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Abbreviations 

 

Ang II  angiotensin II 

ACEi  angiotensin converting enzyme inhibitor 

ARB  angiotensin receptor blocker 

BP  blood pressure 

CCB  calcium channel blocker 

DASH  Dietary Approaches to Stop Hypertension 

DBP  diastolic blood pressure 

ER  endoplasmic reticulum 

ET-1  endothelin-1 

IL  interleukin 

MAP  mitogen-activated protein kinase 

MR  Mineralocortioid receptor  

NO  Nitric oxide 

Nox  NADPH oxidase 

PVAT  perivascular adipose tissue  

RAAS  renin angiotensin aldosterone system 

ROS  reactive oxygen species 

SBP  systolic blood pressure 

TLR  toll-like receptor 

 

Glossay 

Angiotenin II a hormone that plays an important role in the 

development of hyperteson 

Arterial hypertension



 

3 
 

Hypertension    elevated blood pressure 

Oxidative stress Increased bioavailaibility of reactive oxgen species 

Primary hypertension High blood pressure when the cause is unknown 

Renovascular hypertension high blood pressure caused by the narrowing of 

arteries that supply the kidney  

Resistance arteries small arteries that contribute to peripheral 

resistance 

Secondary hypertension high blood pressure due to a known cause 
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Abstract 

Hypertension is a complex, multifactorial and multisystem disorder and a leading 

cause of morbidity and premature death globally. Major guidelines define it as systolic 

blood pressure >130 mmHg and/or diastolic blood pressure >80 mmHg. Hypertension 

is a very common disease with prevalence rates of about 30% in adults worldwide. 

The incidence of hypertension is age-related. At younger ages, hypertension is more 

prevalent in males than females, but this trend is reversed by age 65. Gender-related 

differences in hypertension may relate to cardiovascular effects of sex hormones. The 

underlying cause of the disease is identified in only ∼5% of patients (secondary 

hypertension), while in 95% of patients, no etiology is found (primary or essential 

hypertension). Multiple factors including genetics, environmental factors and 

interacting physiological systems contribute to the pathophysiology of hypertension. 

High blood pressure is a major preventable risk factor for heart failure, ischemic heart 

disease, chronic kidney disease, stroke and vascular dementia. The risk of 

hypertension-related complications and target organ admage increases as blood 

pressure increases. Hypertension is typically associated with vascular dysfunction, 

cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic 

nervous system. Growing evidence indicates that the immune system is also important 

and that activated immune cells promote inflammation, fibrosis, and target-organ 

damage. Common to these processes is oxidative stress, defined as an imbalance 

between oxidants and antioxidants in favour of the oxidants, which cause disruption 

of oxidation-reduction (redox) signalling and promotion of molecular and cell damage. 

This chapter provides a comprehensive review on hypertension and highlights some 

new concepts on molecular mechanisms and pathophysiological processes 
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underlying hypertension and approaches to diagnosing and managing hypertension in 

the clinic. 

1. Introduction 

Hypertension is a leading cause of premature death worldwide (1). It is a very common 

disease with prevalence rates from 20-40% of adults globally. The incidence of 

hypertension is age-related with rates of <10% at age 20 to >75% at age 75 (1-3). 

Although at younger ages, hypertension is marginally more prevalent in males, this 

trend is reversed by age 65 (2). High blood pressure remains a leading risk factor for 

death worldwide and is a key risk factor for older adults (4). It is associated with 

vascular complications, many of which are used in outcome measures in 

cerebrovascular disease, coronary artery disease, heart failure, chronic kidney 

disease, peripheral vascular disease, atrial fibrillation and dementia (4). 

The risk of hypertension-related complications increases at systolic blood 

pressures (SBP) of greater than ~115 mmHg and diastolic blood pressures (DBP) of 

greater than ~75 mmHg (5).  However, the cutoffs for initiation of pharmacological 

treatment of hypertension are dependent more on the concurrence of other 

cardiovascular risk factors/co-morbidities than on the blood pressure itself.  Thus, for 

those at the lowest risk (eg. young females with no other risk factors) the threshold for 

initiation of therapy is higher than those at high risk (eg. patients with pre-existing 

coronary artery disease, diabetes or age > 75) where the threshold for initiation of 

treatment is > 130 mmHg SBP (4,5). 

Primary hypertension (previously called “essential” hypertension) is the most 

common form of the disease accounting for more than 95% of cases (6).  

Pathophysiologicaly it involves dysregulation of multiple interconnected physiological 

systems including neural, anatomical, hemodynamic, endocrine, genetic and adaptive, 
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which are impacted by environmental factors (6-9). The cause of hypertension is 

known in only 5% of patients is the cause of hypertension known. This form of 

hypertension, termed secondary hypertension, is often reversible when the etiological 

factor is eradicated (8). Common causes of secondary hypertension include renal (eg. 

chronic kidney disease, polycystic kidney disease), endocrine (catecholamine, cortisol 

or aldosterone excess) and vascular disease (renovascular stenosis, aortic 

coarctation) or drugs (chronic non-steroidal anti-inflammatory drugs,  amphetamines, 

antidepressants,  oral contraceptives, anti-angiogenic drugs (VEGF inhibitors)) (10). 

Regardless of the etiology, hypertension is aggravated by a range of health 

behaviours including: dietary salt excess, sedentary lifestyle, excess alcohol 

consumption and dietary deficiencies including diets low in potassium.  Further, blood 

pressure is reduced by reversal of all of the factors as well as by consumption of a diet 

high in fruits and vegetables (11,12).  

The complex etiology of hypertension was best described by Irvine Paige in 

1949 in his ‘Mosaic Theory’ when he proposed that high blood pressure involves 

interplay between many elements including genetic, environmental, anatomic, 

adaptive, neural, endocrine, humoral and hemodynamics factors (13). Since then 

there has been enormous progress in discovering molecular and cellular processes 

that connect the numerous components underlying hypertension (figure 1). More 

recently the Paige Mosaic Theory has been revisited with additional factors being 

identified as major drivers coordinating diverse molecular, cellular and systems events 

in hypertension including new components of the renin angiotensin aldosterone 

system (RAAS), oxidative stress, inflammation and activation of the immune system 

(14-19). This chapter provides a comprehensive update on hypertension and 

highlights some new concepts on molecular mechanisms and pathophysiological 
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processes underlying hypertension and approaches to evaluating and managing 

hypertension in the clinic. We also provide an overview of hemodynamic and vascular 

factors critically involved in hypertension pathophysiology. 

2. Hemodynamics in hypertension 

The pathophysiology of hypertension, among other players, involves a multifaceted 

interplay between the heart and blood vessels. The role of the vascular system is to 

deliver blood to the tissues, and this flow is defined by the pumping actions of the 

heart, which means that an increase in cardiac output, an increase in total peripheral 

vascular resistance, or a combination of both cause a rise in blood pressure (20-22). 

Cardiac output is a result of left ventricular pump function, whereas peripheral vascular 

resistance is controlled, in large part, by small arteries and arterioles. Changes in small 

vessel diameter, due to functional, structural and/or mechanical alterations, affect flow 

and vascular resistance (22,23). Chronic exposure to increased peripheral vascular 

resistance and increased afterload in the left ventricle are associated with ventricular 

hypertrophy in hypertension. Rarefaction and remodelling of intramyocardial coronary 

artery, and left ventricular diastolic dysfunction further contribute to impaired tissue 

perfusion and susceptibility to ischemia during high oxygen demand (22). These 

hemodynamic changes, when persistent, cause impairment in target organs through 

sustained endothelial dysfunction and vasoconstriction (24-27).  

2.1. Resistance arteries and peripheral vascular resistance in 

hypertension 

Resistance arteries play a key role in the control of total peripheral vascular resistance 

in hypertension. Around 45% to 50% of total vascular peripheral resistance is 

modulated by small arteries (lumen diameter <350 μm) and arterioles (lumen diameter 

<100 μm), whereas capillaries (≈7 μm lumen diameter) are accountable for 23–30% 
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(28-30). Alterations in all vessel layers, from the endothelium to the perivascular 

adipose tissue (PVAT), have been demonstrated (31,32). While endothelial and 

smooth muscle cell dysfunction are the hallmark of vascular changes in hypertension, 

other cell types within the vasculature, such as perivascular adipocytes, immune cells, 

fibroblasts and pericytes are also important (31-34).  

2.2. Small vessel dysfunction and remodeling  

Vasoconstriction, endothelial dysfunction, eutrophic and/or hypertrophic remodelling, 

alterations in vascular distensibility, and rarefaction characterize small resistance 

arteries in patients with essential hypertension (28-30,35).  Blood pressure elevation 

causes an increased load by enhancing vessel wall tension, leading to increased wall 

stress. To compensate for increased wall stress, an increase in wall thickness or a 

reduction in lumen diameter, or both, occur. This vascular remodelling is crucial to 

increased peripheral resistance, which impacts development and sequelae of 

hypertension. In general, medial hypertrophy associated with hypertension is due to 

vascular smooth muscle cell  hypertrophy (volume increase) and/or hyperplasia (cell 

proliferation). Inward eutrophic remodelling, mostly observed in patients with primary 

(essential) hypertension, is characterized by increased media thickness and media-

to-lumen ratio, reduced lumen and external diameter and unchanged media cross-

sectional area. Inward growth may be associated with peripheral apoptosis, 

contributing to eutrophic remodelling (36). Chronic vasoconstriction may also result in 

inward remodelling where remodling of the extracellular matrix and re-arrangement of 

vascular smooth muscle cells leads to a small lumen (36). Patients with secondary 

hypertension commonly exhibit hypertrophic remodelling, with marked contribution of 

cell growth, including VSMCs hypertrophy or hyperplasia (37,38).  
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The initial adaptative remodelling ultimately becomes nonadaptive and 

compromises organ function, leading to target organ damage. Endothelial dysfunction, 

rarefaction, fibrosis and inflammation are important processes that underlie small 

vessel dysfunction and remodeling and are influenced by many factors including 

activation of the RAAS, oxidative stress and activation of immune cells (35-38).  

 

3. The renin angiotensin aldosterone system and angiotensin-derived 

peptides in hypertension 

The RAAS is a multiorgan peptidergic system where initially angiotensinogen (AGT) 

is formed in the liver, released to the circulation, and cleaved to angiotensin I (Ang I) 

by renin; a protease synthesized and released by the kidneys (19). Ang I undergoes 

cleavage by angiotensin-converting enzyme (ACE), a zinc metalloproteinase 

expressed in endothelial and epithelial cells in the lungs, kidneys, and vasculature to 

generate Ang II (39-41). Ang II plays an important role in blood pressure regulation 

through cellular effects mediated by binding to the Ang II type 1 receptor (AT1R) 

leading to coupling of G proteins and activation of myriad signalling pathways that 

regulate cardiac and vascular contraction, inflammation and fibrosis (40,41). Major 

molecular systems activated by Ang II/AT1R include mitogen-activated protein 

kinases (MAPK), Rho kinase, PI3K, Akt, PKC, growth factor receptors, calcium 

channels, reactive oxygen species production (ROS), immune cell responses and 

cytokine production (40,41). These injurious actions of Ang II/AT1R are counteracted 

by the Ang II type 2 receptor (AT2R), where promotes vasodilation and anti-

inflammatory/fibrotic effects, processes that are downregulated in hypertension 

(42,43).   

3.1. Novel angiotensin-derived peptides 
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Ang II is not the only product of the RAAS, as other peptidases (aminopeptidases, 

carboxypeptidases, and endopeptidases) can further cleave AGT, Ang I and Ang II to 

generate Ang(1-12), Ang(1-9), Ang(1-7), Ang III and Ang IV (44).  All these angiotensin 

peptides have physiological and pathological effects in the cardiovascular system and 

influence blood pressure control.  Ang(1-12) levels are increased in hypertension and 

contributes to circulating Ang II via an alternative chymase-dependent pathway (45), 

while Ang III induces vasopressin expression contributing to blood pressure increase 

(46). Transgenic animals that chronically release Ang IV are hypertensive and 

treatment with AT1R blockers decrease blood pressure in these animals. In addition, 

in AT1R-expressing CHO cells, low concentrations of Ang IV increase calcium 

mobilization (47). Some of these additional axes of the RAAS have protective effects 

in the cardiovascular system and are mainly related to the degradation of Ang I or Ang 

II by ACE2, a homologue of ACE, producing Ang(1-9) and Ang(1-7) (48,49).  ACE2 is 

not the only enzyme capable of generating Ang(1-7). Peptidases such as THOP1 

(thimet oligopeptidase), PEP (prolyl oligopeptidase) and NEP (neutral endopeptidase) 

produce Ang(1-7) from Ang I, while carboxypeptidase A and prolyl carboxypeptidase 

(PCP) use Ang II as their substrate (49). 

Ang-(1-7) and Ang-(1-9) are vasoprotective. Overexpression of Ang(1-7)-

producing fusion protein in DOCA-salt rats attenuated hypertension and protected 

against cardiac dysfunction and fibrosis (51). Acting predominantly via the Mas1 

receptor, Ang(1-7) induces vasodilation via nitric oxide (NO) production in endothelial 

cells, and downregulates inflammation, proliferation, and fibrosis in the cardiovascular 

system (52).  Ang(1-9) is protective against cardiomyocyte death and reduces infarct 

size through Akt activation in an AT2R-dependent manner (53,54).  It also reduced 
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apoptosis and inflammation in an experimental model of pulmonary arterial 

hypertension via AT2R activation (55). 

3.2. Aldosterone 

Hyperaldosteronism is a common cause for secondary hypertension and is prevalent 

in resistant hypertension (56,57).  Aldosterone is produced by cells in the zona 

glomerulosa of the adrenal gland in response to Ang II and when plasma potassium 

levels are reduced. Aldosterone binds to the mineralocorticoid receptor (MR), 

expressed in multiple tissues such as the heart, vessels, kidney, and brain, and cells 

responsible for blood pressure control such as endothelial, vascular smooth muscle, 

renal and immune cells (59).  Aldosterone acting via the MR regulates ion transport, 

where it augments Na+ reabsorption while increasing K+ and H+ excretion, via 

upregulation of the pump Na+K+-ATPase and the channel ENaC, which in turn 

increases blood pressure (60,61). In SHRSP rats, a genetic model of hypertension, 

plasma aldosterone levels are increased followed by vascular dysfunction and fibrosis, 

while aldosterone signaling in vascular smooth muscle cells from the same model was 

exacerbated and due to MR-dependent activation of p66Shc and Nox1-derived ROS 

generation (61). In vascular cells, aldosterone rapidly increases intracellular calcium 

and activates signalling proteins critically involved in hypertension and organ damage, 

such as MAPKs, EGFR, PKC and c-Src (60-62).  

4. Sex hormones and hypertension 

Hypertension is a disease where sex differences are evident, suggesting a role for sex 

hormones, such as estrogen (17β-estradiol) and testosterone in the regulation of blood 

pressure. Estrogen receptors are expressed in endothelial and vascular smooth 

muscle cells and modulate vascular tone via genomic processes through activation of 

nuclear receptors (ERα, ERβ), and by non-genomic mechanisms, by activation of 
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membrane-bound receptors (ERα, Erβ, GPER), leading to activation of signalling 

pathways associated with NO production and vasodilation (63). By activating ERα, 

estrogen modulates components of the RAAS, where studies demonstrated that the 

lack of ERα exacerbates Ang II-induced hypertension (64) and estrogen is capable of 

increasing ACE2 activity and Ang(1-7) production (65). The estrogen receptor ERβ 

has also been associated with anti-hypertensive effects. ERβ deficiency leads to 

dysfunctional cation channel activity and hypertension and, in SHR rats, activation of 

ERβ receptors decreases blood pressure (66,67). Although estrogen is considered to 

have protective effects in the maintenance of blood pressure, changes in estrogen 

metabolism may generate deleterious metabolites that play an important role in the 

development of some forms of hypertension. In pulmonary arterial hypertension 

(PAH), dysregulation of estrogen metabolism towards to the metabolite 16α-

hydroxyestrone increased ROS production, protein tyrosine phosphatase oxidation 

and downregulation of Nrf2 and expression of associated antioxidant enzymes leading 

to pulmonary vascular smooth muscle cell proliferation (68).  

Androgens, like testosterone and its metabolite 5α-dihydrotestosterone (DHT), 

also regulate processes important in blood pressure maintenance by activating the 

androgen receptor leading to transcription factor function or signalling activation 

independent of DNA-binding actions. Androgen receptors are expressed in cells of the 

cardiovascular system such as cardiomyocytes, endothelial cell, VSMCs, fibroblasts 

and immune cells (69). Due to sex differences in hypertension, where males exhibit 

higher blood pressure values than premenopausal females, it was assumed that 

testosterone plays a deleterious role in the cardiovascular system. Studies have 

demonstrated that androgens are involved with blood pressure increase, sodium and 

water retention and ROS generation (70). Testosterone regulates RAAS components, 
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where it increases renin levels and expression of ACE or AT1R (71). In the New 

Zealand rat model of hypertension, testosterone increased Ang II-induced vascular 

dysfunction (72), while in androgen receptor knockout mice (ARKO) treated with Ang 

II, cardiac hypertrophy and fibrosis are decreased due to less ERK1/2 and ERK5 

activation and improved left ventricle function (73).   

Unlike pre-clinical studies, human studies have demonstrated a protective role 

for testosterone in the cardiovascular system. This may relate to relative 

concentrations of testosterone. Low levels of testosterone are associated with 

endothelial dysfunction while increased levels may be vasoprotective (74). Molecular 

mechanisms associated with testosterone vascular protective effects, and possible 

anti-hypertensive actions, involve reduction in calcium influx, production of 

endothelium-derived relaxing factors such as hydrogen sulphide and NO, reduced 

ROS generation and anti-calcification actions (75).  

5. Oxidative stress and hypertension 

ROS are key mediators of cell signalling involved in several cellular events, such as 

contraction, relaxation, proliferation, migration, differentiation, extracellular matrix 

deposition and inflammation. However, increased ROS generation and/or impaired 

antioxidant capacity results in oxidative stress, which is associated with dysregulated 

redox signalling, protein, lipid, and DNA damage, inflammation and ultimately cell 

injury (76). Oxidative stress, which is induced by Ang II, is a central process involved 

in the pathophysiology of hypertension in many systems such as the vasculature, 

kidneys, heart, and brain (77).  

5.1. Generation of ROS in hypertension 

Several sources of ROS are upregulated in experimental models of hypertension and 

in hypertensive patients, including the Nox enzymes (7 isoforms), endoplasmic 
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reticular (ER) stress and mitochondrial oxidases (figure 2). Of these Noxs are most 

important ROS-generating oxidases in the cardiovascular system. Upregulation of 

Nox1, Nox2 and Nox4 have been demonstrated in almost all experimental models of 

hypertension (77,78). Genetic deletion of Nox1 in mice resulted in reduced vascular 

ROS (79), while Nox1 overexpression exacerbated Ang II-induced increase in blood 

pressure and vascular hypertrophy (80). Vascular Nox2 is implicated in 

vasoconstriction and vascular inflammation (81), while fibroblast Nox2 plays an 

important role in vascular fibrosis and remodelling (81). Nox4 is one of the main 

isoforms in the kidney and seems to be important in salt-sensitive hypertension. In this 

model of hypertension, Nox4 was implicated in renal oxidative stress and injury as well 

as vascular dysfunction and hypertension (82). Nox5 is also implicated in hypertension 

as blood pressure is increased in mice expressing Nox5 in kidney cells (83) and mice 

expressing Nox5 in vascular smooth muscle cells display vascular dysfunction and 

hyperreactivity (84). In cardiomyocyte-expressing Nox5 mice cardiac dysfunction and 

myocardial hypertrophy are amplified with cardiac overload (85).  Furthermore, high 

levels of Nox5 were detected in vascular smooth muscle cells and in renal proximal 

tubule cells from hypertensive patients (86,87).   

Another source of ROS that has been implicated in experimental hypertension 

is endoplasmic reticular (ER) stress. Upregulation of ER stress markers was observed 

in aorta, mesenteric arteries, heart and brain in hypertensive rats (88,89). Treatment 

with ER stress inhibitors, 4-PBA and TUDCA, reduced blood pressure and improved 

vascular function in experimental hypertension (90). ROS generation is induced by ER 

stress, and we showed important interplay between Nox-derived ROS and ER stress 

response, where ER stress-regulated Nox-ROS induced vascular dysfunction in 

VSMC from hypertensive rats (91). 
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Increased mitochondrial ROS also plays a role in the pathophysiology of 

hypertension. Treatment with antioxidants targeted to the mitochondria were 

demonstrated to reduce blood pressure in experimental hypertension (92). In 

hypertension, mitochondrial oxidative stress is associated with decreased activity of 

antioxidant systems, such as SOD2 (93). Downregulation of the mitochondrial 

deacetylase SIRT3 that activates SOD2 is associated with high levels of mitochondrial 

ROS in hypertension. Genetic manipulation of SIRT3 in animal models showed that 

SIRT3 silencing exacerbates, while SIRT3 overexpression protects, animals against 

Ang II-induced hypertension, supporting the importance of mitochondrial ROS in 

hypertension (93). 

 

5.2. Oxidative stress and cardiovascular function in hypertension 

In the cardiovascular and renal systems oxidative stress is associated with remodelling 

and inflammation (94-96) (figure 3). Increased ROS generation causes inactivation of 

phosphatase and sustained activation of kinases, such as c-Src, ERK1/2 and p38 

MAPK involved in cardiovascular hypertrophy and inflammation (97). In addition, ROS 

activate Ca2+ channels, transcription factors and cytoskeletal proteins leading to 

altered contraction, migration, apoptosis and rearrangement of the cytoskeleton 

(97,98). Increased ROS generation in the kidney is associated with vascular and 

tubular dysfunction in hypertension. Renal oxidative stress is also implicated in 

activation of renal afferent nerves, renin release, renal vasoconstriction, dysregulation 

of Na+ and H2O homeostasis, glomerular cell dysfunction and proteinuria (99).  

Another key redox-regulated mechanism involved in cardiovascular dysfunction 

associated with hypertension is endothelial dysfunction. Increased generation of 

superoxide anion (O2-) quenches NO, an important endothelial-derived vasodilator 
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leading to impaired vasorelaxation (94-99). This reaction results in generation of 

peroxynitrite (ONOO-), a highly reactive nitrogen species involved in protein oxidation 

and cell damage (100). One of the targets of ONOO- is tetrahydrobiopterin (BH4), an 

important endothelial nitric oxide synthase (eNOS) cofactor, that upon oxidation is 

inactivated further aggravating vascular dysfunction (101). ROS are also involved in 

endothelial cell activation and recruitment of immune cells to the vascular wall in 

experimental and human hypertension (102,103).  

In addition to peripheral systems, oxidative stress in the central nervous system 

seems to be important in the pathogenesis of hypertension. ROS plays an important 

role in sympathetic activation in the subfornical organ, leading to increase in blood 

pressure (104). Additionally, Ang II-induced hypertension involves increased Nox 

derived ROS generation in the brain (104,105). Administration of SOD to the 

subfornical organ prevents Ang II-induced increase in blood pressure supporting the 

role of oxidative stress in the brain in the development of hypertension. 

6. Inflammation and the immune system in hypertension  

Oxidative stress and activation of inflammatory processes are hallmarks of 

cardiovascular damage in experimental and clinical hypertension. Endothelial cells are 

regulators of the vascular inflammatory response and are the barriers between the 

vascular space and tissues. Vascular inflammation is triggered by increased 

expression of endothelial cell adhesion molecules such as P-selectin and E-selectin, 

and expression of leukocyte-derived ligands including P-selectin ligand-1 (PSGL-1) 

(106). Leukocyte:endothelial cell interaction facilitates rolling and transmigration of 

circulating leucocytes to the subendothelial space and vascular media, where they 

induce an inflammatory response by stimulating local production of cytokines and 

chemokines (107) (figure 4). Endothelial inflammation is also associated with reduced 
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eNOS activation, decreased production of the vasodilator NO, increased generation 

of O2- and formation of ONOO-, processes that promote oxidative stress and 

proinflammatory signalling (108).  

Vascular inflammation in hypertension is defined as a low-grade, sub-clinical, 

chronic event that involves toll-like receptors (TLR) of which there are 10 subtypes 

(TLR1-10) (109,110). TLR activation induces a potent pro-inflammatory intracellular 

cascade that involves MyD88 (myeloid differentiation primary response protein 88) or 

TRIF (Toll/interleukin-1 receptor domain-containing adaptor protein interferon-β) 

(110). Both pathways induce activation of NFkB (nuclear factor kappa-light-chain-

enhancer of activated B cells) and consequent production of pro-inflammatory 

mediators (TNFα (tumor necrosis factor alpha), IL-6 (interleukin 6)], chemokines 

(MCP-1 (Monocyte chemoattractant protein-1) , IL-8)). Experimental models indicate 

that TLR4 and TLR9 are especially important in vascular inflammation in hypertension 

(111,112).   

Inflammasomes are important players of the innate immune system. There are 

several types of inflammasomes, including NLRP3 (nucleotide-binding and 

oligomerization domain-like receptor family pyrin domain-containing 3), NLRC4 (NLR 

family CARD domain-containing protein 4), NLRP6, NLRP9, pyrin, and AIM-2 (absent 

in melanoma 2) (113). In hypertension, NALP3 is the most studied member of the 

family. It is expressed in vascular cells and its activation drives the formation of the 

inflammasome complex that promotes production of pro-inflammatory cytokines IL-1β 

and IL-18. Activation of the inflammasome pathway has been observed in 

experimental models of hypertension, such as Ang II- and aldosterone-salt induced 

hypertension, DOCA-salt hypertension and pulmonary arterial hypertension, and is 

associated with endothelial dysfunction, vascular remodelling, and target organ 
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damage (114,115). Genetic studied demonstrated that individuals carrying 

polymorphisms in the NLRP3 gene exhibit elevated blood pressure (116).     

    

6.1. Cytokines and inflammatory profile in hypertension  

Experimental models of hypertension exhibit increased production of IL1β, IL-6, IL-11 

and TNFα. Clinical studies demonstrated that high levels of IL-6 and C-reactive protein 

(CRP) are associated with increased risk for hypertension. In patients with rheumatoid 

arthritis, infusion with infliximab, a TNFα inhibitor reduced blood pressure (117,118).  

In experimental models of hypertension TNFα-deficiency attenuated vascular and 

renal injury (119).  Disruption of TNFα signaling using Etanercep, which blocks effects 

of the free cytokine, prevented Ang II-induced hypertension and ROS production in 

mice (120).  Endothelial dysfunction in human placental vessels induced by TNFα was 

reduced by treatment with aspirin, indicating the upstream effects of cyclooxygenases 

in this pathway (121).  

IL-1β is a potent cytokine produced by inflammasome activation and interacts 

with IL-1R1 and a decoy receptor IL-1R2. While pre-clinical studies suggest that IL-1β 

may be an attractive therapeutic target in hypertension, data from clinical studies are 

less convincing. CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes 

Study), a randomized, double-blind trial involving more than 10 000 patients with low-

grade chronic inflammation, demonstrated significantly reduced major adverse 

cardiovascular event rates by targeting the IL-1β, but without beneficial effects on 

blood pressure (122). A smaller study in 146 patients demonstrated that IL-1 

antagonism decreased blood pressure and increased vasodilation and Ang(1-7) 

production (123). Further clinical studies are needed to better understand the 

therapeutic targeting of IL-1β in hypertension.  
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6.2. Immune cells and cardiovascular damage in hypertension.  

 Neutrophils, monocytes/macrophages and dendritic are professional phagocytes and 

important effector cells of the innate immune system. Neutrophils are the most 

abundant innate immune cells present in the circulation and release pro-inflammatory 

and pro-oxidant mediators which cause tissue injury. Experimental neutrophil 

depletion reduced blood pressure and vessel constriction (124).  

Monocytes and macrophages. These are highly plastic cells. In the presence of 

inflammatory stimuli these cells acquire a pro-inflammatory phenotype and contribute 

to endothelial cell damage (125). In response to Ang II and aldosterone, macrophages 

produce ROS and pro-inflammatory cytokines including MCP-1, a potent monocyte-

attracting chemokine. Macrophage deficiency by genetic mutation or pharmacologic 

treatment reduced blood pressure and prevented vascular dysfunction, arterial 

hypertrophy, and oxidative stress in various models of experiemntal hypertension 

(126,127).  

Dendritic cells. Dendritic cells (DCs) are considered professional antigen presenting 

cells and are at the interface of the innate and adaptive immunity. The main function 

of DCs is to present antigens to T cells to initiate and regulate the adaptive immune 

response. The importance of DCs in cardiovascular homeostasis was observed in 

experimental models of cardiovascular and renal damage induced by aldosterone and 

salt (128,129). Ablation of DCs prevented blood pressure elevation, fibrosis and 

inflammation by reducing production of NGAL (neutrophil gelatinase-associated 

lipocalin) (129). During hypertension development “neoantigens” are formed as a 

result of ROS production that induce lipid oxidation and formation of gamma 

ketoaldehydes or isoketals. Isoketals rapidly ligate to protein lysines in the dendritic 
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cells, forming neoantigens that are presented to T cells leading to their 

activation/proliferation and cardiovascular damage (130).   

Lymphocytes. Activation of T lymphocytes initiate the adaptive immune response 

following antigen presentation from antigen presenting cells in secondary lymphoid 

tissues. After activation, T lymphocytes proliferate and differentiate into effector cells.  

Main populations of T lymphocytes are CD4+ or T helper cells and CD8+ or cytotoxic 

T cells. Experimental models of hypertension that are deficient in B and T lymphocytes 

exhibited reduced blood pressure (131). In these models, increased blood pressure 

was restored after adoptive transfer of T lymphocytes, but not B lymphocytes, thus 

confirming the pathogenic role of T lymphocytes in hypertension (132).  T-lymphocytes 

express functional receptors for Ang II and AT1R deletion in these cells is associated 

with reduced blood pressure by mechanisms dependent on ROS production. In 

models of salt-sensitive hypertension, Th17 and Th1 through the production of IL17A 

or IFNγ respectively, seems to be responsible for upregulating renal sodium channels, 

including sodium hydrogen exchanger 3 (NHE), Na-K-2Cl-cotransporter (NKCC2), 

sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC), which 

may induce sodium retention (133,134). Renal accumulation of CD8+ T lymphocytes 

is a major source of IFNγ and cytotoxic components in kidney inflammation in 

hypertension (135). 

Regulatory T cell (Treg) have immunosuppressant and tolerogenic characteristics 

and different from CD4+ Th1 or Th17 and CD8+ T cells, they regulate the immune 

response and avoid aberrant activation mainly by the production of the anti-

inflammatory and tolerogenic cytokine IL-10 (135,136). In animal models, adoptive 

transfer of Treg lowered blood pressure and ameliorated the cardiovascular and renal 

injury (136).  
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6.3. Immune cell activation and vascular inflammation 

Immune cells express TLRs, C-type lectin receptors (CLR), RLRs (retinoic acid-

inducible gene I -like receptors), NLRs (nucleotide-binding domain, leucine-rich 

repeat-containing protein receptors) and CD36 (137). Moreover, they express 

receptors for Ang II, aldosterone and ET-1. Activation of these receptors trigger a 

complex signalling cascade that ultimately activate different transcription factors 

including NFκB, AP-1, Elk-1 (ETS domain-containing protein-1), ATF2  (activating 

transcription factor 2), the phosphoprotein p53 and members of the IRF (interferon-

regulatory factor) family (138,139). Activation of these pathways amplify low-grade 

inflammatory responses and oxidative stress, leading to organ damage.  

7. The kidney, salt and hypertension  

The kidney plays an important role in arterial blood pressure control in large part via 

regulation of salt and water excretion and control of peripheral vascular tone. Kidney 

dysfunction is both a cause and consequence of elevated blood pressure (140).  

Hypertension is a major risk factor for chronic kidney disease (CKD) and end stage 

renal disease (ESRD) and is the primary diagnosis in many patients on dialysis 

(140,141). Pre-clinical studies demonstrated that kidney transplantation from 

normotensive rats reduces blood pressure in hypertensive animals (143) and in 

humans, the prevalence of hypertension increases to more than 75% in patients with 

a low glomerular filtration rate (GFR) (<30 ml/min/1.73 m2). The kidneys play a pivotal 

role in blood pressure control through several mechanisms including, control of sodium 

and water balance, neurohormonal factors such as RAAS and ET-1 and glomerular 

filtration. 

7.1. Control of sodium and water balance 

Arterial hypertension



 

22 
 

Physiologically, an increase in BP leads to increase in sodium and water excretion, 

with reduction in the volume of extracellular fluid and a consequent drop in blood 

pressure. This phenomenon,  called pressure natriuresis, is a major homeostatic factor 

that normally controls blood pressure (143). Impaired pressure diuresis, related to high 

salt intake and fluid retention contributes to hypertension, especially in salt-sensitive 

individuals (143,144). 

Pressure natriuresis is regulated by multiple factors, including the RAAS, which 

has an important role in peripheral vasoconstriction. As a compensatory mechanism, 

an increase in BP causes inhibition of the RAAS, leading to reduced vascular 

contractility of afferent arterioles, and consequent reduction in solute reabsorption in 

the proximal and distal tubules. On the order hand, activation of the RAAS increases 

proximal tubular sodium reabsorption, which reduces GFR and increases total 

vascular resistance (145,146).  

7.2. Salt-sensitive hypertension 

Several animal and human studies have demonstrated a direct association between 

increased salt intake and increased risk for hypertension (147-149), which in turn, 

predisposes to development of CKD (150,151). For most individuals, the kidney 

adapts rapidly to an increase in salt intake, with a transient rise in arterial pressure. In 

some individuals, salt intake causes a disproportionate rise in blood pressure (at least 

a 10% increase in mean arterial pressure (152).  These individuals, defined as salt-

sensitive, are especially encouraged to reduce their dietary salt intake for effective 

blood pressure control (153). Mechanisms underlying salt-sensitivity remain unclear 

although increased sodium reabsorption may be important since salt-sensitive 

hypertensive individuals have higher proximal tubular sodium reabsorption. In addition 

sodium reabsorption is increased in African Americans, who are prone to salt-sensitive 
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hypertension, via upregulation of the Na, K, 2Cl cotransporter (NKCC2) in the 

ascending limb (154,155).  

7.3. Glomerular function and hypertension 

Hypertension causes sclerosis of the glomeruli, which has a negative impact on kidney 

function largely due to a decrease in nephron number. As a compensatory 

mechanism, there is an increase in glomerular filtration in undamaged glomeruli. 

Hyperfiltration is associated with a faster decline in renal function.  In humans, excess 

salt intake results in pressure and volume overload of the kidney, and the resulting 

glomerular hypertension accelerates the decline in glomerular filtration rate (GFR) 

(156,157). Reduction in GFR activates receptors in the macula densa to signal cells 

of the juxtaglomerular apparatus to secrete renin, which promotes an increase in 

production of angiotensin II (Ang II) and aldosterone important in the pathophysiology 

of hypertension (158,159). 

 

7.4. The RAAS and endothelin-1 in the kidney 

In the kidney, upregulation of the RAAS leads to Ang II-induced vasoconstriction and 

impaired natriuresis, while hyperaldosteronism causes an increase in tubular sodium 

and water reabsorption, with consequent blood pressure elevation (160,161). 

Activation of the endothelin (ET-1) system, through ETA and ETB receptors, may also 

be important in kidney function and blood pressure regulation. ET-1-induced activation 

of renal ETA receptors causes vasoconstrication and enhances sodium reabsorption, 

while activation of ETB receptors inhibits sodium reabsorption in the collecting ducts 

suggesting a protective effect of ETB receptor in kidney function. This is corroborated 

in vivo, where ETB receptor knockout mice develop salt retention and severe 

hypertension, an effect not observed in ETA-knockout mice (162,163).  In humans with 
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chronic renal failure, the ETA receptor antagonist BQ-123 is effective in lowering blood 

pressure, an effect that is dependent on increased renal blood flow and urinary sodium 

excretion (164). 

 

7.5. Hypertension and chronic kidney disease 

Not only do the kidneys play an important role in regulating blood pressure, but they 

are a target organ of damage of hypertension (165). Mechanisms underlying 

hypertension-associated CKD remains elusive but may involve endothelial 

dysfunction. The endothelium is involved in the regulation of important biological 

mechanisms, including angiogenesis, inflammatory responses, immunity, and 

vascular tone and permeability. High dietary salt intake leads to endothelial 

dysfunction, an effect observed in an early stage of CKD and potentiated as the 

disease progresses toward ESRD (166,167).  

 Several mechanisms contribute to endothelial dysfunction in CKD patients, 

including increased levels of proinflammatory cytokines, advanced glycation end-

products (AGEs), oxidative stress, increased activation of NF-κΒ pathway and low 

vitamin D (168). In CKD patients, excessive oxidative stress, and chronic inflammation 

increase the production of AGEs, which in turn promotes CKD-related endothelial 

dysfunction. Soluble AGE (sRAGE) is a biomarker of inflammation, oxidative stress, 

and heart failure (169). Via binding to AGE, sRAGE receptor prevents AGEs activation 

of membrane-RAGE and RAGE-related endothelial dysfunction. Increased levels of 

sRAGE are observed in CKD patients, which may reflect an exacerbated level of 

AGEs. In addition to their known role as proinflammatory agents, AGEs increase the 

expression of FGF-23, a key molecule that impairs endothelium-dependent 

vasorelaxation by increasing superoxide levels and reducing NO bioavailability (170).  
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8. The autonomic nervous system and blood pressure control 

It is now clear that neurogenic activation influences blood pressure regulation. 

Neurogenic hypertension is defined as dysegulation of autonomic nervous system 

(ANS) regulatory systems such as overactivation of sympathetic nerves, loss of 

parasympathetic and baroreflex homeostasis, excessive cerebral Ang II production, 

and increased neural ROS generation leading to increased blood pressure (171). The 

ANS includes the peripheral nervous system (PNS), and comprises two distinct 

divisions of the the sympathetic nervous system (SNS) and, the parasympathetic 

nervous system (PSNS), which together function to regulate the cardiovascular 

demands of peripheral tissues such as the heart, kidney, and lungs. The system is 

regulated by the neuronal networks of the central nervous systems (CNS), most 

notably the subfornical organ (SFO), hypothalamus paraventricular nucleus (PVN), 

nucleus tractus solitarius, and rostral ventral lateral medulla (RVLM), as well as the 

caudal ventrolateral medulla (CVM) (172,173). The SNS and PSNS influence 

cardiovascular function via cardiac and vascular sympathetic nerves, the 

hypothalamic-pituitary-gland axis (HPA), sympathetic juxtaglomerular cell stimulation 

and activation of the RAAS. Abnormal function of these systems contribute to 

hypertension pathology.  

8.1. The ANS in hypertension pathology 

Although the factors that drive ANS dysfunction that lead to hypertension are not fully 

understood, many pathophysiological mechanisms are involved including the RAAS 

and networking with the kidney. The brain is highly sensitive to Ang II, especially in 

regions of the forebrain that lack the blood-brain-barrier, where it induces alterations 

in neuronal membrane potential and overactivation of neuronal action potential and 

neuronal firing, particularly in circumventricular organs (CVO) such as the SFO, PVN, 
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and RVLM (174,175). Increased neuronal firing in these circumventricular pathways 

leads to increases in neurotransmission of arginine vasopressin (AVP) and 

corticotrophin-releasing hormones (CRH) and overactivation of SNS, consequently 

leading to increases in blood pressure (175,176). Furthermore, chronic levels of 

circulatory and brain-derived Ang II activate neuromodulatory pathways that enhance 

the AT1R activation through epithelial sodium channels. As such, stimulus of sodium-

sensitive sites in the CNS can cause further excitation of the SNS, which contribute to 

neurogenic hypertension (177). Long-term overactivation of the SFO-PVN-RVLM 

pathway may also elicit neural plasticity, whereby the signalling properties of these 

neuronal pathways maintain an increased level of SNA activity (178).   

Under physiological conditions, SNS efferent renal nerves and afferent renal 

nerves form a bidirectional feedback loop of sympathetic and sensory nerves between 

the brain and the kidneys. The efferent renal nerves innervate vascular smooth muscle 

cells of renal arteries and veins and forms the renal nerve plexus, which regulates the 

renal tubular system and juxtaglomerular cells. Hyperactivation of renal efferent 

nerves contribute to renal dysfunction, leading to decreased blood flow and increased 

renal vasoconstriction, renal tubular sodium retention, renal vascular resistance, which 

promote an increase in aldosterone and renin secretion promoting blood pressure 

elevation (178,179).  

9. Diagnosis and management of hypertension in the clinic 

9.1. Blood pressure measurement and diagnosis of hypertension 

Blood pressure assessment in the clinical management of human hypertension is 

almost exclusively done noninvasively using the brachial artery.  Traditionally this has 

utilized sphygmomanometric approaches- initially using mercury and then aneroid 

technologies (i.e., auscultation-based).  However, in current practice semiautomated 
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and automated devices using oscillometric techniques have become the gold 

standards (180).  Techniques for measuring blood pressure out of office (home blood 

pressure measurements or 24 hr. ambulatory blood pressure measurements) have 

been shown to be more predictive of hypertension-related cardiovascular morbidity 

than office blood pressure assessments and are the gold standard approaches for the 

diagnosis of hypertension (180,181).  Among office blood pressure measurement 

techniques those devices that perform multiple blood pressure measurements without 

the requirement for a health care provider to be in the room (automatic/unattended 

blood pressure measurements- AOBP) have been shown to be more predictive of 

hypertension related morbidity than other means of non-invasive blood pressure 

measurement (180,181). 

Based on major North American guidelines, hypertension is diagnosed when 

blood pressure is consistently > 130 and/or > 80 mmHg (182-286). However many 

patients with hypertension between 130-139/80/89 mmHg (termed stage 1 

hypertension) may not require immediate drug therapy, especially if they do not have 

concomitant risk factors. Modern guidelines now consider absolute cardiovascular risk 

together with blood pressure levels in the initiation of drug treatment. Antihypertensive 

therapy should be strated in patients with stage 1 hypertension and who are at high 

risk (eg. age 65 and older, co-morbidities of diabetes, CKD, or cardiovascular 

disease). Irrespective of blood pressure threshold for initiation of drug therapy, the 

ideal target blood pressure is <130/80 mmHg.  

9.2. Lifestyle improvement  

Extensive research demonstrates that lifestyle improvement is a cornerstone of 

hypertension prevention and blood pressure control. Modifiable factors such as weight 
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control, alcohol consumption reduction, increased regular exercise, healthy sleep 

patterns, reduced dietary salt and sugar intake, healthy diet and smoking cessation 

not only improve cardiovascular health but reduce blood pressure and improve 

hypertension control (183-186). Major international hypertension guidelines stress the 

importance of the implementation of lifestyle modifications (182-187). 

Risk factors for hypertension includes environment, lifestyle, genetic factors 

and the interaction between all these factors. Dietary factors are among the lifestyle 

factors that most influence the blood pressure, and dietary interventions have been 

shown to improve blood pressure control and reduce risks of end organ damage 

associated with hypertension (182-187). The most effective diet associated with 

beneficial effects in blood pressure reduction include the DASH diet (Dietary 

Approaches to Stop Hypertension) and Mediterranean diets (188).   The DASH diet is 

a low-salt diet along with high intake of vegetable, whole grains, nuts, low fatty dairy 

products and low intake of red meat, sugar, saturated fat and cholesterol compared to 

the standard Western diet (189). In a randomized trial, the DASH diet showed 

significant effects in lowering blood pressure in men, women, blacks and nonblacks. 

A diet enriched mostly in fruits and vegetables also reduced blood pressure, but effects 

were lower than those observed with the DASH diet (190,191).  The main differences 

among these diets are that apart from low salt intake, the DASH diet is also rich in 

calcium, magnesium and potassium, also called nutraceuticals that may give 

additional effects on blood pressure control.          

9.3. Pharmacological therapy of hypertension  

First line therapy of hypertension (in the absence of other comorbidities). Most national 

and international guidelines have designated those antihypertensive drugs as “first 

line” that have been shown both to lower blood pressure safely and effectively and 
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(more importantly) reduce the risk of hypertension-related complications.  Conversely, 

those drugs) that have been shown to be less effective in reducing hypertension-

related cardiovascular risk (like α-adrenergic antagonists or for whom their impact on 

cardiovascular outcomes as a first line drug has yet to be unambiguously 

demonstrated (like aldosterone antagonists) are designated as second line (or third or 

fourth line).  In the category of first line drugs most national and international guidelines 

recognize angiotensin converting enzyme inhibitors (ACE-I), angiotensin II subtype 1 

receptor blockers (ARBs), calcium channel blockers (CCBs) and thiazide/thiazide type 

diuretics (Table 1) (182,183,191,192).  β-adrenergic antagonists are less consistently 

recognized as first line and primarily only in younger patients with hypertension. 

Single pill combinations as first line therapy.  Two-drug combinations have only 

recently been recognized as a first line therapy and are indicated as initial therapy 

regardless of the initial extent of elevation in blood pressure.  These first line single pill 

combinations include formulations which include either an ARB or ACEi with a 

thiazide/thiazide like diuretic or CCB.  Notably 3 drug combinations of antihypertensive 

drugs are increasingly available, although none of these formulations have yet to 

demonstrate the efficacy data generally required of a first line therapy. The emergence 

of single pill combinations as an initial therapy reflects the appreciation that especially 

at lower doses, these combinations are generally more effective (across all ages and 

races) and with an improved adverse effect profile as compared to a single drug 

therapy prescribed at a standard dose (193).  The superior adverse effect profiles of 

combination drugs predominantly reflect i) the dose-dependent increase in adverse 

effects seen for most antihypertensive drugs ii) the lower doses of each individual 

constituent drug in the combinations and iii) the impact of the individual drugs in the 

combination in mitigating the adverse effects associated with the companion drug. For 
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example, the adverse impact of diuretics on insulin resistance is mitigated when 

combined with an ACE-Inhibitor or Angiotensin receptor blocker.  Further, the 

peripheral edema associated with a dihydropyridine calcium channel blocker is 

mitigated when it is combined with either an ACE-I or ARB. 

Treatment of hypertension in patients with comorbidities.  The choice of 

antihypertensive drug therapy in patients with comorbidities either reflects i) the 

demonstration of that drug’s effectiveness in hypertension management in those 

specific patient populations or ii) the effectiveness of those drugs in reducing 

morbidity/mortality in those patient populations regardless of whether or not they also 

are hypertensive (Table 2).  

Treatment of resistant hypertension. Despite optimal pharmacological therapy up to 

10% of patients with hypertension remain resistant to therapy as defined by those who 

do not reach blood pressure targets despite 3 drug therapy generally including a 

diuretic (194,195). Those patients are more likely to have a secondary form of 

hypertension, specifically renovascular hypertension, primary aldosteronism and 

pheochromocytoma.  Management of these patients beyond ruling out a secondary 

form of hypertension includes i) revisiting health behaviours (sodium restriction, 

adequate potassium intake, reducing alcohol etc.), and eliminating drugs which cause 

higher blood pressure (like non-steroidal anti-inflammatory drugs, oral contraceptives, 

cocaine, amphetamines and glucocorticoids). In patients with resistant hypertension 

aldosterone antagonists (spironolactone, eplerenone) and amiloride are preferred as 

demonstrated in the PATHWAY trial (196).   

10. Conclusions 

Hypertension remains a leading cause of premature death on a global basis. The 

etiology of primary hyprtension, by far the most cause, is multifactorial reflecting a 
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mosaic of factors including dysregulation of the autonomic nervous system, the renin 

angiotensin aldosterone system, renal/sodium metabolism, immune function, and 

oxidative stress pathways.  Management of hypertension includes both 

pharmacological and health behaviour therapies.  The firstline choice of 

antihypertensive therapies reflects the use of those drug classes  which have been 

shown to have both antihypertensive effects and reduce the risk of hypertension-

related cardiovascular complications or those effective in patients with selected 

comorbidities including coronary artery and cerebrovascular disease, heart failure, 

diabetes and renal disease 
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Figure legends 

Figure 1. Pathophysiologic mechanisms leading to cardiac and vascular 

changes in function and structure in hypertension. Blood pressure (BP) may rise 

progressively because of genetic and/or epigenetic drive. Either directly or indirectly 

via the action of increased oxidative and endoplasmic reticulum (ER) stress. 

Vasoconstriction and smooth muscle SMC growth and apoptosis, low-grade 

inflammation, and vascular fibrosis can lead to vascular and cardiac remodelling, 

which can also reflect into BP elevation. Changes in the extracellular matrix 

components may change the architecture of the vessel wall, and the intracellular 

signalling, favouring restructuring of SMC cells. Rarefaction and endothelial 

dysfunction, mainly mediated by reduced NO bioavailability, also contributes to the 

etiology and cardiovascular complications of hypertension. 

 

Figure 2. ROS production and scavenging. ROS sources include the Nox family of 

enzymes, endoplasmic reticulum (ER), mitochondria, and the enzymes  xanthine 

oxidase, uncoupled nitric oxide synthase (NOS) cyclooxygenases (COX), 

lipoxygenases (LOX) and cytochrome P450. Reduction of oxygen in the presence of 

one free electron results in generation of the free radical superoxide anion (O2●-). In 

turn, superoxide anion is converted to hydrogen peroxide (H2O2) spontaneously or 

catalysed by the enzyme superoxide dismutase (SOD). Hydrogen peroxide is 

scavenged by catalase, glutathione peroxidase (GPx) and peroxiredoxin (Prx). 

 

Figure 3. Oxidative stress in hypertension. Increased ROS levels are observed in 

several systems and organs in hypertension, indicating that oxidative stress is a 

central process involved in the pathophysiology of hypertension.  
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Figure 4. Vascular inflammation in hypertension. Schematic demonstrating 

molecular processes involved in vascular inflammation and endothelail dysfunction in 

hypertension 

 

Figure 5. Diagram of the efferent sympathetic pathway and baroreflex. Changes 

in blood pressure (BP) activate the SNS through several CVO neuronal pathways in 

the brain. The RVLM, however, plays the key functional role in that it not only receives 

signals to initiate SNS activity (for example, through carotid sinus and baroreceptor 

responses to BP) but also sends signals to the peripheral vasculature and organs to 

regulate blood flow. Preganglionic ACh activates muscarinic receptors that initiate 

post-ganglionic action potential and release the neurotransmitter norepinephrine (NE), 

leading to physiological changes such as increases in vasoconstriction, cardiac output, 

and activation of the RAAS system. 
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Table 1. Major Antihypertensive Drug Classes 

  
 

 
 

Prototype(s) Antihypertensive 
mechanism(s)  

Primary adverse effects 

Aldosterone 
antagonists 
and Na 
channel 
blockers 

Alpha 
adrenergic 
blockers  

Spironolactone, 

amiloride 

 

prazosin 

vasodilator 

 

 

vasodilator 

hyperkalemia 

 

 

postural hypotension, nasal congestion 

Beta 
adrenergic 
blockers 

propranolol negative cardiac inotrope, renin 
inhibition 

bradycardia, worsening dyslipidemia, insulin 
resistance, asthma 

Centrally 
acting agents 

methyldopa, 
clonidine 

alpha 2 adrenergic agonists, 
decreased sympathetic nervous 
system activity, vasodilator 

depression, fatigue 

Diuretics hydrochlorothiazide, 
chlorthalidone, 
indapamide 

acutely: diuresis 

chronically: vasodilation 

hyponatremia, hypokalemia, worsens 
dyslipidemia, gout, insulin resistance 

Direct 
vasodilators 

hydralazine, 
minoxidil 

arterial vasodilator. Inhibition of 
inositol trisphosphate (IP3)-
induced release of calcium 
(hydralazine); activation of ATP 
sensitive K channels (minoxidil) 

reflex tachycardia, sodium retention.  
Worsens left ventricular hypertrophy 

hirsutism (minoxidil) 

Calcium 
channel 
blockers 

diltiazem, verapamil, 
nifedipine 

primarily vasodilator 
(nifedipine); mixed 
vasodilator/negative inotrope 
(verapamil, diltiazem) 

worsens heart failure, bradycardia/heart 
block (verapamil, diltiazem); constipation 
(verapamil) 

Angiotensin 
Converting 
Enzyme 
Inhibitors 

captopril vasodilator hyperkalemia, worsening renal function. 
Angioneurotic edema, cough 

Angiotensin 
Receptor 
Blockers 

losartan vasodilator hyperkalemia, worsening renal function. 
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Table 2. Considerations in the individualization of initial antihypertensive drug 
therapy in adults (adapted from Hypertension Canada Guidelines 2020) 
 
  

Initial therapy 
 
     

Diabetes mellitus  
Diabetes mellitus with 
microalbuminuria*, kidney 
disease, cardiovascular 
disease or additional 
cardiovascular risk factors  

ACE inhibitors or ARBs    

  
  

Diabetes mellitus not 
included in the above 
category 

ACE inhibitors, ARBs, dihydropyridine CCBs or 
Thiazide/thiazide-like diuretics 

  

 
 
Cardiovascular disease  
Coronary artery disease ACE inhibitors or ARBs; β blockers or CCBs for 

patients with stable angina 
 
 

  
 
 

Recent myocardial infarction β blockers and ACE inhibitors/ARBs       
  

Heart failure ACE inhibitors (ARBs if ACE inhibitor-intolerant) 
and β blockers.   Aldosterone antagonists 
(mineralocorticoid receptor antagonists) may be 
added for patients with a recent cardiovascular 
hospitalization, acute myocardial infarction, 
elevated BNP or NT-proBNP level, or NYHA Class II 
to IV symptoms. 

  

Left ventricular hypertrophy ACE inhibitor, ARB, long acting CCB or 
thiazide/thiazide-like diuretics. 
 

  

  
 
 

Past stroke or TIA ACE inhibitor and a thiazide/thiazide-like diuretic 
combination. 
 
 

 .   

Non-diabetic chronic kidney disease  
Non-diabetic chronic kidney 
disease with proteinuria† 

ACE inhibitors (ARBs if ACE inhibitor-intolerant) if 
there is proteinuria. 
Diuretics as additive therapy. 

  

 
*Microalbuminuria is defined as persistent albumin to creatinine ratio >2.0 
mg/mmol. †Proteinuria is defined as urinary protein >500 mg/24hr or albumin to creatinine 
ratio [ACR] >30 mg/mmol in two of three specimens.   
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