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Localized dynamics arising from multiple flat
bands in a decorated photonic Lieb lattice
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ABSTRACT
Photonic lattices have emerged as an ideal testbed for localizing light in space. Among others, the most promising approach is based on flat
band systems and their related nondiffracting compact localized states. So far, only compact localized states arising from a single flat band have
been found. Such states typically appear static, thus not allowing adaptive or evolutionary features of light localization. Here, we report on
the first experimental realization of an oscillating compact localized state arising frommultiple flat bands. We observe an oscillatory intensity
beating during propagation in a two-dimensional photonic decorated Lieb lattice. The photonic system is realized by direct femtosecond
laser writing and hosts most importantly multiple flat bands at different eigenenergies in its band structure. Our results open new avenues
for evolution dynamics in the up to now static phenomenon of light localization in periodic waveguide structures and extend the current
understanding of light localization in flat band systems.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0109840

Wave localization is a highly active area of research involv-
ing various disciplines of physics with its origin being the seminal
work of Anderson in 1957, where he describes the “Absence of Dif-
fusion in Certain Random Lattices.”1 Intriguingly, it has been shown
that periodic lattices with particular geometries also allow complete
localization of the wave function within a finite region.2–5 Such sys-
tems are distinguished by completely flat or dispersionless bands in
their band structure. A flat band implies the degeneracy of a macro-
scopic number of momentum eigenstates at the flat band energy.
In other words, the entire flat band has a vanishing wave group
velocity and describes single-particle states with an infinite effective
mass, which renders them effectively motionless. As a result of the
quenched kinetic energy, flat bands are considered to be ideal play-
grounds to study strongly correlated phenomena giving rise to exotic
states of matter. Directly related phenomena include the fractional
quantum Hall effect,6 topological insulation,7,8 Mott-like insula-
tion,9 superfluidity,10,11 and superconductivity.12,13 Systems with tai-
lored multiple flat bands are under intense discussion to realize the
long-sought dream of a room-temperature superconductor.11,14,15 A
remarkable feature of degenerated flat band eigenstates is that they
can be combined to obtain states that are strictly localized, mean-
ing that they have zero amplitude in real space due to destructive

interference at all but a few lattice sites. These states are known as
compact localized states (CLSs).

Distinct CLSs have been experimentally demonstrated in
a number of different systems,16 including metamaterials,17
Bose–Einstein condensates,18 polariton condensates,19 acoustic lat-
tices,20 and photonic lattices.3–5,21,22 The latter consist of evanes-
cently coupled waveguides and yield spatial nondiffracting flat band
states. Light propagation in photonic lattices is governed by a
Schrödinger-like paraxial wave equation, where the propagation
constant β takes the role of energy and the band structure can be
interpreted as a spatial diffraction relation.23 The temporal evolution
of an electronic wave function in an atomic potential is therefore
mapped onto the spatial evolution along the propagation direction
in the photonic lattice. CLSs, as the signature of flat bands, manifest
themselves through light localization, i.e., they propagate in the pho-
tonic lattice without diffraction. Most photonic realizations of CLSs
have focused on simple lattices hosting a single flat band, for exam-
ple, in the Lieb3,4 or kagome lattices.5 In these systems, it is possible
to linearly combine CLSs from the same flat band in order to obtain
dispersionless states of nearly arbitrary form. This mechanism has
been proposed for distortion-free image transmission.24,25 More
recently, lattices hosting multiple flat bands have been proposed in
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1D26,27 and 2D28–31 and the bands’ singularity and nonsingularity
have been studied.22 The presence of multiple flat bands in the band
structure of a single lattice system opens up a new research field, as
it allows the study of the wave dynamics of superimposed CLSs orig-
inating from flat bands at different eigenenergies. This leads to the
question of what to expect from such a superposition of spectrally
separated nondiffracting states and whether it is possible to observe
their behavior experimentally.

In this letter, we tackle this question and report, to the best
of our knowledge, on the first experimental observation of an
oscillating compact localized state (OCLS). The oscillation manifests
itself as a longitudinal intensity beating during propagation in the
two-dimensional photonic lattice. The light is localized inside a trap-
ping prison, while the amplitude distribution inside the prison is not
frozen and shows the oscillatory dynamics. The OCLS is constructed
from flat band states at different eigenenergies, with the energy
difference of the flat bands defining the spatial oscillation frequency.
This case is in stark contrast to the previously investigated funda-
mental CLS as well as to superpositions of CLSs originating from
the same flat band since they inherently display static diffractionless
propagation in a photonic lattice. The oscillation of OCLS allows
the observation of unusual evolution dynamics for the first time
compared to the otherwise static phenomenon of light localization.

Among the lattices hosting multiple flat bands, perhaps the
simplest one that only involves short-range hopping and does not
need staggered fluxes or periodic driving consists of an extension of
the Lieb lattice.32–34 The Lieb lattice is the 2D counterpart of the 3D
perovskite or edge-centered cubic lattice. Intriguingly, some high-
temperature superconductors exhibit a Lieb lattice structure in the
copper oxide planes of cuprates and the flat band has been hypoth-
esized to be the origin of their high critical temperature.12,35 The
Lieb lattice can be interpreted as a decoration of a standard square
lattice adding one lattice site between every corner. It is possible to
extend this decoration further by adding two lattice sites between
the existing ones of the square lattice. Having a total of five lattice
sites per unit cell, this structure is denoted as the Lieb-5 lattice and
is illustrated in Fig. 1(a). We label the respective lattice sites from A
to E. The double decoration leads to a shift in the flat band energy
compared to the simple Lieb lattice.36

By calculating the band structure following a tight-binding
model with only nearest neighbor coupling, in Fig. 1(b), two flat
bands are obtained. These are located at −t and +t, respectively,
where t is the nearest neighbor coupling strength. This intriguing sit-
uation raises the possibility of investigating particle–hole excitations
in the form of exotic heavy excitons.28

Each of these flat bands implies the existence of strictly
localized eigenstates at their respective propagation constants. The
CLSs of the Lieb-5 lattice are decorations of the four-site ring CLSs
of the conventional Lieb lattice. They fulfill the condition of destruc-
tive interference at the minority sublattice sites [sites labeled C in
Fig. 1(a)] by having the same amplitudes and crucially a π-phase
difference in the nearest neighboring majority sublattice sites. The
CLSs take the form of octagonal rings of lattice sites that are pair-
wise either in-phase or out-of-phase as shown in Figs. 2(a) and 2(b),
respectively.32

In the following, we experimentally demonstrate the diffrac-
tionless nature of the CLSs in a photonic waveguide-based realiza-
tion of the Lieb-5 lattice. These states are the precondition for the

FIG. 1. (a) Schematic of the Lieb-5 lattice, with the unit cell marked by dotted
red lines and with each individual lattice site labeled from A to E. (b) Band struc-
ture calculated using the tight-binding model. (c) Femtosecond direct laser writing
technique. (d) Micrograph of the fabricated lattice.

later demonstrated OCLS. We achieve this through the femtosecond
direct laser writing technique and fabricate an array of evanescently
coupled waveguides in fused silica. This flexible and versatile tech-
nique permits a realization of arbitrary lattice geometries and has
been employed to realize various flat band lattices.3,4,22,37 We fab-
ricate a Lieb-5 lattice with a flat edge termination composed of
156 waveguides. The front facet of the sample is shown in the
microscope image in Fig. 1(d). The length of each waveguide is 2 cm
in the direction of propagation z, with each inscribed waveguide
spaced at a separation distance of d = 22 μmwith respect to its near-
est neighbors. This separation distance is optimal as it minimizes
the next-nearest neighbor coupling, which is detrimental to the
flatness of the bands, however, still allows for sufficient nearest
neighbor coupling during propagation in the lattice.

We excite the flat band states using structured laser light
with a wavelength of λ = 532 nm coupled into the corresponding
waveguides. The appropriate amplitude and phase modulations cor-
responding to the CLSs are achieved using a spatial light modulator.
After propagation through the lattice, we image the output light
states at the back facet of the lattice and recover their respective
phase information by interfering them with a plane wave.38 In this
way, we verify that the flat band states propagate diffractionless in
the Lieb-5 lattice. When launching the CLS of the flat band at β = +t
into the lattice [see Fig. 2(c1)], the light remains localized at the
initially excited lattice sites during propagation [see Fig. 2(c2)]. To
evaluate the degree of localization quantitatively, we evaluate the
intensity of the propagated light at each lattice site. We find that 95%
of the total intensity remains localized in the initially excited wave-
guides. As shown in the insets representing the phase at the lattice
sites, highlighted by the white ellipses, the input phase relation lead-
ing to destructive interference at the corner sites is conserved. The
results for the CLS of the second flat band at β = −t are shown in
Fig. 2(d). The input field displayed in (d1) propagates in the lattice
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FIG. 2. Observation of diffractionless propagation of CLSs in the photonic Lieb-5 lattice. The scalebars correspond to 50 μm. (a) CLS of the flat band at β = +t. (b) CLS
of the flat band at β = −t. (c1) Experimentally measured intensities (the insets showing the corresponding phases) of light field corresponding to the CLS at β = +t. (c2)
Same as (c1), but after a propagation of 2 cm in the lattice. (d1) and (d2) Same as (c1) and (c2), but for the CLS at β = −t. (e1) and (e2) Same as (c1) and (c2), but for the
combination of three translated CLSs at β = +t. (f1) and (f2) Same as (c1) and (c2), but for the diffracting state having equal phase at all lattice sites as shown in the insets.

without diffracting (d2) as the phase difference of π is preserved. In
this case, 93% of the total intensity remains localized at the excited
lattice sites. To validate the nondiffracting nature, we implement a
light field with the same intensity but with a homogeneous phase
at all lattice sites [Fig. 2(f1)]. In this case, diffracting bands as well
as the flat bands are clearly excited. As a result, after propagation
in the lattice, the light field is no longer localized due to strong
diffraction caused by coupling to initially unexcited waveguides
[Fig. 2(f2)].

The linear superposition of CLSs from the same flat band allows
obtaining diffractionless states that can take arbitrary shapes, i.e., of
any desired image, with the smallest building block being the fun-
damental CLS. We illustrate the power of this approach using a
state with the shape of a heart [Fig. 2(e1)], which is formed by the
superposition of three spatially shifted CLSs from the flat band at
β = +t. The distortion-free image transmission after propagation in
the lattice is shown in [Fig. 2(e2)]. 94% of the total intensity remains
localized in the initially excited lattice sites. The inset shows that the
phase structure leading to destructive interference at all C lattice sites
is well preserved.

In a final visionary approach, we study the dynamics of super-
imposed CLSs originating from two different flat bands (Fig. 3). As
the flat bands are located at distinct propagation constants β, we
expect the superimposed states to form oscillating compact localized
states (OCLSs) with an angular frequency of Δβ = 2t in the prop-
agation direction z. In our experimental realization, we image the
back facet of the lattice and therefore the output light field after a
fixed propagation distance of z = 2 cm. To fully capture the spatial
dynamics of the OCLS, we virtually propagate the input field and
image the output for different inputs.39 As the propagation constants
of the CLSs are β = +t and β = −t, they will acquire a phase factor
of e±itz during propagation in the lattice, resulting in an intensity

beating in the propagation direction ∣e itz + e− itz∣2 ∼ cos2. Therefore,
as sketched in Fig. 3(a), we vary the phases of the two CLSs of the
input light field to achieve a virtual propagation. We then image the
output light fields, which reveal the oscillating behavior, as shown in
Fig. 3(b) (bottom row). Due to the real propagation of z = 2 cm in
the photonic lattice, additional phase factors of e±it⋅2 cm are acquired
by the two CLSs from which we estimate a difference between the
propagation constants of the flat bands of Δβ = 2t ≈ 1 cm−1. To
highlight the oscillations that occur, Fig. 3(c) shows the measured
intensity in the waveguides labeled D (light gray) and E (dark gray)
in Fig. 3(b) (bottom row) during the virtual propagation. The dot
markers show the experimental data, while the solid line shows
the expected cos2 function. The observed oscillations demonstrate
that diffractionless propagation of CLSs in photonic lattices is not
necessarily a static phenomenon but can be adaptively tailored to
exhibit dynamics by controlling the angular frequency via the band
structure.

In conclusion, we have experimentally demonstrated that
a photonic Lieb-5 lattice hosts multiple flat bands in its band
structure, significantly enriching the features of wave localization
therein. We could reveal the existence of OCLSs, which only exist
in multi-flat band systems. These states originate from flat bands at
different eigenenergies and propagate in the lattice without diffrac-
tion, while displaying a longitudinal oscillatory beating in intensity.
The oscillation frequency of the OCLS can be tuned by shifting the
flat band energies. In contrast, superimposing CLS from the same
flat band leads to static nondiffracting propagating states of any
desired shape. Our results significantly advance the experimental
realization of compact localization in multi-flat band systems and
bring an exciting new dynamic into the picture. They may provide
inspiration for extending studies of flat band physics to the unex-
plored scenario of multiple flat bands, which are the route to go for
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FIG. 3. Experimental results of the propagation dynamics of the OCLS. (a) The OCLS is formed by the linear superposition of CLSs from the two flat bands at β = ±t. By
varying the phase between the two CLSs by a factor of e±itz , different input states are obtained. This corresponds to a virtual propagation in the lattice. Transverse intensity
measurements of different input states are shown in (b) (top row). The corresponding output intensities, after a real propagation in the photonic lattice, are shown in (b)
(bottom row). Panel (c) displays the intensity guided by the waveguides labeled with D (light gray) and E (dark gray) in (b). The dot markers show the experimental data,
and the solid line shows the expected cos2 function.

room-temperature superconductivity.11,14,15 Diffractionless prop-
agation in photonic lattices lends itself toward applications in
distortion-free image transmission, which is significantly enriched
by the possibility of obtaining patterns that exhibit spatial dynamics
using the revealed OCLS.
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