAR−SV

Note: ESs are computed as the ratio with respect to the Bayesian VAR with SV. Asterisks indicate statistical signifi-
cance of the Diebold–Mariano test for equal predictive performance at the 1%, 5%, and 10% level. The row associ-
ated with the benchmark (in gray) shows raw losses. Relative performance is illustrated with shades from red (bench-
mark better than alternative) to purple (alternative better than benchmark).

We report results for horizons of h ∈ {1, 4, 8, 12} quarters. Higher-order predictive densities
are obtained through an iterative approach. The acronyms in the tables and figures can be un-
derstood by noting they combine the acronyms with the various specifications for the condi-
tional mean (BVAR, BART, mixBART, errorBART, and fullBART) with the acronyms for
different treatments of the conditional variance (SV and hBART). Results for homoskedastic
versions of the models are labeled “homosk.” in the tables.

4.3. Overall Forecasting Performance of the Various BART Models. In this subsection, we
consider the overall forecasting performance of the different BART-based models vis-á-vis
the BVAR-SV. This comparison is based on the ES, which measures the joint density fore-
cast performance for the three variables of interest. Subsequently, we will focus on the fore-
cast performance for the variables individually.

Table 2 shows the average ES relative to the benchmark BVAR with SV. The relative ES
values reported in Table 2 indicate that for h = 1 there are few gains from using BART rela-
tive to the BVAR-SV. Some BART specifications forecast slightly better than the BVAR-SV
and others do slightly worse, but there are no substantial differences at this horizon. How-
ever, forecast gains become larger at longer forecast horizons and are, with few exceptions,
statistically significant. These gains can be sizable, particularly for h = 12. At this horizon,
fullBART-hBART produces gains in forecast performance that can be as large as 10%. The
fullBART-hBART specification is the generally best-performing model for h = 8 and 12, only
losing to fullBART-homosk. at h = 4. For h = 1, the fullBART-hBART specification is very
similar to all other approaches. Overall this leads us to select fullBART-hBART as our pre-
ferred model.

Comparing volatility specifications gives rise to a common finding in the literature: for lin-
ear VARs, it almost always pays off to allow for heteroskedasticity of some form (see, e.g.,
Clark, 2011; Clark and Ravazzolo, 2015). The gains from adding SV or hBART to the linear
BVAR are substantial, ranging from 7.5% (for h = 12) to 10% (for h = 4).

With the BART specifications, the effects of adding heteroskedasticity are smaller and the
story is more nuanced. Consider, for instance, our best-performing fullBART model for h =
12. Relative to the homoskedastic variant, adding SV causes a very slight deterioration in
forecast performance, whereas adding hBART causes a very slight improvement. Similar re-
sults are found for other BART specifications. The key point is that differences between
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994 clark et al.

Table 3
es for forecasts normalized to bvar-sv point forecasts, relative to bvar-sv

1.016 (−0.004)

1.016 (−0.002)

1.019 ( 0.048)

1.010 ( 0.025)

0.994 (−0.022)

0.995 (−0.020)

1.021 ( 0.021)

0.989 (−0.024)

0.987 (−0.034)

0.987 (−0.036)

1.034 (−0.001)

0.985 (−0.053)

0.972 (−0.039)

0.972 (−0.037)

1.045 (−0.026)

0.969 (−0.052)

1.005 (−0.021)

1.003 (−0.021)

0.995 ( 0.008)

1.024 (−0.019)

0.997 (−0.021)

0.996 (−0.018)

1.000 ( 0.008)

1.004 (−0.028)

0.988 (−0.033)

0.988 (−0.034)

0.999 (−0.014)

0.995 (−0.046)

0.973 (−0.034)

0.974 (−0.034)

0.998 (−0.040)

0.980 (−0.052)

1.012 (−0.030)

1.012 (−0.029)

1.011 ( 0.050)

1.010 (−0.003)

0.992 (−0.020)

0.991 (−0.020)

1.000 ( 0.019)

0.989 (−0.019)

0.984 (−0.038)

0.984 (−0.036)

1.005 (−0.006)

0.982 (−0.057)

0.968 (−0.035)

0.969 (−0.036)

1.008 (−0.034)

0.967 (−0.058)

ho
m

os
k.

S
V

hB
A

R
T

h=1 h=4 h=8 h=12

fullBART

errorBART

mixBART

BART

fullBART

errorBART

mixBART

BART

fullBART

errorBART

mixBART

BART

Note: Predictive densities for all models are normalized such that the point forecasts coincide with those of the
benchmark. Consequently, any differences are driven solely by higher-order moments of the predictive distribution.
Values shown in parentheses are differences of the relative ES for original densities minus those for normalized den-
sities.

homoskedastic and heteroskedastic variants are much less than they were with linear models.
The nonparametric specification of the BART model evidently captures nonlinearities in the
conditional mean process in such a way as to match or beat the accuracy gains that come from
including the time-varying volatility of innovations in a linear VAR.

In other words, whereas other models perform poorly if the data-generating process (DGP)
is characterized by heteroskedasticity, BART is more flexible and, as we will show in Figure 5,
produces very similar predictive densities irrespective of the specification for the conditional
variance. This is because BART is doing so well at fitting the dynamics via the flexible speci-
fication for the conditional mean that there is little role left for the conditional variance. Evi-
dence from our Monte Carlo study (see Figures A.3 and A.4) backs this claim. In particular, it
shows that a homoskedastic BART specification accurately recovers the true mean function in
the presence of heteroskedastic shocks. By contrast, linear models that ignore heteroskedas-
ticity perform poorly in this situation and this partly explains the weak forecasting perfor-
mance of the BVAR with homoskedastic shocks.

BART may be leading to improved ESs either because of an improvement in the point
forecasts or because of an improvement in other aspects of the predictive distribution. To in-
vestigate which aspect is of most importance, we recalculated the ESs in Table 2 using pre-
dictive distributions that have been recentered to the mean forecasts of the BVAR-SV. Thus,
the forecasts for all models will have the same mean and any difference in ESs is due to dif-
ferences in the modeling of the rest of the predictive distribution, including its tails. To be
precise, for each MCMC simulation of a draw from the predictive distribution of one of our
BART models, we added the difference between the predictive mean of the BART model and
the predictive mean of the BVAR-SV (both predictive means averaged over all draws).

The results of this analysis are provided in Table 3. This table provides the ESs based on
the normalized predictive densities (relative to BVAR-SV). The differences (in percentage
points) to the relative ESs reported in Table 2 are shown in parenthesis. Negative values in-
dicate that the normalized densities yield higher ESs, whereas positive differences imply that
normalizing yields smaller ESs.

The table suggests that these recentered predictive distributions (with a few exceptions, par-
ticularly for h = 1) do have lower ESs than those of the BVAR-SV. But most of these ESs
are higher than the nonnormalized ones. This indicates that gains arise from both better point
forecasts and other aspects of the predictive distribution. These differences increase with the
forecast horizon, implying that by conditioning on the forecast mean of the linear model we
lose important information for higher-order predictions.
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tail forecasting with multivariate bayesian additive regression trees 995

Notes: Joint forecast performance is measured by the ES. The chart compares fullBART-hBART as the on aver-
age best-performing model to the benchmark BVAR-SV. For details on the fluctuation test, see Giacomini and Rossi
(2010). Dashed lines indicate critical values for a 10% level of statistical significance; the solid horizontal line marks
zero. Negative values of relative recursive mean and positive values of the fluctuation test imply that the fullBART-
hBART model outperforms the benchmark.

Figure 1

relative recursive mean and fluctuation test statistic for joint forecast performance

To understand how much of the accuracy gains arise from more accurate point forecasts, we
can compare the percentage point differences to the level of the original relative ES. For in-
stance, in the case of fullBART-hBART and h = 12, improvements in ESs are close to 10% if
the nonnormalized predictive density is considered (see Table 2). These gains decrease by al-
most 6 percentage points if we consider the normalized predictive distribution. One interpre-
tation of this would be that whereas higher-order features of the predictive distribution ex-
plain around 4 percentage points of the overall gain (in terms of nonnormalized densities),
better point forecasts dominate the overall gains, contributing around 6 percentage points.
The finding that nonparametric techniques offer gains in terms of point forecasts is consistent
with recent findings of Medeiros et al. (2021).

This analysis can be repeated for all other models under consideration, revealing a remark-
ably consistent feature. If a BART-based model improves upon the VAR, most of these im-
provements are driven by more precise point forecasts but the larger flexibility of BART al-
lows for predictive distributions that display heavy tails, skewness, and richer covariance struc-
tures across shocks. All of these features are key during turbulent times but also pay off in
normal periods.

To analyze whether forecast performance changes over time, Figure 1 reports, for h = 1
and h = 4, the relative recursive mean of ES (top panel) and the Giacomini and Rossi (2010)
fluctuation test (bottom panel) between fullBART-hBART and the BVAR-SV.15 The relative
recursive mean score ratios in the top panel show that the full sample performance of the
models largely holds up over time. For horizons of h = 4, 8, 12, the fullBART-hBART con-
sistently beats the BVAR-SV benchmark over time, whereas for h = 1, the benchmark has
the advantage for most of the recursive sample, except in the early years and for some de-
terioration late in the sample, with the pandemic. The fluctuation test results in the bottom
panel indicate that the fullBART-hBART’s advantages are statistically significant at the hori-
zons of h = 8, 12, whereas for h = 1, 4, the test does not reject the null of equal accuracy over
time.

4.4. Variable-Specific Tail Forecasting Performance. The ES is a measure of overall den-
sity forecasting performance. To investigate whether using BART pays off for our three

15 Plots for other models look very similar and are available upon request from the corresponding author.
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Table 4
variants of crps by variable

0.953 0.989 0.973 0.929

1.965

0.966

0.983

0.984

0.993

2.002

1.023

0.995

0.993

0.992

2.075

1.035

0.982

0.985

0.974

2.133

1.026

0.979

0.979

0.972

*

1.164 1.033 0.964 0.911

0.565

1.063

0.990

0.996

1.091

0.703

0.931

0.863

0.867

0.864

0.892

0.781

0.822

0.822

0.757

1.042

0.710

0.797

0.798

0.708

***

***

***

*

***

***

***

**

***

***

***

1.154 0.974 0.971 0.973

0.267

0.973

0.948

0.951

0.964

0.304

0.981

0.984

0.986

0.978

0.321

1.046

1.015

1.018

1.008

0.332

1.102

1.036

1.035

1.035

*

**

**

***

1.014 1.109 1.084 1.052

0.607

0.972

0.991

0.990

1.005

0.613

1.026

1.006

1.003

1.009

0.632

1.059

1.005

1.008

1.003

0.656

1.031

0.987

0.986

0.984

1.054 1.052 1.157 1.235

0.176

1.047

0.970

0.977

1.042

0.207

0.945

0.865

0.872

0.921

0.239

0.868

0.835

0.839

0.836

0.267

0.857

0.838

0.839

0.811

***

***

***

***

***

*

***

***

***

1.527 1.036 1.028 1.012

0.068

1.003

0.962

0.963

0.980

0.079

1.026

1.005

1.006

0.995

0.083

1.100

1.019

1.021

1.009

0.086

1.153

1.033

1.034

1.031

*

1.011 0.993 0.972 0.904

0.539

0.967

0.979

0.983

0.984

0.557

1.022

0.987

0.986

0.974

0.586

1.001

0.954

0.955

0.934

0.599

1.009

0.963

0.963

0.945

***

**

**

*** *

1.435 1.089 0.896 0.733

0.157

1.074

1.013

1.015

1.137

0.207

0.906

0.861

0.860

0.800

0.285

0.712

0.808

0.806

0.688

0.346

0.600

0.761

0.762

0.623

* ***

*

***

***

***

*

***

***

***

***

***

***

***

1.020 1.054 1.061 1.079

0.088

0.949

0.930

0.934

0.940

0.097

0.946

0.968

0.970

0.960

0.104

1.003

1.011

1.013

1.003

0.107

1.057

1.033

1.032

1.032

*

**

***

***

***

CRPS qwCRPS−left qwCRPS−right

G
D
P
C
1

G
D
P
C
T
P
I

U
N
R
A
T
E

h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

fullBART−hBART
mixBART−hBART
BART−hBART
BQR
TVP−VAR−SV
BVAR−SV

fullBART−hBART
mixBART−hBART
BART−hBART
BQR
TVP−VAR−SV
BVAR−SV

fullBART−hBART
mixBART−hBART
BART−hBART
BQR
TVP−VAR−SV
BVAR−SV

Note: Relative performance is illustrated with shades from red (benchmark better than alternative) to purple (alter-
native better than benchmark).

focus variables, we now consider the different variants of the CRPS across variable types. For
brevity, we focus on the three best-performing BART models (in terms of ES, averaged over
the forecast horizons). In this exercise, we also include other benchmark models commonly
used in the forecasting literature.

Table 4 provides results on accuracy measures that refer to the entire predictive density, in-
cluding the CRPS, qwCRPS-right, and qwCRPS-left.

In the case of GDP growth, the BART specifications offer consistent improvements in
CRPS, small to modest (roughly 3% for h = 12) in the left tail and a little larger in the
right tail (roughly 5% for h = 12). Among the BART specifications included in the table,
fullBART-hBART tends to be a little better than the others, but the differences are small. On
balance, the performance of the BART specifications may be seen as comparable to that of
the BQR model. In a number of cases (combinations of metrics and horizons), the BART and
BQR score ratios are similar, whereas, in others, BQR fares either a little or modestly bet-
ter than BART (e.g., qwCRPS-right with h = 12) or worse (e.g., qwCRPS-left with h = 12).
The TVP-VAR-SV model for the three variables is beaten by the benchmark, except at the
h = 1 horizon.

Our proposed BART models yield the biggest benefits to inflation forecasting. Whereas
BART’s performance at the h = 1 horizon is comparable to that of the benchmark, it is
materially better at longer horizons, increasingly so as the horizon rises. The benefits of
the BART models are moderately greater in the right tail than the left but sizable in
both. As examples, the fullBART-hBART model’s advantage over the benchmark increases
from about 12% for h = 4 to 20% for h = 12 using the qwCRPS-left metric, and it rises
from about 22% for h = 4% to 32% for h = 12 using the qwCRPS-right metric. BART
is also consistently at least as good as—better in most cases—BQR. The same applies for
BART as compared to TVP-VAR-SV, although the TVP-VAR-SV specification usually beats
BQR.

By the CRPS metrics, BART’s forecast performance is more mixed for the unemployment
rate than for GDP growth and inflation. The BART specifications yield modest improvements
in forecast accuracy for horizons of h = 1, 4, slightly more in the right tail than the left. At the
longer horizons, the BART models are about as accurate as or slightly less accurate than the
BVAR-SV benchmark. It remains the case, however, that the BART specifications perform at
least as well as the BQR and TVP-VAR-SV alternatives.
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tail forecasting with multivariate bayesian additive regression trees 997

Figure 2

quantile weighted crpss; relative recursive mean and fluctuation test for fullbart-hbart relative to bvar-sv

Figure 2 is similar to Figure 1 and depicts the recursive mean of the qw-CRPSs of
fullBART-hBART relative to the BVAR-SV over time.16 To gauge whether changes in the
relative performance for a given point in the hold-out are statistically significant, the lower

16 Plots that show the relative scores for all other models and volatility specifications are available in the online ap-
pendix.
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Table 5
quantile scores by variable type

1.07 1.28 1.14 1.15

0.87

0.99

1.01

1.01

1.02

0.89

1.03

1.01

1.01

1.02

0.95

1.03

0.99

1.00

0.99

1.01

1.01

0.95

0.95

0.96

***

***

1.11 1.22 1.71 1.89

0.21

0.98

0.95

0.95

1.01

0.23

0.92

0.87

0.88

1.01

0.23

1.03

0.85

0.84

0.91

0.28

1.03

0.82

0.83

0.93

*

**

**

*

*

2.20 1.03 1.06 1.01

0.08

0.98

1.03

1.01

1.06

0.10

1.08

1.02

1.02

1.00

0.11

1.10

0.99

0.99

0.98

0.11

1.13

0.97

0.97

0.97

1.01 1.09 1.09 1.03

1.14

0.97

1.00

1.00

1.02

1.15

1.02

1.01

1.00

1.02

1.17

1.06

1.02

1.03

1.02

1.24

1.00

0.98

0.98

0.97

*

1.00 0.96 1.20 1.37

0.35

1.05

0.96

0.98

1.01

0.40

0.93

0.86

0.88

0.92

0.43

0.92

0.85

0.86

0.89

0.44

1.02

0.90

0.89

0.92

*

**

**

***

***

** ***

1.61 1.05 1.00 1.00

0.13

1.04

0.96

0.96

0.96

0.14

1.04

1.01

1.01

1.00

0.15

1.14

1.02

1.02

1.01

0.15

1.18

1.03

1.03

1.03

*

0.96 0.95 0.93 0.84

1.00

0.95

0.97

0.98

0.96

1.04

1.02

0.99

0.99

0.97

1.11

0.97

0.93

0.93

0.90

1.14

0.99

0.94

0.94

0.92

* ** ***

**

**

***

*

*

**

1.39 1.05 0.82 0.66

0.29

1.09

1.01

1.01

1.18

0.40

0.91

0.85

0.85

0.76

0.57
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Note: Relative performance is illustrated with shades from red (benchmark better than alternative) to purple (alter-
native better than benchmark).

panels of each figure show the evolution of the fluctuation test statistic over time. For read-
ability, the figures report results using the qwCRPS-left and qwCRPS-right metrics.

Broadly, the relative scores given in the top row of each panel indicate that, in many cases,
the forecast performance of our preferred fullBART-hBART specification relative to the
BVAR-SV benchmark is largely stable over time, although with some instabilities, more so for
GDP growth and unemployment than for inflation. In the case of inflation, there appears to
be modest instability for h = 1, but the fluctuation test reported in the lower panel does not
reject the null of equal accuracy over time. BART’s accuracy gains are largely stable over time
at the longer forecast horizons, with significant rejections of the null, more frequently in the
right tail than the left (in keeping with the full-sample result noted above of modestly larger
accuracy gains in the right tail than the left). For GDP growth, the relative accuracy measures
show stability over time in some cases (e.g., qwCRPS-right for h = 8 or less) and some insta-
bility in others (e.g., qwCRPS-right for h = 12). The null of stability over time is only rejected
for some periods of time using qwCRPS-right for h = 8, 12 and using qwCRPS-left for h = 4.
Scores for the unemployment rate show modestly more instability, but the null of equal accu-
racy over time is only rejected in a couple of instances, such as in the left tail for h = 8, 12.

To shed additional light on performance gains arising from different parts of the predictive
distribution, we examine the tail forecasting performance by means of QSs. Table 5 has a for-
mat similar to that of Table 4, but presents QS results instead of CRPS results.

Broadly speaking, the QS results are quite similar to the CRPS results. Once again, BART
yields the largest payoff in forecasting tail risks to inflation, with gains that rise with the fore-
cast horizon and are greater in the right tail than the left. In this case, fullBART-hBART of-
ten offers accuracy gains greater than those of the other BART specifications. The fullBART-
hBART’s accuracy gains over the BVAR-SV benchmark reach more than 40% for the 75%
and 90% QS at h = 12.

In the case of GDP growth, BART also offers some gains in tail risk forecast accuracy as
measured by the QS, modestly more so in the left tail than the right, and more so at longer
horizons than shorter. BART’s forecast performance is more mixed for the unemployment
rate, offering modest gains at shorter horizon forecasts of the right tail and generally match-
ing the accuracy of the benchmark BVAR-SV model. Throughout these results, the BART
models forecast at least as well as the BQR and VAR-TVP-SV alternatives. The BART fore-
casts achieve statistically significant gains in more cases (across horizons and quantiles) than
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tail forecasting with multivariate bayesian additive regression trees 999

Figure 3

quantile scores; relative recursive mean and fluctuation test for fullbart-hbart relative to bvar-sv

do these alternative models, particularly for GDP growth and inflation and less so for the un-
employment rate.

Turning to the question of whether this strong performance of the different BART ap-
proaches holds throughout the hold-out period or is specific to certain time periods, Figure 3
displays recursive averages of the QSs for τ ∈ {0.1, 0.9}. The patterns in these QSs are broadly
similar to those for the qwCRPS-left and qwCRPS-right measures discussed above. Focusing
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1000 clark et al.

on the fluctuation test results, the null of stability over time is rarely rejected for the unem-
ployment rate, but rejected in a good part of the sample for the right-tail forecasts of GDP
growth and inflation at longer horizons.

4.5. A Deeper Examination of fullBART. In the previous subsections, we have shown that
fullBART yields forecasts that are highly competitive and, according to the ES, the most pre-
cise ones over all forecast horizons. To shed light on what features of the predictive density
drive the good forecasting performance, we now analyze in more detail several characteristics
of the fullBART specification.

4.5.1. What variables drive conditional mean and variance dynamics?. Before focusing
on the properties of the predictive distributions of fullBART, we investigate how our pre-
ferred fullBART-hBART specification extracts information from the full sample to model
U.S. macroeconomic dynamics.

Figure 4 shows percentages of how often fullBART decides to use each variable in its split-
ting rules per equation in relation to the total number of splits (summing over the respective
lags). Assessing splitting rules to determine the importance of a variable is less effective when
S is large, since the abundance of trees leads to mixing many irrelevant predictors with rele-
vant ones; see also the discussion in Chipman et al. (2010, p. 276). Nonetheless, we find that
some noteworthy patterns emerge.

It turns out that all variables matter. This holds for the conditional mean and the condi-
tional variance. This result is more pronounced for the conditional variance. The inclusion
percentages in the hBART component of the model suggest a dense volatility model with
less heterogeneity across the three equations than is the case in the conditional mean part of
the model.

The conditional mean part suggests that some variables seem to be more important than
others. For instance, we find that the NFCI plays an important role for GDP growth and
unemployment, whereas it appears to be (slightly) less relevant for inflation. By contrast,

Figure 4

percentages of variables in splitting rules relative to the total number of splits
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tail forecasting with multivariate bayesian additive regression trees 1001

for inflation we observe that lagged inflation and price measures (such as GPDICTPI and
PCECTPI) frequently show up in the conditional mean.

To investigate whether controlling for heteroskedasticity changes mean relations, Fig-
ure A.2 reproduces these heatmaps for all three volatility models we propose. The key find-
ing is that, across our three focus variables, the same set of variables frequently shows up. This
indicates that the conditional mean estimates are informed by similar covariates and these do
not change if we use more flexible models to capture conditional variance dynamics.

These heatmaps do not convey information on how complicated the individual trees are.
They suggest that different variables shape our estimates of the conditional mean and condi-
tional variance. But this can be achieved in two ways using BART. First, it could arise through
a few rather complicated trees that feature many of the different variables as splitting vari-
ables. Second, it could arise through many simple trees that only feature very few splitting
variables but these differ across trees. Table A.1 provides a few summary statistics for the dif-
ferent trees. In this table, we find that the trees are indeed rather simple (consistent with our
prior) and do not differ across equations and volatility specifications, providing evidence that
if a given variable shows up in a splitting rule, this typically happens through a simpler tree.

4.5.2. Properties of predictive distributions. We now consider the predictive distributions
of fullBART and compare them to the ones obtained from the linear BVAR. Figure 5 pro-
vides, for the three variables, time series of the 5/95% and 10/90% quantiles of the predic-
tive distributions from the BVAR and fullBART models for different volatility specifications.
So that the extreme volatility of 2020 induced by the COVID-19 pandemic does not obscure
scales, the charts have separate panels for the 1997–2019 and 2020 periods. In the interest of
chart readability, the figures provide results for just the one- and four-quarter-ahead horizons;
results for the 8- and 12-quarter-ahead horizons are very similar to those for the four-quarter-
ahead horizon.

This figure tells a clear story about why we do not gain much from controlling for het-
eroskedasticity if we use a BART-based specification. In the upper panel (i.e., for the BVAR)
we find that forecast intervals differ sharply across volatility specifications. The BVAR with
homoskedasticity produces much wider intervals than the ones from the BVARs with either
SV or hBART. This is driven by the fact that the homoskedastic model mixes over low, inter-
mediate, and high volatility periods and thus produces predictive intervals that are either too
wide (in a low volatility regime) or too narrow (in a high volatility regime).

By contrast, and this is perhaps the most striking feature of the BART-based predictive dis-
tribution, across volatility specifications there is strong similarity of the forecast intervals for
fullBART, for both forecast horizons. Irrespective of the volatility specification, forecast inter-
vals only change slightly for GDP growth, whereas they are almost identical for inflation and
unemployment. This, again, corroborates our finding above that BART is capable of control-
ling for model misspecification with respect to assumptions on the error variances.

Considering the dynamics and magnitudes of the corresponding volatility estimates corrob-
orates this finding. For brevity, these are provided in the appendix (see Subsection A.3.1) and
here we summarize the main findings. In the case of the BVARs, we find that volatility esti-
mates strongly differ in magnitudes, with the homoskedastic specification providing the largest
estimate of the error variances. For fullBART, there are differences in terms of both the shape
and the magnitude of the different volatility processes but the magnitudes are substantially
smaller. The immediate consequence of this finding is that the predictive distribution is mostly
driven by our flexible modeling of the conditional mean, supporting the idea that most of the
benefits of the nonparametric approach are obtained in its modeling of the conditional mean
as opposed to the conditional variance.

4.5.3. Nonlinear features in predictive densities. Visual inspection of the predictive densi-
ties masks possible nonlinear features. To assess if and when predictive distributions depart
from linearity and normality, we rely on a linear approximation of the BART model to obtain
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1002 clark et al.

Notes: Constant volatility ( ), SV ( ), hBART ( ). Thin colored lines mark the 5/95th percentile, thick lines
the 10/90th percentile. Black lines and points are realizations of the final vintage.

Figure 5

predictive densities: bvar versus fullbart
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tail forecasting with multivariate bayesian additive regression trees 1003

Figure 6

kld between exact and approximate predictive distribution for fullbart-hbart

a linear VAR representation. Similar approximations have been proposed in Crawford et al.
(2018) and adopted in Huber et al. (2023).

All results shown up to this point are based on the exact predictive distribution that is avail-
able through simulation. In this section, we compare these exact predictive distributions to the
ones obtained from a linear approximation. The approximation linearly projects 
 = (X ,Z)
on a T × M matrix of nonparametric functions, F , with typical tth row F (xt ) + G(zt ):

Ã = Proj(
,F ) = 
†F ,

with 
† being the Moore–Penrose inverse of the matrix of explanatory variables, 
. The
reader is referred to the discussion in Huber et al. (2023) to justify this approximation. In
essence, it can be shown that, at the T observations, F ≈ XÃ.

After having obtained Ã we can iteratively compute multistep forecasts using standard
formulas for forecasting in VAR models. This yields an approximate predictive distribution
p̂(yt+h|yt ). In principle, if the DGP is linear we would expect that p̂(yt+h|yt ) ≈ p(yt+h|yt ).
Hence, the distance between the approximate and the exact predictive distribution yields in-
sights into the extent of nonlinearities. To formalize the idea of distance between distribu-
tions, we use the Kullback–Leibler divergence (KLD). The KLD will serve as a measure of
the importance of nonlinearities. If we observe substantial divergence between the two pre-
dictive densities, this indicates that exact distributions feature substantial nonlinearities (since
approximation errors become comparatively large).

Figure 6 shows the measure for the fullBART-hBART specification over time and at differ-
ent forecast horizons as a heatmap. The time axis here refers to the date when the forecast
was made.

A common pattern found for all three of the variables is that the KLD becomes sizable
during the global financial crisis and the pandemic, suggesting that in these periods, a linear
approximation misses important features of the underlying nonlinear model specification. In
tranquil times, the KLD is close to zero. Evidently, BART-based predictions are sufficiently
close to the ones obtained from using a linear approximation. This finding is not surprising
and commonly found in the literature on nonlinear models. Huber et al. (2023), for instance,
find that the performance gains of BART during the pandemic become large, whereas in nor-
mal times, gains are more muted. In such situations, nonparametric approaches quickly adapt
to these extreme observations.

Zooming in on variable-specific differences reveals that for inflation we find the largest
KLD, whereas for the unemployment rate and GDP growth, KLDs are much smaller. Since
fullBART is among the set of the best-performing models for inflation forecasts according
to the CRPS measure, this suggests that being flexible on the conditional mean and the full
variance–covariance matrix seems to pay off.

Finally, there tends to be more evidence of nonlinearity at the longer forecast horizons. This
is consistent with our previous evidence that BART-based models forecast particularly well
at longer horizons. From a technical perspective, the larger differences for multistep forecasts
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1004 clark et al.

are driven by the fact that we iteratively forecast in both cases. Since higher-order forecasts
are nonlinear functions of Ã, the approximation error increases with the forecast horizon.

4.6. The Role of Financial Conditions in Tail Forecasting. In the previous subsections, we
have shown that BART can be used to produce accurate tail forecasts. With much of the re-
cent literature emphasizing the role of financial conditions in driving negative tail risks to eco-
nomic activity (see, e.g., Adrian et al., 2019 and Delle Monache et al. (2020)), we examine the
role of financial conditions in the tail risk forecasts of BART-based specifications. In the inter-
est of brevity, we focus on two models: the BVAR-hBART and fullBART-hBART specifica-
tions. This comparison helps to shed light on the role of nonparametric treatments of the con-
ditional variance (hBART) and conditional mean (BART vs. BVAR). For this assessment, we
consider NFCI paths over the forecast horizon that are fixed at selected values. These values
are the different quantiles of the NFCI, ranging from 0 (the minimum) to 1 (the maximum)
with a step-size of 0.05. This provides 21 paths of the NFCI for which we produce conditional
forecasts from the models.

4.6.1. Conditional forecasts using fullBART. Figure 7 reports time series of the 5% and
95% quantiles of predictive distributions of GDP growth, inflation, and unemployment ob-
tained for each path of the NFCI, over our entire out-of-sample evaluation period (with 2020
separated from the rest of the sample for chart readability). In these charts, blue lines refer to
densities conditioning on low values of the NFCI (good financial conditions) and red lines re-
fer to densities conditioning on high values of the NFCI (bad financial conditions). Black lines
provide the actual outcomes for growth, inflation, and the unemployment rate.

In the period up to the Great Recession, changes in the NFCI had limited effects on the
tails of the predictive density for all variables and both models under consideration. In some
periods (such as the late 1990s) we find that tighter financial conditions have an adverse effect

Notes: The quantiles range from 0 to 1 with step size of 0.05. The legend refers to the quantiles.

Figure 7

percentiles of the predictive distributions for different quantiles of the nfci
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tail forecasting with multivariate bayesian additive regression trees 1005

on the left tail of GDP growth. But this finding only holds for fullBART and the magnitudes
of the shifts in the conditional distribution are small.

For the period since the Great Recession, conditioning on higher values of the NFCI low-
ers the 5% quantile forecast of GDP growth appreciably. Interestingly, this finding does not
carry over to the 95% quantile prediction, pointing toward asymmetries in the way financial
conditions impact the conditional distribution of output growth. For unemployment, changes
in financial conditions have a similar effect: tight financial conditions translate into increases
in unemployment, whereas loose financial conditions translate into a tighter labor market and
thus lower unemployment rates. It is worth stressing that this effect is more pronounced if we
use fullBART as opposed to the BVAR-hBART model.

In the case of inflation, the middle row of the charts indicates that, with both models, con-
ditioning on higher values of the NFCI significantly boosts the 95% quantile of the predictive
distribution, implying that more adverse conditions are associated with more upside risk to in-
flation. The NFCI conditioning has relatively little effect on the lower tail forecast for infla-
tion. These patterns for inflation are relatively consistent over the sample, including the pan-
demic observations.

4.7. Conditional Forecasts during the Global Financial Crisis and the Pandemic. Focusing
on the unemployment rate, Figure 8 reports posterior predictive densities over a few selected

Notes: The quantiles range from 0 to 1 with step size of 0.05. The legend refers to the quantiles.

Figure 8

one-step-ahead predictive distributions for unemployment for different values of nfci
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1006 clark et al.

quarters from the depths of the Great Recession (2008:Q3 to 2009:Q1) and the 2020 pandemic
(2020:Q1 to 2020:Q3). The densities condition on the quantiles of the NFCI that range from 0
(the minimum, blue lines) to 1 (the maximum, red lines).

In broad terms, the charts in the top two rows show that, with the conditional mean tak-
ing the linear form of the BVAR, the nonparametric specification of the innovation process
through hBART is sufficient to yield predictive distributions that are non-Gaussian. For ex-
ample, in 2008:Q3, some of the distributions have fat tails, whereas in 2020:Q3, the distribu-
tions are sharply peaked instead of bell-shaped. More specifically, in the case of BVAR fore-
casts during the Great Recession, conditioning on different values of the NFCI impacts the
predictive distributions mostly by increasing one of the tails or widening the distributions,
with little effect on the mode of the distribution. In 2020, conditioning on different NFCI val-
ues has little effect on forecasts for 2020:Q2 and 2020:Q3 but sharply affects the predictive
distributions for 2020:Q1, with higher values of the NFCI associated with predictive distribu-
tions shifted to the right and widened.

Conditioning on different financial settings has much larger effects on predictive distribu-
tions from the fullBART-hBART specification. In this case, pairing a nonparametric specifi-
cation of the conditional mean with a nonparametric specification of the conditional variance
can yield sharply non-Gaussian distributions, with fat tails, asymmetries, or even multimodal-
ity.

Multimodalities in the predictive distribution for the unemployment rate are most evident
from 2008:Q3 through 2009:Q1. In 2008:Q4 and 2009:Q1, even under favorable (near-zero)
values of the NFCI, the predictive distributions from the fullBART specification show two
clear peaks. As the conditioning NFCI values are increased, the predictive mean shifts some
but the variance rises considerably, with much wider distributions. This specification appears
to feature these multimodalities while yielding favorable forecast accuracy over the full hold-
out period.

In the period of the pandemic, the BART-based patterns for 2020:Q2 and 2020:Q3 are sim-
ilar to the BVAR-based patterns. In these periods, conditioning on different NFCI values has
relatively little effect on the predictive distributions. But in 2020:Q1 forecasts, the NFCI has a
much greater impact on the predictive distributions, resembling that seen in the Great Reces-
sion quarters of 2008:Q3 through 2009:Q1, with higher values of the NFCI sharply raising the
predictive mean and variance of the unemployment rate.

5. concluding remarks

In this article, we have made three main contributions. First, we have used BART to intro-
duce novel multivariate models that posit nonlinear relationships among macroeconomic vari-
ables, their lags, and possibly the lags of the errors. The errors can be either homoskedastic
or heteroskedastic, and in the latter case, we consider both a standard SV specification and
a novel nonparametric specification. The flexible specifications for the conditional mean and
variance could be particularly helpful in the presence of parameter time variation and/or for
density and tail forecasting.

Second, we have developed MCMC estimation algorithms for each (homoskedastic and
heteroskedastic) BART specification. The algorithms are easily scalable to large dimension
and thus allow for estimating large semi- and nonparametric VAR models.

Finally, we have evaluated the real-time forecasting performance for a set of U.S. macroeco-
nomic and financial indicators of the various BART models, using a variety of loss functions
and a BVAR-SV model as a (strong) benchmark, in addition to a TVP-VAR-SV and a BQR.
The main findings are that when using BART to accommodate nonlinearities, it is less impor-
tant to allow for heteroskedasticity; the out-of-sample predictive density charts do not show
much downside risk asymmetry; and BART specifications can deliver more accurate tail fore-
casts than BVAR-SV, in particular for inflation.
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tail forecasting with multivariate bayesian additive regression trees 1007

Overall, the models we develop represent an important addition to the toolbox of empirical
macroeconomists and forecasters, due to their flexibility, range of applicability, ease of imple-
mentation, and good empirical performance.

In this article, we have focused on approximating the unknown functions F and G using
BART due to its excellent empirical properties. However, there exist several alternative tech-
niques such as Gaussian process and kernel regressions (Quinonero-Candela and Rasmussen
(2005) and Adrian et al. (2021)), spline-based models (Shin et al. (2020)), or infinite mixtures
(Kalli and Griffin (2018)) to flexibly model the conditional mean in a multivariate time-series
model. Assessing whether these techniques can be used to improve forecasts would be a fruit-
ful avenue of further research, as well as using these more sophisticated models for the identi-
fication of structural shocks and their propagation.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.

Data S1
Figure 1: Relative recursive mean and fluctuation test statistic for ES: BART homosk.
Figure 2: Relative recursive mean and fluctuation test statistic for ES: BART-SV.
Figure 3: Relative recursive mean and fluctuation test statistic for ES: BART-hBART.
Figure 4: Relative recursive mean and fluctuation test statistic for ES: mixBART homosk.
Figure 5: Relative recursive mean and fluctuation test statistic for ES: mixBART-SV.
Figure 6: Relative recursive mean and fluctuation test statistic for ES: mixBART-hBART.
Figure 7: Relative recursive mean and fluctuation test statistic for ES: errorBART homosk.
Figure 8: Relative recursive mean and fluctuation test statistic for ES: errorBART-SV.
Figure 9: Relative recursive mean and fluctuation test statistic for ES: errorBART-hBART.
Figure 10: Relative recursive mean and fluctuation test statistic for ES: fullBART homosk.
Figure 11: Relative recursive mean and fluctuation test statistic for ES: fullBART-SV.
Table 1: CRPS and quantile-weighted CRPSs.
Table 2: Quantile scores (QS)s.
Figure 12: CRPS over time.
Figure 13: qwCRPS-left over time.
Figure 14: qwCRPS-right over time
Figure 15: QS10 over time. Figure 16: QS90 over time.
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Ročková, V., and E. Saha, “On Theory for BART,” in The 22nd International Conference on Artificial
Intelligence and Statistics (PMLR, 2019), 2839–48.

Sentana, E., “Quadratic ARCH Models,” Review of Economic Studies 62 (1995), 639–61.
Shin, M., A. Bhattacharya, and V. E. Johnson, “Functional Horseshoe Priors for Subspace Shrinkage,”

Journal of the American Statistical Association 115 (2020), 1784–97.
Stock, J. H., and M. W. Watson, “Generalized Shrinkage Methods for Forecasting Using Many Predic-

tors,” Journal of Business & Economic Statistics 30 (2012), 481–93.
Wasserman, L., All of Nonparametric Statistics (Springer Science & Business Media, New York,

NY 2006).
West, K. D., “Asymptotic Inference about Predictive Ability,” Econometrica 64 (1996), 1067–84.
Yu, K., and R. A. Moyeed, “Bayesian Quantile Regression,” Statistics & Probability Letters 54 (2001),

437–47.

appendix A

A.1 Data Appendix. Table A.1 lists the variables we use (alongside codes and transfor-
mations). With one exception, all models used in this article use all of these variables. The one
exception is the small time-varying parameter VAR with stochastic volatility (TVP-VAR-SV),
which uses only GDP growth, inflation, the federal funds rate, unemployment, and the Na-
tional Financial Conditions Index (NFCI). In an early version of this article, which appeared
as Federal Reserve Bank of Cleveland Working Paper 21-08, we considered data sets of dif-

Table A.1
data, description, and information set

FRED-Code Series Trans.

GDPC1 Real gross domestic product (GDP) 400� ln
GDPCTPI GDP price index 400� ln
FEDFUNDS Federal funds rate level
UNRATE Unemployment rate �

CPIAUCSL Consumer price index (CPI) 400� ln
PPIACO Producer price index (PPI) for all commodities 400� ln
INDPRO Industrial production 400� ln
PAYEMS Payroll employment 400� ln
CES0800000001 Payroll employment, services 400� ln
PCECC96 Real personal consumption expenditures 400� ln
A008RA3Q086SBEA Gross private domestic fixed investment: Nonres. 400� ln
A011RA3Q086SBEA Gross private domestic fixed investment: Res. 400� ln
PCECTPI PCE chain price index 400� ln
GPDICTPI Gross private domestic investment price index 400� ln
CUMFNS Capacity utilization, manufacturing level
HOANBS Nonfarm business sector: Hours of all persons 400� ln
COMPRNFB Nonfarm bus. sector: Real compensation per hour 400� ln
GS1 One-Year Treasury bond yield level
GS5 Five-Year Treasury bond yield level
EXUSUK U.S./U.K. exchange rate 400� ln
M2REAL Real M2 money stock 400� ln
SP500 S&P 500 400� ln
NFCI Chicago Fed index of financial conditions level

Note: “FRED-Code” refers to the code of the respective series at https://fred.stlouisfed.orgfred.stlouisfed.org. Trans-
formations (“Trans.”): � indicates first differences and ln is the natural logarithm.
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tail forecasting with multivariate bayesian additive regression trees 1011

ferent dimension. The reader is referred to that paper for an investigation of our Bayesian
additive regression trees (BART)-based methods in smaller models. Data are obtained from
https://fred.stlouisfed.org fred.stlouisfed.org.17

With real-time data vintages available beginning with 1996:Q4, our real-time forecast sam-
ple begins with 1997:Q1 and ends with 2020:Q4. If release frequency is higher than quarterly,
we use the final vintage per respective quarter for producing forecasts. However, for some
variables, real-time data vintages begin later in the sample. In these cases, we use the first
vintage to fill in artificial vintages for earlier years, truncating it according to the release cal-
endar. In all cases, the data sample for model estimation starts with 1973:Q2. In evaluating
forecasts, we measure the actual values of the variables as those of the final available vintage,
which is 2021:Q1. Our data set, thus, includes observations during the pandemic. The use-
fulness of BART for pandemic forecasting was established in previous work by Huber et al.
(2023, HKOPS). Results using a sample that ends in 2019:Q4 are available in the earlier ver-
sion of this article, Federal Reserve Bank of Cleveland Working Paper 21-08. Results differ
little from those in the current version of the article using a data set that includes the pan-
demic period.

A.2 Technical Appendix.

A.2.1 Priors on the remaining model parameters. On the VAR coefficients A we use a
horseshoe prior (Carvalho et al., 2010). This choice is motivated by two main reasons. First,
global–local shrinkage priors such as the horseshoe possess excellent forecasting properties
in high dimensions (see, e.g., Chan, 2021; Huber and Feldkircher, 2019; Korobilis and Pet-
tenuzzo, 2019). Second, and this is crucial for our extensive real-time forecasting exercise,
the horseshoe prior does not rely on a single hyperparameter. This implies that no cross-
validation is necessary.

Let ai = (ai1, . . . , aiK )′ denote the ith row of A and ai j the ith element of ai. The horseshoe
prior is a hierarchical Gaussian prior on ai j:

ai j|λi, ψi j ∼ N (0, ψ2
i jλ

2
i ), ψi j ∼ C+(0, 1), λi ∼ C+(0, 1),(A.1)

with λi being a shrinkage hyperparameter that applies to all coefficients in equation i and ψi j

denotes a coefficient-specific scaling parameter. Both λi and ψi j feature a half-Cauchy prior
C+. This prior belongs to the general class of global–local shrinkage priors that shrink glob-
ally (through λi) but allow for local deviations (through ψi j) if λi is close to zero. For the fac-
tor loadings in � we use a horseshoe prior similar to the one in (A.1). The only exception is
that the global shrinkage parameter applies to each column of �. This allows for pushing coef-
ficients associated with irrelevant factors to zero.

In the case where we use a model that features SV, the prior on the unconditional mean is
Gaussian with mean zero and variance 10; the prior on the persistence parameter, denoted by
ρi, is Beta distributed ρi+1

2 ∼ B(25, 5); and the prior on the variance of the log-volatility pro-
cess is Gamma distributed G(1/2, 1/2).

If we use a model with homoskedastic shocks, we use an inverse Gamma prior on the main
diagonal elements of Ht , σ 2

i , which we set to be rather uninformative, that is, σ 2
i ∼ G−1(c0, c1).

The hyperparameters c0, c1 are set equal to 0.01.

Sampling the remaining unknowns of the model. Conditional on the trees and the error
volatilities, one can sample the VAR coefficients and the covariance parameters in a single
block using standard textbook results for the linear regression model. The full conditional

17 Because the S&P 500 index of stock prices is unavailable prior to 2011 in the online FRED database, we ob-
tained data for this series prior to 2011 from the compiled “FRED-QD” data set, also available from the St. Louis
Fed’s Web site.
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posterior of ai is multivariate Gaussian:

ai|• ∼ N (βi,V i),

V i = (X̃ ′
i X̃i + V −1)−1,

βi = V iX̃iỹi,

where X̃ ′
i denotes a T × K matrix with typical tth row x̃′

it = x′
t/e

hit/2, ỹi has typical tth ele-
ment (yit − gi(zt ) − λiδt )/ehit/2, and V denotes a diagonal prior variance–covariance matrix
constructed using the variances described in (A.1). The • notation indicates that we condition
on the remaining parameters of the model.

Notice that if we use a model that assumes fi and gi to be nonlinear, this sampling step can
be omitted. In the case where we estimate the errorBART model, xit will be replaced with
(η′

t−1, . . . , η
′
t−p)′.

The factor loadings � are simulated from a full conditional posterior that is conditionally
Gaussian and takes a standard form. For each row of �, λi, we simulate from:

λ′
i|• ∼ N (λi,W i),

W i = (F̃ ′
i F̃i + W −1

i )−1,

λi = W i(F̃ ′
i ŷi).

F̃i has a typical tth row δt/ehit/2 and the tth element of ŷi is (yit − fi(xt ) − gi(zt ))/ehit/2 and W i
is an (MQ) × (MQ) prior variance–covariance matrix that we construct using similar quanti-
ties to the ones described in (A.1).

The factors are simulated on a t-by-t basis from Gaussian distributions. The full conditionals
are given by (see Aguilar and West, 2000):

δt |• ∼ N (ζt (yt − f (xt ) − g(zt )),�t − ζt�ζ′
t ),

with ζt = �t�
′� and � = ��t�

′ + Ht . For each point in time, draws of δt are obtained in a
(conditionally) independent manner from this Q-dimensional Gaussian distribution.

In models that include SV, we use the efficient sampler outlined in Kastner and Frühwirth-
Schnatter (2014). This sampler also exploits the 10-component mixture approximation to the
logχ2

1 distribution but restates the conditionally Gaussian and linear state space model in
terms of a big regression model with the regression coefficients being the log-volatilities. This
gives rise to an algorithm that samples the volatilities all without a loop from a (T − 1)-
dimensional multivariate Gaussian distribution.

If we use a homoskedastic model, the error variances can easily be sampled from an inverse
Gamma posterior with

σ 2
i |• ∼ G−1

(
c0 + T

2
, c1 +

∑T
t=1 ε

2
it

2

)
.

Finally, the hyperparameters of the horseshoe prior are simulated using the auxiliary sampler
proposed in Makalic and Schmidt (2015). We will outline the relevant full conditionals for the
prior on ai only. The hyperparameters for the prior on � take precisely the same form.
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tail forecasting with multivariate bayesian additive regression trees 1013

Makalic and Schmidt (2015) introduce auxiliary random variables ζi and κi j. Conditional on
these, the posteriors of ψ2

i and λ2
i are inverse Gamma distributed:

ψ2
i j|• ∼ G−1

(
1,

1
κi j

+ a2
i j

2λ2
i

)
, λ2

i |• ∼ G−1

⎛
⎝K + 1

2
,

1
ζi

+ 1
2

K∑
j=1

a2
i j

ψ2
i j

⎞
⎠,

as is the posterior of the auxiliary parameters:

κi j|• ∼ G−1
(

1, 1 + 1
ζi

)
, ζi|• ∼ G−1

(
1, 1 + 1

λ2
i

)
.

A.2 Technical Appendix.

TVP-VAR with factor stochastic volatility (FSV). Borrowing notation from Equation (1),
the TVP-VAR-SV model is given by:

yt = Atxt + εt, εt ∼ N (0M,�t ),

with F (xt ) = Atxt and G omitted. At is an M × K-matrix of time-varying coefficients, and
�t = ��t�

′ + Ht is decomposed using an FSV model as for our other specifications. To estab-
lish the TVPs and our prior setup, define ỹt = yt − �δt , such that

ỹt = Atxt + et, et ∼ N (0M,Ht ),

which allows us to consider the TVP-VAR-SV as independent TVP regressions conditional on
�δt . Let ait denote the ith row of At , and consider equation i:

ỹit = x′
tait + eit, eit ∼ N (0, ehit ),

ait = ait−1 + ηit, ηit ∼ N (0K,ϒi),

with ϒi = diag(υi1, . . . , υiK ) and
√

ϒi = diag(
√
υi1, . . . ,

√
υiK ). Algorithmically, our implemen-

tation relies on the noncentered parameterization of Frühwirth-Schnatter and Wagner (2010):

ỹit = a′
i0xt + ã′

it

√
ϒixt + eit,

ãit = ãit−1 + ηit, ηit ∼ N (0K, IK ), ãi0 = 0K.

This splits the TVPs into a random walk process for ãit with standard normal errors and a
time-invariant part ai0 = (ai1,0, . . . , aiK,0)′. The square roots of the state innovation variances,√

ϒi, are featured in the measurement equation and can be treated as regression coefficients.
We specify equation-specific horseshoe priors on both:

ai j,0 ∼ N (0, ψ2
A,i jλ

2
A,i), ψA,i j ∼ C+(0, 1), λA,i ∼ C+(0, 1),

√
υi j ∼ N (0, φ2

ϒ,i j, λ
2
ϒ,i), ψϒ,i j ∼ C+(0, 1), λϒ,i ∼ C+(0, 1).

This specification is similar to Huber et al. (2021). We sample the TVPs equation-by-
equation using a forward-filtering backward-sampling algorithm, and conditional on these
draws, update the other parameters of the model using the horseshoe posteriors provided
above. The FSV part of the model is identical to the one for the BART-based variants with
conventional SV to enable direct comparisons.
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1014 clark et al.

Bayesian quantile regression (BQR). The BQR is based on estimating univariate quantile-
specific models with xt = (y′

t−1, . . . , y
′
t−p)′ of size K for the focus variables. Each of the quan-

tile regressions also features an intercept, which we ignore in what follows for brevity.
To simplify notation, we refer to individual variables by yt and omit the i subscript. For

quantile τ ∈ (0, 1), we have

yt = x′
tβτ + εt, εt ∼ ALτ (στ ).(A.2)

The asymmetric Laplace (AL) distribution is chosen as the likelihood due to the arguments
provided in Yu and Moyeed (2001). We follow Kozumi and Kobayashi (2011) and rely on an
auxiliary representation of the AL distribution:

εt = θpzτ t + ττ
√
στzτ tut, ut ∼ N (0, 1), θτ = 1 − 2τ

τ (1 − τ )
, π2

τ = 2
τ (1 − τ )

,

with zτ t ∼ E(σp) following an exponential distribution. Notice that we may write Equation
(A.2) as a conditionally Gaussian model:

ỹτ t = x̃′
τ tβτ + ut,

with ỹτ t = (yt − θτzτ t )/(πτ
√
στzτ t ) and x̃pτ t = (τp

√
σpzτ tIK )−1xt . Based on conditional Gaus-

sianity, we may use any prior on the quantile-specific coefficients βτ that one would use in
a conventional linear Bayesian regression to design a Gibbs sampling algorithm. In line with
our arguments with respect to the other models, we opt for a horseshoe prior on the jth coeffi-
cient, β jτ , for j = 1, . . . ,K:

β jτ ∼ N (ψ2
β, jτ λ

2
β,τ ), ψβ, jτ ∼ C+(0, 1), λβ,τ ∼ C+(0, 1),

which provides shrinkage by quantile. A similar prior structure for quantile regression has
been proposed in Clark et al. (2021). For the scale parameter of the AL distribution, we use
a weakly informative inverse Gamma prior: στ ∼ G−1(3, 0.3).

The corresponding posterior distributions can be found in Kozumi and Kobayashi (2011),
and those for the horseshoe prior are shown above in this appendix. For multistep-ahead fore-
casts, we specify Equation (A.2) as a predictive equation with yt+h as the dependent variable.

A.3 Additional Empirical Results for U.S. Data. This appendix includes additional em-
pirical results. The first subsection shows volatility forecasts whereas the second and third
provide additional full-sample results such as heatmaps measuring variable relevance and
Markov chain Monte Carlo (MCMC) convergence diagnostics.

A.3.1 Volatility forecasts. To shed light on the different ways, we have of modeling the
volatility process, Figure A.1 presents, for each of the three variables, one- and four-step-
ahead forecasts of the volatility using different models of volatility applied to the Bayesian
VAR (BVAR) and fullBART specifications of the conditional mean. For both models, we plot
lines produced for the three volatility treatments to offer an easy comparison. The first point
worth noting is that there are differences in the volatility estimates produced by the three
treatments of the error variances. As expected, homoskedastic modeling of error variances
tends to produce volatility forecasts that are relatively smoother and at a higher level. These
very gradual changes are produced by our recursive forecasting design that implies almost no
discounting of past information.

Heteroskedastic BART (hBART) tends to produce volatility forecasts that are similarly
smooth, but much lower than the homoskedastic ones. But volatility forecasts by SV models
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tail forecasting with multivariate bayesian additive regression trees 1015

Notes: Constant volatility ( ), SV ( ), hBART ( )

Figure A.1

volatility predictions (posterior median) for bvar and fullbart

tend to be more volatile than the other approaches. One exception to this pattern is reveal-
ing: For the linear BVAR, SV and hBART produce volatility estimates that are quite similar.
Informally speaking, in models where both conditional mean and variance are modeled us-
ing BART approaches, the model can “choose” to put nonlinearities in the conditional mean
or the conditional variance, and the choice made is typically to put them in the conditional
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1016 clark et al.

Figure A.2

percentages of variables in splitting rules relative to the total number of splits

mean. In the linear VAR such a choice is not possible and, thus, the hBART estimates put
the nonlinearities in the conditional variances in a similar manner to SV. The fact that the ho-
moskedastic version of BART tends to forecast well also supports the idea that most of the
benefits of the nonparametric approach are obtained in its modeling of the conditional mean
as opposed to the conditional variance. Yet, it is worth mentioning that with BART models we
tend to find more evidence of changes in volatility for unemployment than for GDP growth.
The latter increases more during and soon after recessions.

There are also interesting differences in the volatility forecasts during the pandemic. Par-
ticularly for h = 1 and for unemployment and GDP growth, SV models are forecasting much
larger increases in volatility than the other approaches. This is consistent with findings in
HKOPS, where the extreme pandemic observations had a great impact on the conditional
mean that was successfully picked up by BART approaches, leaving less variation in the con-
ditional variance. This pattern is also relevant when the volatility of one-step-ahead forecast
errors is used as a proxy for uncertainty, as the latter would have increased much less with
BART than with standard BVAR-SV models.

A.3.2 In-sample results. In the main text, we discuss splitting rules across the three fo-
cus variables and for fullBART-hBART only. In Figure A.2, we show similar plots for BART,
mixture BART (mixBART), and fullBART and all three specifications of the error vari-
ances. We drop errorBART from the comparison since this specification includes the lagged
reduced-form shocks and a comparison of the remaining three specifications is difficult.

In principle, the heatmaps tell a story very similar to the one provided in the main text.
Irrespective of the variance specification chosen, the percentages of variables showing up in
a given splitting rule (normalized by the total number of splits) look similar. This indicates
that the nonparametric conditional mean model efficiently extracts information and becoming
more flexible on how the error variances evolve over time has only a minor impact on vari-
able relevance.
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tail forecasting with multivariate bayesian additive regression trees 1017

Table A.2
summary statistics for trees in multivariate bart variants

Mean No. of Terminal Nodes Max. No. of Terminal Nodes Max. Obs. in Terminal Node

Model GDPC1 GDPCTPI UNRATE GDPC1 GDPCTPI UNRATE GDPC1 GDPCTPI UNRATE

Homoskedastic
BART 2.24 2.26 2.21 4.81 4.91 4.85 164.77 163.44 169.57
mixBART 2.25 2.26 2.22 4.86 4.92 4.86 164.63 163.33 169.19
errorBART 2.06 2.06 2.06 4.17 4.21 4.18 168.65 168.73 168.89
fullBART 2.25 2.26 2.16 4.91 4.81 4.60 164.77 163.75 172.17
SV
BART 2.22 2.26 2.18 4.86 4.86 4.68 166.13 163.75 169.72
mixBART 2.22 2.26 2.18 4.82 4.93 4.73 165.71 163.59 169.54
errorBART 2.07 2.07 2.07 4.18 4.18 4.23 170.49 170.16 171.84
fullBART 2.23 2.27 2.17 4.82 4.90 4.58 164.82 162.60 172.12
hBART
BART 2.23 2.27 2.19 4.83 4.94 4.79 166.04 163.22 169.29
mixBART 2.22 2.27 2.19 4.81 4.99 4.79 165.80 163.41 169.53
errorBART 2.06 2.06 2.06 4.16 4.17 4.19 169.03 168.91 169.19
fullBART 2.21 2.25 2.14 4.71 4.86 4.47 166.34 163.82 171.98

Note: “Mean No. of Terminal Nodes” refers to the number of terminal nodes averaged over all S trees and MCMC
samples, whereas “Max. No. of Terminal Nodes” indicates the maximum number of terminal nodes across all S trees
averaged over MCMC draws. “Max. Obs. in Terminal Node” refers to the number of observations (fitted values) allo-
cated to the terminal node that contains the larger number of observations.

In the main text, we state that the heatmaps draw a picture of which variables drive the
conditional mean but do not provide information on how the trees look. Since the number
of trees in the BART models is vast, we focus on summary statistics for the sum of trees
model. These are reported in Table A.1. The column “Mean No. of Terminal Nodes” refers
to the posterior mean number of terminal nodes averaged over all S trees, whereas the col-
umn “Max. No. of Terminal Nodes” indicates the posterior mean maximum number of termi-
nal nodes across all S trees. The column “Max. Obs. in Terminal Node” refers to the number
of observations (fitted values) allocated to the terminal node that contains the larger number
of observations across all trees and iterations of the algorithm. The table shows that trees ap-
pear to be rather simple for most models, with a mean (max) number of terminal nodes across
equations just over 2 (just below 5). Consistent with most of the findings discussed in the main
text (and also for the table showing variable relevance measures) we find no discernible dif-
ferences in tree complexity across volatility specifications. Again, the full-sample results tell a
story that once we introduce BART into the conditional mean, the corresponding specifica-
tion on the error covariance plays a smaller role and does not substantially impact the condi-
tional mean model.

A.3.3 MCMC convergence diagnostics. In this section, we provide some evidence that
our MCMC algorithm is mixing well. This is achieved by considering inefficiency factors that
take into account the autocorrelation between successive draws from the joint posterior. Val-
ues of the inefficiency factors below 30 are typically viewed to indicate well-mixing chains
(see, e.g., Primiceri, 2005). Since our models feature many latent states and parameters, we re-
port averages (over time) of inefficiency factors of draws from the posterior of the conditional
mean functions.

These are depicted in Table A.2. The table points toward favorable convergence properties,
with draws from the posterior of the latent functions displaying very little autocorrelation.
For some equations and models, inefficiency factors are above 2, whereas in the worst cases
we obtain inefficiency factors between 30 and 39.4. These numbers signal strong convergence
properties, in line with the findings of Chipman et al. (2010), who also provide evidence that
the BART components of the MCMC sampler mix well.
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1018 clark et al.

Table A.3
in-sample inefficiency factors for fitted values

GDPC1 GDPCTPI UNRATE

Model/Size Small Medium Large Small Medium Large Small Medium Large

BART homosk. 8.8 10.5 6.9 6.6 5.3 4.5 16.8 11.1 7.9
mixBART homosk. 8.7 10.2 7.3 6.6 5.5 4.4 18.1 10.8 7.8
errorBART homosk. 2.3 4.5 7.9 2.6 2.7 10.7 2.6 4.0 11.4
fullBART homosk. 9.2 13.7 11.0 7.3 7.2 11.7 17.0 14.9 12.8
BART SV 20.6 14.0 8.2 8.4 6.5 4.2 23.7 12.1 7.6
mixBART SV 18.8 14.3 8.3 8.0 6.4 4.3 22.9 32.0 8.1
errorBART SV 2.6 4.0 3.0 4.3 4.3 16.4 4.1 3.4 2.8
fullBART SV 2.4 2.3 2.4 10.0 8.7 30.0 22.2 23.0 18.5
BART hBART 21.1 16.0 9.0 9.3 7.4 5.7 26.8 16.8 9.2
mixBART hBART 20.8 14.8 9.2 8.9 7.2 5.8 29.1 17.8 8.7
errorBART hBART 2.6 2.4 12.2 2.8 3.1 13.2 3.0 2.5 26.8
fullBART hBART 36.5 27.2 21.8 10.8 10.8 21.3 29.1 39.4 27.0

A.4 Monte Carlo Evidence. In this appendix, we present the results of a small Monte
Carlo study where the data-generating processes (DGPs) are constant parameter and TVP
VARs. Both DGPs have SV. The goal is to see how well our various BART models can ap-
proximate these parametric models. The DGPs take the form:

yt =
P∑

p=1

Aptyt−p + εt, εt ∼ N (0,�t ),

where Apt are M × M-matrices for lag p with characteristic elements ai j,pt . Moreover, we
set �t = ��t� + Ht , where � is M × Q, �t = diag(eω1t , . . . , eωQt ) and Ht = diag(eh1t , . . . , ehMt ).
We consider small and large data sets, with M ∈ {5, 25}, with P = 5 lags and Q = 2 factors, and
simulate Tfull = Tburn + T + P observations. Subsequently, we discard the initial Tburn = 50 ob-
servations to mute the effects of the initial conditions and construct the design matrices from
T + P observations such that all VARs feature T = 200 observations. The corresponding pa-
rameters are simulated as follows:

• We simulate the initial conditions of the first-order autoregressive coefficients from
aii,10 ∼ N (0.3, ς2

A); for i 
= j, we have ai j,10 ∼ N (0, ς2
A). Coefficients associated with

higher-order lags are simulated as ai j,p0 ∼ N (0, ς2
A/p2), which implies that coefficient

matrices become more sparse for distant lags. We set ς2
A = 0.12. Moreover, we assume

random walks for ai j,pt :

ai j,pt = ai j,pt−1 + ϑi j,pηt,

and simulate ϑi j,p ∼ G−1(12, 0.03/p), again with the amount of time variation decreasing
with the lag order p. For the constant parameter DGPs, ϑi j,p = 0 for all i, j, and p. In
this case, the VAR coefficients are given by the initial conditions in Ap0. We only con-
sider stable simulations in terms of the VAR coefficients and redraw them t-by-t in case
they yield explosive multivariate systems.

• The elements of the loadings matrix �, λi j, are simulated as λi j ∼ N (0, 0.22). We con-
sider autoregressive laws of motion for the logarithm of the diagonal elements of �t and
Ht :

ωqt = φωωqt−1 + ςωεqt, for q = 1, . . . ,Q

hit = μh + φh(hit−1 − μh) + ςhεit , for i = 1, . . . ,M,
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tail forecasting with multivariate bayesian additive regression trees 1019

Figure A.3

posterior credible sets and true conditional mean function for model specifications across five runs of the
models for the small constant parameter dgp

and set μh = −1, φω = φh = 0.95 and ςh = ςω = 0.1.

Figures A.3 and A.4 plot credible intervals for the conditional mean functions in the five
equations for five different artificial data sets for 15 different models (i.e., five specifications
for the conditional mean and three for the conditional variance). It can be seen that the var-
ious BART models do well in fitting the conditional mean. Of the four different BART ap-
proaches for the conditional mean, we find errorBART to perform the worst, a finding that
also occurs in our empirical results using U.S. data. The homoskedastic linear VAR performs
particularly poorly when faced with our DGPs that involve SV.

Tables A.3, A.4, A.5, and A.6 present tree diagnostics, averaged over 50 artificial data sets,
for our four DGPs (i.e., two different numbers of variables times two different specifications
involving constant and time-varying parameters). These confirm our findings using macroeco-
nomic data that BART tends to use relatively simple tree structures.

 14682354, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12619 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [28/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1020 clark et al.

Table A.4
tree diagnostics for the small constant parameter dgps

Terminal Nodes Splitting: Own Lags (%)

Model Mean No. Max. No. Max. Obs. Initial Other

BART homosk. 2.33 (0.020) 5.23 (0.294) 165.39 (0.963) 0.19 (0.011) 0.20 (0.018)
mixBART homosk. 2.33 (0.021) 5.28 (0.297) 165.44 (0.943) 0.19 (0.011) 0.20 (0.018)
errorBART homosk. 2.21 (0.022) 4.80 (0.267) 165.92 (1.084) 0.18 (0.011) 0.20 (0.023)
fullBART homosk. 2.31 (0.018) 5.17 (0.285) 165.59 (0.882) 0.18 (0.012) 0.19 (0.017)
BART SV 2.33 (0.019) 5.25 (0.284) 165.59 (0.885) 0.19 (0.010) 0.20 (0.019)
mixBART SV 2.33 (0.021) 5.29 (0.301) 165.43 (0.979) 0.19 (0.011) 0.20 (0.018)
errorBART SV 2.21 (0.022) 4.82 (0.267) 166.02 (0.960) 0.18 (0.011) 0.20 (0.021)
fullBART SV 2.32 (0.021) 5.18 (0.308) 165.36 (0.997) 0.18 (0.010) 0.19 (0.018)
BART hBART 2.33 (0.021) 5.26 (0.284) 165.22 (0.919) 0.19 (0.011) 0.20 (0.018)
mixBART hBART 2.33 (0.021) 5.27 (0.305) 165.12 (1.016) 0.19 (0.011) 0.20 (0.019)
errorBART hBART 2.22 (0.021) 4.80 (0.271) 165.90 (0.931) 0.18 (0.010) 0.20 (0.021)
fullBART hBART 2.32 (0.021) 5.18 (0.274) 165.54 (1.015) 0.18 (0.011) 0.19 (0.018)

Note: Mean and standard error (in parentheses) over 50 replications of the DGPs.

Table A.5
tree diagnostics for the small tvp dgps

Terminal Nodes Splitting: Own Lags (%)

Model Mean no. Max. no. Max. Obs. Initial Other

BART homosk. 2.32 (0.020) 5.22 (0.277) 165.22 (0.968) 0.19 (0.010) 0.20 (0.019)
mixBART homosk. 2.32 (0.020) 5.22 (0.263) 165.14 (0.905) 0.19 (0.012) 0.20 (0.019)
errorBART homosk. 2.22 (0.022) 4.81 (0.285) 166.62 (0.975) 0.18 (0.011) 0.20 (0.020)
fullBART homosk. 2.31 (0.019) 5.16 (0.274) 165.27 (0.872) 0.18 (0.011) 0.19 (0.018)
BART SV 2.33 (0.020) 5.24 (0.276) 165.10 (0.927) 0.19 (0.011) 0.20 (0.019)
mixBART SV 2.32 (0.020) 5.24 (0.284) 165.06 (0.870) 0.19 (0.011) 0.20 (0.018)
errorBART SV 2.22 (0.021) 4.83 (0.281) 166.67 (0.919) 0.18 (0.011) 0.20 (0.022)
fullBART SV 2.31 (0.019) 5.14 (0.294) 165.30 (0.938) 0.18 (0.011) 0.19 (0.018)
BART hBART 2.33 (0.020) 5.27 (0.279) 165.05 (0.919) 0.19 (0.011) 0.20 (0.018)
mixBART hBART 2.33 (0.021) 5.25 (0.302) 165.10 (1.037) 0.19 (0.011) 0.20 (0.018)
errorBART hBART 2.22 (0.020) 4.83 (0.288) 166.69 (0.936) 0.18 (0.011) 0.20 (0.020)
fullBART hBART 2.32 (0.021) 5.18 (0.291) 165.28 (0.950) 0.18 (0.010) 0.19 (0.018)

Note: Mean and standard error (in parentheses) over 50 replications of the DGPs.

Table A.6
tree diagnostics for the large constant parameter dgps

Terminal Nodes Splitting: Own Lags (%)

Model Mean No. Max. No. Max. Obs. Initial Other

BART homosk. 2.33 (0.009) 5.25 (0.124) 164.54 (0.364) 0.18 (0.005) 0.19 (0.008)
mixBART homosk. 2.34 (0.010) 5.26 (0.126) 164.54 (0.419) 0.18 (0.004) 0.19 (0.008)
errorBART homosk. 2.12 (0.010) 4.50 (0.117) 168.56 (0.468) 0.16 (0.005) 0.18 (0.011)
fullBART homosk. 2.32 (0.009) 5.18 (0.130) 164.52 (0.388) 0.16 (0.005) 0.17 (0.008)
BART SV 2.33 (0.009) 5.25 (0.140) 164.68 (0.409) 0.18 (0.005) 0.19 (0.008)
mixBART SV 2.33 (0.010) 5.24 (0.123) 164.68 (0.439) 0.18 (0.005) 0.18 (0.008)
errorBART SV 2.13 (0.010) 4.51 (0.109) 168.60 (0.496) 0.16 (0.005) 0.18 (0.009)
fullBART SV 2.32 (0.009) 5.19 (0.127) 164.67 (0.424) 0.16 (0.005) 0.17 (0.008)
BART hBART 2.34 (0.009) 5.28 (0.140) 164.37 (0.386) 0.18 (0.005) 0.18 (0.008)
mixBART hBART 2.34 (0.009) 5.27 (0.133) 164.30 (0.400) 0.18 (0.005) 0.18 (0.007)
errorBART hBART 2.12 (0.010) 4.49 (0.129) 168.74 (0.467) 0.16 (0.004) 0.18 (0.010)
fullBART hBART 2.33 (0.009) 5.22 (0.128) 164.62 (0.418) 0.16 (0.005) 0.17 (0.007)

Note: Mean and standard error (in parentheses) over 50 replications of the DGPs.
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tail forecasting with multivariate bayesian additive regression trees 1021

Figure A.4

posterior credible sets and true conditional mean function for model specifications across five runs of the
models for the small tvp dgp
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1022 clark et al.

Table A.7
tree diagnostics for the large tvp dgps

Terminal Nodes Splitting: Own Lags (%)

Model Mean No. Max. No. Max. Obs. Initial Other

BART homosk. 2.33 (0.010) 5.23 (0.127) 165.18 (0.432) 0.18 (0.005) 0.18 (0.008)
mixBART homosk. 2.33 (0.009) 5.23 (0.139) 165.17 (0.419) 0.17 (0.005) 0.19 (0.008)
errorBART homosk. 2.11 (0.010) 4.45 (0.111) 168.93 (0.459) 0.16 (0.005) 0.18 (0.010)
fullBART homosk. 2.32 (0.009) 5.16 (0.126) 165.16 (0.415) 0.16 (0.005) 0.17 (0.008)
BART SV 2.33 (0.010) 5.23 (0.127) 165.24 (0.432) 0.18 (0.005) 0.18 (0.008)
mixBART SV 2.33 (0.009) 5.23 (0.135) 165.30 (0.432) 0.17 (0.005) 0.18 (0.008)
errorBART SV 2.11 (0.010) 4.46 (0.119) 169.04 (0.456) 0.16 (0.004) 0.18 (0.011)
fullBART SV 2.32 (0.009) 5.18 (0.129) 165.22 (0.385) 0.16 (0.005) 0.17 (0.008)
BART hBART 2.34 (0.009) 5.25 (0.126) 164.96 (0.403) 0.18 (0.005) 0.18 (0.008)
mixBART hBART 2.34 (0.009) 5.26 (0.127) 164.92 (0.416) 0.18 (0.004) 0.18 (0.008)
errorBART hBART 2.11 (0.010) 4.44 (0.108) 169.14 (0.441) 0.16 (0.005) 0.18 (0.011)
fullBART hBART 2.33 (0.010) 5.21 (0.127) 165.20 (0.393) 0.16 (0.005) 0.17 (0.008)

Note: Mean and standard error (in parentheses) over 50 replications of the DGPs.
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