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Abstract

We introduce the cumulative-distribution-based area metric (AM)–a.k.a. stochastic

area metric–as a scoring metric for earthquake ground-motion models. The AM quantita-

tively informs the user of the degree to which observed or test data fit with a given model,

providing a rankable absolute measure of misfit. The AM considers underlying data dis-

tributions and model uncertainties without any assumption of form. We apply this metric,

along with existing testing methods, to four ground-motion models in order to test their per-

formance using earthquake ground motion data from the Preston New Road (UK) induced

seismicity sequences in 2018 and 2019. An advantage of the proposed approach is its appli-

cability to sparse datasets. We therefore focus on the ranking of models for discrete ranges

of magnitude and distance, some of which have few data points. The variable performance

of models in different ranges of the data reveals the importance of considering alternative

models. We extend the ranking of ground-motion models (GMMs) through analysis of inter-

model variations of the candidate models over different ranges of magnitude and distance

using the AM. We find the inter-model AM can be a useful tool for selection of models for the

logic tree framework in seismic hazard analysis. Overall, the AM is shown to be efficient and

robust in the process of selection and ranking of GMMs for various applications, particularly

for sparse and small-sized datasets.

Introduction

Ground-motion models (GMMs), which are used for predicting intensity measures

(IM), such as peak ground acceleration (PGA), velocity or displacement, have been exten-

sively studied and developed in recent years (Douglas et al., 2013). This is due to the fact

that GMMs have significant influence on the modelling of seismic hazard and risk: obtaining

more accurate predictions from GMMs results in more accurate seismic hazard and risk esti-

mates, particularly at long return periods. GMMs describe the ground motion field in terms

of a particular IM for given characteristics of earthquake source (e.g., magnitude, fault mech-
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anism), wave propagation (e.g., epicentral distance), and site effects (e.g. site class or VS30).

Due to the complexity of the earthquake process, wave propagation and site effects, tens or

even hundreds of candidate models are available for various tectonic regions; examples can

be found in Douglas (2020). Assessing the predictive capability of a GMM and the selection

of the most appropriate GMMs for a given application from this growing suite of predictive

models, therefore poses many challenges. In addition, the ranking of models for particular

applications, which involves consideration of data from limited ranges of magnitude and

distance (especially in low seismicity regions) are error-prone because of the smaller sample

size. Appropriate selection and subsequent ranking of GMMs is considered to be a critical

step in the development of hazard and risk models because of the dependency of predicted

spectra on the chosen GMMs (Stewart et al., 2015). It is, therefore, very important that

the metrics used in the ranking and validation of models should be able to perform well, are

mathematically justified and transparent.

Various statistical and probabilistic methods have been introduced to make the se-

lection of GMMs more robust. Some tests, such as the chi-square and Kolmogorov-Smirnov

(K-S) tests, analyse the shape and distribution of model misfit residuals, while others, such

as the Pearson correlation coefficient and Chi Square Misfit (CHISQ-MF), use direct obser-

vations for the selection of models. Recently developed methods include the likelihood (LH)

value test (Scherbaum et al., 2004) which utilises the the assumption of log-normal distri-

bution for each GMM and calculates the probabilities of residuals; the use of information

theory in the log-likelihood (LLH) test, which uses probability of the data under a model to

determine how likely the model is for the given data (Scherbaum et al., 2009; Delavaud et al.,

2009); a multivariate logarithmic score (Mak et al., 2017), in contrast to univariate measures

(such as LLH), which considers the correlation and score variability in the ranking process;

and a Euclidean distance method (Kale and Akkar, 2013). There are several studies—e.g.,

(Delavaud et al., 2012b; Stafford et al., 2008; Delavaud et al., 2012a)—which have imple-

mented the above methods for the ranking of models. These have shown the methods to be
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useful quantitative metrics for ranking GMMs. However, there are significant limitations to

be considered. For example, the K-S test is more sensitive to the centre of the distribution

than at the tails, whilst the chi-square test has a tendency to obtaining biased results when

the sample size is low. Furthermore, LLH may sometimes provide a good fit for models with

wider distributions (higher sigma) and the LH test requires subjective decisions for ranking.

The case of Euclidean-distance-based ranking favors a smaller modelled uncertainty when

two predictions give the same mean (Mak et al., 2014).

A direct and efficient method to compare observed IMs to modelled intensities and for

ranking of models, even in low seismicity regions or for sparse datasets, is discussed in this

article. We introduce a cumulative distribution based area metric (AM), which is developed

by considering predicted data as a probability distribution. The AM has been adopted for

model validation (Ferson et al., 2009), and for model calibration (Gray et al., 2022). The

AM can be seen as the extension of the Minkowski distance to probabilistic metric spaces,

and often goes by the name of Wasserstein distance for continuous random variables and for

the case of order 1 (De Angelis and Gray, 2021). The proposed metric neither involves the

calculation of residuals, nor testing the residual distribution shape. A comparison against

alternative metrics currently used will be given in the discussion section, whilst highlighting

the benefits of adopting such metric. Generally, a qualitative comparison can be derived

from analysing the shape of the residuals while a robust quantitative comparison is essential

for the ranking of models. We quantify the degree to which observed reference data fits the

predicted data from different models. The use of the best GMM from alternative models for

applications that involve a specific range of data can sometimes be misleading. The model

which gives the best fit to the entire dataset may not be the one with the best performance

over the range of data relevant to the application. Therefore, we have ranked models in

different ranges of magnitude and distance in order to select the best model for the given

scenario of earthquakes. We also used the AM to analyse the inter-model variations of the

candidate models using the complete dataset and also for different ranges of magnitude and
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distance.

One of the most commonly used tools in capturing the epistemic uncertainty asso-

ciated with the GMMs in hazard analysis, is the logic tree (Kulkarni et al., 1984; Bommer

and Scherbaum, 2008). However, with the increasing number of GMMs, the selection and

consistency of weight assignments in logic trees for seismic hazard analysis has become a

cumbersome process. Comparing models against one another in order to find similar and

dissimilar behaviour can help in appropriately representing the epistemic uncertainty in final

hazard estimates. This has been performed in recent studies using the Sammon’s mapping

technique (Scherbaum et al., 2010), which uses the average Euclidean distances between the

model representation vectors to find the proximity between ground-motion models. In this

work, we extend the use of the AM as a tool not only for ranking, but also for inter-model

comparison. The AM is shown to be helpful for computing the weights on logic trees and

thus appropriately representing the total epistemic uncertainty of GMMs in seismic hazard

analysis.

The dataset from the hydrocarbon site at Preston New Road (PNR), in Blackpool

(UK), is considered in this study (Clarke et al., 2019). The GMMs used for the ranking are

Edwards et al. (2021), Atkinson (2015), Douglas et al. (2013) and Rietbrock et al. (2013)

owing to their suitability for predicting IMs at the PNR site. The following sections first

introduce the fundamental concepts of our proposed ranking method and follow with more

details on what are the advantages and disadvantages of using such metric. Application of

the proposed method to data from the PNR site is explained towards the end of the paper.

Existing methods, specifically the CHISQ-MF and LLH tests, have been also used alongside

the AM when ranking the GMMs. Overall, the AM is shown to be convenient and robust in

the process of selection and ranking of GMMs for various applications.

The Proposed Ranking Metric

We propose the AM as a measure of mismatch between the marginal distribution

of the data and the marginal distribution of the model. This is possible under the working
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assumption that the data can be treated as samples drawn at random (iid) from an unknown

stationary probability distribution.This assumption permits the construction of an empirical

cumulative distribution function (ECDF), and the assignment of equal probability mass to

each datum. It is important to note that this ECDF makes no assumption on the distribution

type (e.g. Gaussian, Lognormal, etc.), but it requires the data distribution to be stationary.

Figure 1: Graphical representation which shows the CDF (red) and the ECDF (black). The shaded
area gives the AM which quantifies the fit of the model distribution (red) and an empirical data set
(black)

The AM need not involve any kind of residual analysis, instead it directly makes use

of the observed and modelled IMs. We consider the model distribution as a cumulative

distribution function (CDF) and the data distribution as an ECDF (Figure 1). The CDF is

the probability measure assigned to the event that the random variable X takes a value less

than or equal to x:

M(x) = P (X ≤ x). (1)

The ECDF, just like the CDF, is the probability measure assigned to the event that the

discrete random variable Xi, i = 1, ..., n takes a value less than or equal to x, however this

time the random variable is discrete instead of continuous. The ECDF can be represented

as a non-decreasing step function that jumps n times in steps of height 1/n, at each data
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point, where n is the size of the dataset. The ECDF for the data Xi, i = 1, ..., n is given by:

Dn(x) =
∑n

i=1 I(Xi, x)
n

, (2)

where, I(Xi, x) = 0, for Xi < x and I(Xi, x) = 1, for Xi ≥ x, is the indicator random

variable. This distribution preserves all the statistical information of the dataset, therefore

can be used as a proxy for the dataset.

The AM is the area between M and Dn, or equivalently the integral of the absolute

difference between the CDF values:

d(M,Dn) =
∫ ∞
−∞
|M(x)−Dn(x)|dx. (3)

Without loss of generality, we can compute the integral of (3) horizontally by means of the

generalised inverses, M−1, and D−1
n :

d(M,Dn) =
∫ 1

0
|M−1(u)−D−1

n (v)|du, (4)

where u = M(x), v = Dn(x), and so x = M−1(u), and x = D−1
n (v), thus avoiding slow

numerical quadrature integration (De Angelis and Sunny, 2021; De Angelis and Gray, 2021).

The smaller the distance d(M,Dn) the better is the match between the model and the data.

Advantages and Disadvantages of the Proposed Metric

There are several advantages for AM and one of them is that it can be computed for

very small data sets, or even a single data point, in which case the Dn(x) function of equation

(3) would be the unit step function at that value. This is very important when analyzing

the predictive capability of the models for high consequence large magnitude earthquakes,

where we have very limited data available. Secondly, this metric gives full consideration

to the differences in the whole distribution. This implies that a distributional comparison

should not just be sensitive to the differences in mean or variances but it should be able
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to consider the whole statistical distribution. The next advantage is that it expresses the

mismatch in physical units rather than in arbitrary statistical units. In the case of GMMs,

we have the observed and the predicted data in logarithms of units of ground motion, such

as cm/s2 for peak ground acceleration (PGA): the AM is therefore also represented by the

same units. Another feature is that the AM is unbounded. If the prediction is far from the

observation, the AM shows the full extent of this difference, rather than being limited to

a particular range. Finally we note that the AM obeys all four axioms of a mathematical

metric, i.e, it is (i) symmetric, (ii) non-negative, (iii) follows triangular inequality, and (iv)

zero between two identical entries (Ferson et al., 2009; Gray et al., 2022; De Angelis and

Gray, 2021).

The explicit and appropriate consideration of uncertainties is a required property for

the metric used in ranking GMMs. The uncertainty in the modelled data can come from

inherent randomness (aleatory) and/or from lack of knowledge (epistemic). In case of GMMs,

the ground motion is described in terms of a median and a logarithmic standard deviation,

sigma (σ) [e.g., Strasser et al. (2009)] as shown in equation (4),

log(Yobs) = log(Ypred) +N(0, σ) (5)

where Yobs is the observed data and Ypred is the median prediction. The sigma comes from

the assumption of the normal distribution of ground motion residuals (difference between the

observed and the predicted ground motions) and it defines the scatter associated with the

ground motion prediction. Here, M(x) will also include the aleatory uncertainty (inherent

randomness), which is modelled as a normal distribution of mean zero and the standard

deviation σ.

In this proposed methodology, the modelled IM for a single data point (that consists

of a specific magnitude and distance) is assumed to take a set of values that is computed

from a pre-established sigma value (σ, standard deviation) of the considered GMM. Hence
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a smooth distribution of modelled IMs is obtained for each scenario (M, R, etc.) due to

the consideration of aleatory uncertainty . One of the major assumptions in Probabilistic

Seismic Hazard Analysis is that the ground motion residuals are log-normally distributed.

Some tests, such as the LLH test, rely on this assumption. However, the assumption of log-

normally distributed residuals has become a de-facto standard and, as a result, usually is not

tested routinely for new datasets, but is accepted as a given (Pavlenko, 2015; Raschke, 2013).

We were able to exclude this assumption, as the AM does not involve any kind of residual

calculations or assumption of data distribution. We have considered the IM distribution as a

CDF without any kind of underlying assumption on distribution. In the case of the AM, the

steepness of the ECDF and CDF quantifies the aleatory uncertainty. As the model aleatory

uncertainty increases (the sigma), we obtain a wider CDF and thus account for the aleatory

uncertainty in ranking of GMMs. Models that do not reflect the aleatory variability in the

tested dataset (whether too small or too large), are penalised.

The AM’s accuracy is sensitive to sample size, i.e., having more data will allow us to

assess the model more confidently. But we should understand that only the evidence for the

apparent fit between the model and the data will increase with the increase in sample size

and not the accuracy of the model (Ferson et al., 2009). This limitation leads to the fact

that while we can calculate the area metric for different ranges of magnitude and distance

to asses the best performing model in the given range, we cannot obtain a conclusion about

the best performing range of a single model. A further limitation is that the AM tends to

be less sensitive to the tails of the distribution. Finally, the AM also depends on the scale

in which the distributions are represented, although this is somewhat alleviated in the case

of GMMs through the use of logarithmic values.

Application of Area Metric to the PNR Dataset

The proposed metric is used to analyse the performance of four different models on the

hydrocarbon site in the north of England at Preston New Road (PNR), Blackpool (Clarke

et al., 2019). We also used the existing methods such as LLH and CHISQ-MF test along
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with the AM to analyse and compare the ranking results from each test and the AM.

Data and GMMs Used

Hydraulic fracturing at the PNR site for shale gas extraction was undertaken by

Cuadrilla Resources Ltd. in 2018 and 2019, during which 57 and 137 events (−0.2 < MW <

2.7) were recorded at the surface, respectively. ML is converted to MW according to Edwards

et al. (2021). Characteristics of the magnitude-distance data distribution can be seen in

Figure 2. Events were recorded and located by using several surface sensors operated by the

British Geological Survey (BGS), Cuadrilla Resources and University of Liverpool (Edwards

et al., 2021). We have analysed the performance of four GMMs at the PNR site and ranked

them using the AM. In addition, we rank models’ performance within a hypocentral distance

of 1-10 km and 10-25 km and moment magnitude (MW ) 0 - 1 and 1 - 4 separately, in-order

to understand the differences in prediction for different distance and magnitude ranges.

The data distribution at the Preston New Road site is highly relevant due to the dense

distribution of data with R < 10 km and MW < 1 and sparse distribution for R > 10 km

and MW > 2. This brings us to the question of whether the model which gives the best fit

for the entire dataset is the one with the best performance for a specific range of data (i.e.,

at larger magnitude and up to greater distances)?

The candidate models selected for the ranking are Atkinson (2015), Douglas et al.

(2013), Rietbrock et al. (2013) and Edwards et al. (2021). A brief summary of the models

and justification for their selection is provided in the following. Atkinson (2015) (A2015)

is an empirical GMM derived for small to moderate earthquakes for induced seismicity

applications. This model has been derived using a subset of the NGA-West2 database

(Ancheta et al., 2014), consisting of ground motions with magnitude range of 3.0 to 6.0 within

a hypocentral distance of 40km. Douglas et al. (2013) (D2013) derived GMMs focusing on

induced events in geothermal areas. Models have been developed by assembling data from

induced and natural seismicity datasets (from Basel, Geysers, Hengill, Roswinkel, Soultz,

and Voerendaal). Most of the recordings are between magnitudes 1 and 4 and within a
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Figure 2: Hit counts computed for the data distribution, dividing the distance range (1–23km)
into 20 equally spaced bins over a logarithmic scale and considering 0.125 magnitude unit intervals.
The dark blue regions denotes the sparse data (especially after 10 km).

hypocentral distance of 20 km. We used their Model 1 (uncorrected for site effects) with

the site effects accounted for by considering Boore et al. (2014) site amplification by using

the site specific VS30 values and a reference velocity of 540 m/s. Rietbrock et al. (2013)

(R2013) is a model developed for the UK, which used numerical simulations based on the

stochastic point-source model with magnitude-dependent stress drop to derive GMM within

a magnitude range of 3-7 and epicentral distance below 300 km. Edwards et al. (2021)

(E2021) is the calibrated GMM derived for the Preston New Road dataset using A015 as the

starting model. They have developed the model for Mw above 1 and within an epicentral

distance of 24 km. Site modifications are adopted from Boore et al. (2014) for site specific

VS30 values. The summarised details are given in Table 1.
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Table 1: Table shows the features of the models used (A2015, Atkinson (2015),D2013, Douglas
et al. (2013), E2021, Edwards et al. (2021) and R2013, Rietbrock et al. (2013)) on PNR dataset.

Model feature A2015 D2013 E2021 R2013

Magnitude scale Mw Mw Mw Mw

Minimum magnitude 3 1 1 3

Maximum magnitude 6 4 2.7 7

Hypocentral distance <40 km <20 km <24 km <300 km

Site Corrections
Boore et al., 2014

Site specific

Boore et al., 2014

Site specific

Boore et al., 2014

Site specific

Not used

Reference Vs30 760 m/s 540 m/s 760 m/s 2310 m/s

Region subset of NGA-West2

Basel, Geysers, Hengill,

Roswinkel, Soultz

and Voerendaal

Preston New Road United Kingdom

Results and Discussion

The four GMMs mentioned in the previous section have been ranked using the PNR

PGA dataset. Table 2 shows the results of AM along with other commonly used ranking

methods, LLH (Scherbaum et al., 2009) and the CHISQ-MF test. Figure 3 provides AM

plots for the complete dataset and for different ranges of hypocentral distance. We can infer

from Table 2, that the best performing model is E2021 given the smaller value of AM. LLH

and CHISQ-MF tests also provides a minimum value for this model, which supports the

proposed metric.

A minimum value of AM for E2021 is expected as it is the model developed for the

target region and an AM value of 0.153 implies that the data and the model is different by

0.153 log10 PGA units. The reason for the small difference is that E2021 is calibrated for
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Table 2: Table shows results of the tests (log-likelihood (LLH) and chisquare-misfit (CHISQ-MF))
including the Area Metric (AM) values for the ranking of four different models (E2021, Edwards
et al. (2021), R2013, Rietbrock et al. (2013), D2013, Douglas et al. (2013) and A2015, Atkinson
(2015)) on PNR dataset.

Metric E2021 R2013 D2013 A2015

AM 0.153 1.069 0.258 0.573

LLH 0.611 9.742 0.847 2.395

CHISQ- MF 1.257 13.854 0.731 3.472
magnitudes above 1 and here we have used the complete dataset for ranking, which contains

many recordings below magnitude 1. After removing recordings from MW < 1 events it is

found that the AM value is reduced to 0.06. The effect of extrapolation of E2021 to magni-

tudes below 1 can therefore be inferred from the AM results. It can be also seen from Table 2

that D2013 shows better performance than A2015 for the complete dataset while evaluating

the AM results. The low performance of R2013 on the PNR dataset is because of the fact

that it is developed by using magnitudes above 3 for the whole UK and the model (not spe-

cific for induced seismicity regions). Furthermore, the model predicts using the Joyner-Boore

distance (depth to surface extent of rupture) without consideration of depth. This means

that shallow source depths seen at PNR (and other induced seismicity sequences) cannot

be accounted for, but are rather assumed to be similar to tectonic earthquakes occurring at

depths of 10 km or more. Plot (i) of Figure 3 shows the ECDF and CDF of the data and the

predicted PGA values of different models. The location of the CDF to the right or left of the

ECDF gives us an idea about the residual (observed - predicted) distribution. If the CDF is

located right of the ECDF, as in the case of D2013, the residuals will mostly be distributed

below the zero horizontal line and if the CDF is to the left of the ECDF, as in all other

models, the residuals will be clustered above the zero horizontal line. It is also interesting to

note that the width between the ECDF and CDF of different models gives us an idea about

the amount of shift of residuals (the mean) from being unbiased, whenever the curves are

not intersecting. An increase in distance between ECDF and CDF shows the increase in the

mean of residuals from zero. But whenever the curves are intersecting, it will be difficult
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to analyse the shifts because the intersection of curves shows the symmetric distribution of

residuals above and below the zero horizontal line.

Table 3 shows the performance of models for different ranges of hypocentral distance

and magnitude. We chose the distance ranges 1-10m km and 10-25 km for model ranking

because of the data distribution of PNR dataset. The consideration of MW below and above

1 is because of the fact that all candidate models used here are derived from events with

magnitudes above 1. Ranking them separately will, therefore, help us to understand the

effect of model extrapolation. We have also presented magnitude ranges 1 - 2 and 2 - 3 MW

separately. When models are ranked using data below 10 km, the results seem to be similar

to the results provided in Table 2. The performance of the models below 10 km and for

the complete PNR dataset are therefore comparable. This is because of the high density of

observations at short distance with 99 percent of the recordings below hypocentral distance

of 10 km. It is also interesting to note that these results are similar to the results by Cremen

et al. (2020) in which they have ranked models using data recorded at distances below 10

km. A2015 and D2013 are two of the models included in their study and the results are

similar with this study, i.e., D2013 has a better performance overall than A2015. The AM

plots shown in Figure 3 for this distance range are also comparable with the complete dataset

plot. When models are analysed for 10-25 km with the AM metric, the results are different

from the other two cases (complete dataset and 0-10 km). E2021 itself is again the best

performing model in all the ranges of hypocentral distance while the performance of A2015

and D2013 differs. From Table 3, we can infer that the A2015 performs better than D2013

for 10-25 km. For applications above 10 km, it is better to use A2015 rather than using

D2013 based on the performance with the complete dataset. Interestingly, the behavior of

D2013 and R2013 for magnitudes below 1 and distance greater than 10 km, is different from

all other models, D2013 and R2013 fits better for these ranges compared to the other models.

Even though E2021 is the region specific calibrated model, it is ranked slightly below A2015

for MW range of 2-3 within the distance between 10-25 km. This may due to the fact that
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Table 3: Table showing the Area Metric (AM), log-likelihood (LLH) and chisquare-misfit (CHISQ-
MF) values for different ranges of hypocentral distance and magnitude (1-10 km and 10-24 km,
0-1 Mw, 1-2 Mw, 2-3 Mw and 0-3Mw) for four different models (E2021, Edwards et al. (2021),
R2013, Rietbrock et al. (2013), D2013, Douglas et al. (2013), A2015, Atkinson (2015)) on the PNR
dataset.

Range Metric E2021 R2013 D2013 A2015

R0 - 10 km

Mw0 - 3
AM 0.155 1.127 0.257 0.588

LLH 0.551 10.006 0.846 2.409

CHISQ-MF 1.175 14.221 0.730 3.490

Mw0 - 1
AM 0.199 1.271 0.325 0.655

LLH 0.574 11.758 0.854 2.749

CHISQ-MF 1.206 16.649 0.741 3.961

Mw1 - 2
AM 0.058 0.798 0.109 0.435

LLH 0.475 5.982 0.768 1.612

CHISQ-MF 1.068 8.643 0.621 2.386

Mw2 - 3
AM 0.147 0.850 0.409 0.464

LLH 0.732 6.706 1.293 1.914

CHISQ-MF 1.425 9.646 1.349 2.804

R10 - 25 km

Mw0 - 3
AM 0.192 0.441 0.305 0.251

LLH 2.014 3.498 1.078 2.080

CHISQ-MF 3.202 5.199 1.051 3.035

Mw0 - 1
AM 1.010 0.241 0.193 1.191

LLH 11.410 5.192 1.711 11.317

CHISQ-MF 16.228 7.547 1.929 15.840

Mw1 - 2
AM 0.081 0.632 0.503 0.092

LLH 0.461 4.143 1.326 0.536

CHISQ-MF 1.049 6.093 1.395 0.893

Mw2 - 3
AM 0.135 0.424 0.210 0.105

LLH 0.126 1.989 0.521 0.001

CHISQ-MF 0.234 3.106 0.279 0.148
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E2021 is designed to converge to the A2015 model for larger magnitudes and hypocentral

distances, limiting its degree of freedom at the higher magnitude and distance. Furthermore,

E2021 is not the best performing model for magnitudes below 1 at larger distances (note

that the model is calibrated only for magnitudes above 1). From the plots in Figure 3, it

can also be seen that a general trend of under-prediction of GMMs is mainly because of the

effect of events with magnitudes below 1.

When the models are ranked using LLH and CHISQ-MF for different ranges of magni-

tude and distance, the results are different from the ranking provided by the AM, especially

for smaller sample size. For example, E2021 (AM = 0.192) is showing better performance

than D2013 (AM = 0.305) when ranked using AM within a distance and magnitude range

of 10-25 km and 0-3 Mw, while D2013 (LLH = 1.078, CHISQ-MF = 1.051) is ranked higher

than E2021 (LLH = 2.014, CHISQ-MF = 3.202) when analysed using LLH and CHISQ-MF

for the same data range. This can be because of the higher standard deviation of D2013

(sigma = 0.498) compared to E2021 (sigma. = 0.325), LLH may sometimes provide a good

fit for models with higher sigma (Kale and Akkar, 2013), but in case of the AM, the metric

properly considers the aleatory uncertainty while ranking. The aleatory uncertainty of both

the observed data and the model is quantified using the AM while both the LLH and CHISQ-

MF tend to favour models with higher sigma. This can be a reason why sometimes the older

models with simpler functional forms and larger standard deviations tend to provide better

fit compared to the new partially non-ergodic models. This is also evident in the results of

E2021 and A2015 within a distance and magnitude range of 10-25 km and 0-1 Mw, LLH and

CHISQ-MF favour A2015 above E2021 because of the larger sigma of A2015 (sigma = 0.37),

while AM provides higher rank for E2021. In order to test the impact of model sigma, the

performance of D2013 and E2021 is analysed in the distance and magnitude range of 10-25

km and 0-3 Mw using observed (i.e. data-based) sigma, i.e., 0.427 for D2013 and 0.517 for

E2021. In this case the AM of D2013 changes only slightly to 0.387 and E2021 to 0.262 and

both the LLH and CHISQ-MF supported the result, i.e, E2021 is ranked higher than D2013
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Figure 3: Plots showing the Area Metric of four different models (E2021, Edwards et al. (2021),
R2013, Rietbrock et al. (2013) D2013, Douglas et al. (2013) and A2015, Atkinson (2015)) on PNR
dataset. The black curve denotes the empirical data distribution.
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using all the metrics. This clearly shows that model sigma has an impact on the metrics used

in ranking. We have also tried a high resolution analysis by dividing the data into smaller

bins below 10 km and provided the results as a supplementary document for the paper.

Inter-model variations are analysed by calculating the mutual AM between the mod-

els. Here, rather than a CDF and ECDF we have have CDFs, computed over the parameter

space of the complete dataset. As for the previous analyses, we also calculate results over

different ranges of distance and magnitude. An AM matrix is created after calculating the

AM values between the models. This matrix will visually provide an idea about the simi-

larity of models used. For example, in Figure 4, the lighter shades indicate similar models

(high inter-model proximity) and darker shades, representing a larger AM value between the

models, indicate dissimilar models. Plot (i) of Figure 4 shows the that the similar models are

E2021 - A2015 and E2021 - D2013. This trend is similar for all recording below 10 km. Be-

yond 10 km, the proximity between the A2015 and E2021 increases compared to D2013 and

E2021, this can be because of the reason explained earlier, i.e, E2021 is designed to converge

to the A2015 model for larger magnitudes and hypocentral distances. A high disagreement

between models E2021 and R2013 is seen for all ranges of magnitude and distance and most

of the models show higher variations to one another in the range R greater than 10 km and

Mw less than 1 compared to other distance and magnitude ranges.

While we have shown that the AM performs well and demonstrates advantages over

alternative ranking methods, the AM and inter-model AM matrix should not be considered

self-sufficient for the selection of ground-motion models for seismic hazard assessment. The

smallest AM value certainly aids in the process of selection of models, however both expert

opinion and the results from various testing metrics, including AM, are required for the ap-

propriate selection of GMMs. In particular, when we have insufficient data or unavailability

of data, it is not possible to decide the models only using AM (or indeed any data-driven

ranking metric). Nevertheless, the use of AM along with expert guidance will facilitate a

more robust and defensible ranking according to the available data. For example, for the
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Figure 4: AM matrix showing the inter-model variations of four different models in different
ranges of magnitude and distance. Dark green indicate large distances between models, light green
indicate smaller distances.
complete dataset investigated here, a practitioner may have chosen E2021 as the best and

exclusive model, as it is the GMM developed for the given dataset. From our results, AM
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seems to agree with the opinion, but for smaller magnitudes (Mw < 1) and larger distances

(R > 10km), E2021 is not the best performing model according to the available data. In

this range, better results are observed from D2013 and R2013. Expert guidance is therefore

essential, as while E2021 is shown to not be the best model at Mw < 1, it was not calibrated

in this range, and furthermore, these events do not impact the seismic hazard. We may

therefore consider neglecting the AM information for this parameter range. Finally, we note

that while building a logic tree using AM matrix, weights should be given by considering

not only the AM, but also the characteristics and parametric basis (form, validity, etc.) of

the models, and expert opinion.

Conclusion

This paper introduced a new metric for model testing and ranking against a given

regional dataset. The AM can be used for selection of models in very low seismicity regions

without any assumptions on the distribution of data and also properly accounts for the

aleatory uncertainty. There are several other advantages for the proposed metric over the

existing methods of ranking. The AM is represented in the same physical units rather

than ambiguous statistical units. This is useful to understand the misfit between the model

and data more distinctly. The proposed procedure also accounts for aleatory variability in

ground-motion estimations by considering the standard deviations of the GMMs, without

any underlying assumption on the data distribution. The sensitivity of the AM to the

sample size can be a concern when a single model is ranked for different ranges of magnitude

and distance. This means that we can only rank different models for a common range of

magnitude or distance, while the best performing range for a single model cannot be assessed.

However, ranking of a single model for different ranges of dataset is usually irrelevant for

applications in probabilistic seismic hazard analysis.

We used the AM to evaluate the performance of four different GMMs (E2021, R2013,

D2013, A2015) on the PNR dataset as a case study and obtained the highest ranked model,

which is E2021. E2021 is the model calibrated for the PNR region. We also ranked models
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in different ranges of both distance and magnitude in-order to understand the variations in

prediction. D2013 shows better performance than A2015 when analyzed with the complete

dataset (including MW < 1) but when ranking is focused on data range 10-25 km, the misfit

of D2013 is larger than the misfit of A2015. The performance of models significantly im-

proved when magnitudes below 1 are removed. The AM provides reliable ranking results

compared to the LLH and CHISQ-MF. The dependency of these latter metrics on the model

sigma is shown to lead to variability in ranking, i.e, metrics tend to provide better perfor-

mance for the model with larger sigma. On the other hand, AM takes into account aleatory

uncertainty, penalising models that not only present high misfit, but also that do not reflect

the distribution evidenced in the data. Finally, the inter-model proximity analyses using

AM seems to be an efficient and direct approach to find the models with similar prediction

distribution for several applications in probabilistic seismic hazard analysis, especially for

the proper assignment of logic tree weights.

Data and Resources

No new data were created as part of this study. The data used in this study is avail-

able on request from the British Geological Survey (BGS and operator data) and University

of Liverpool (UoL data). All other data used in this study are from the sources listed in

the references. The code to calculate the AM is available at https://doi.org/10.5281/

zenodo.4419644 (De Angelis and Sunny, 2021). To maximise reproducibility, all the calcu-

lations performed in this paper have been made available at https://github.com/Jaleena/

Ranking-and-Selection-of-Earthquake-Ground-Motion-Models-Using-the-Stochastic

-Area-Metric. Additional figures are provided in the supplementary document for the pa-

per.
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