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Abstract: In seismic hazard assessments the importance of knowing different input 
parameters accurately depends on their weights within the hazard model. Many aspects of 
such assessments require inputs based on knowledge and data from experts. When it comes 
to decisions about data collection, facility owners and seismic hazard analysts need to estimate 
the possible added value brought by acquiring new data along with the budget and time 
available for its collection. In other words, they need to answer the question “Is it worth paying 
to obtain this information?”. Assessing the value of information (VoI) before data collection 
should lead to optimising the time and money that one is willing to invest.  
In this article, we propose a method that combines available data and expert elicitation to 
facilitate the decision-making process within the site-response component of seismic hazard 
assessment. The approach combines Bayesian networks and decision trees to translate the 
causal-relationships between the input parameters in site-response analysis and Bayesian 
inference to update the model when new evidence is considered.  
Here, we assess VoI for a hypothetical site. Our analysis shows that VoI is highly sensitive to 
prior probabilities and the accuracy of the test to be performed. This highlights the importance 
of defining those from available information as well as considering only tests that are suitable 
for our needs and budget. 
Keywords: VoI, data collection, seismic hazard assessment, Bayesian updating, decision 
trees, site-response analysis  

1.Introduction 

The safety of infrastructure including nuclear facilities must be guaranteed against external 
hazards, including earthquakes. There is a need for various types of data to assess the seismic 
hazard at a particular location accurately in order to design structures to withstand that level 
of hazard. Collection of new data and methods for the calculation of ground motion can be 
associated with considerable uncertainties but the collection of such data can decrease this 
uncertainty. New data collection, however, can be costly as well as time consuming.  

There is a pressing need to estimate the value of a piece of information (VoI) when it comes 
to considering the collection of data to enhance a seismic hazard assessment (SHA), in 
particular. In SHAs, multiple parameters need to be known to an accuracy that depends on 
their importance in the assessment. Assessments can be less sensitive to one parameter and 
very sensitive to others. In other words, uncertainties in a variable might lead to high 
variation in the results (hazard curves, uniform hazard spectra, and eventually the seismic 
design). Thus, it is important to know to what extent we should seek new information (data) 
to include in the seismic hazard analysis as it can sometimes lower the design requirements 
and hence, lower the construction costs of new facilities or the retrofit of existing ones. 

To estimate the VoI, it is crucial to develop a methodology that takes into account the causal-
relationships and the dependencies between parameters as well as the probabilities (beliefs 
of belief) assigned to each of them. When collecting more information, the method 
undertaken should be able to allow the updating of these probabilities according to new 
evidence. Moreover, the method should be able to answer the question “Is this parameter 
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worth investigating?”. This means that the consequences of decisions should be included to 
the framework as well as the monetary (and time) cost that the decision would imply.  

The overall aim of this study is to develop a method to assess the value of information of 
important parameters in SHA using various case studies and to suggest a framework that 
uses VoI as a measure to assess the feasibility and benefits of collecting more information. 
This article presents a simple application of this method, specifically for the case of a simple 
site-response analysis. 

VoI is a helpful tool to assess the importance of a parameter or a geophysical/geotechnical 
test as well as the maximum investments (in terms of money, time and resources) one should 
be willing to spend to obtain a piece of information. This guidance could be critical for 
seismic hazard analysts and/or facilities owners (clients) where budgets are balanced with 
safety requirements.  

2. Definition and applications of VoI 

2.1 Definition 

The book of Raffai & Schlaifer (1970) pioneered the use of VoI and provides an introduction 
to the mathematical analysis of decision making in a world of uncertainty. Knowing that, 
generally, more information leads to a reduction in uncertainty, the question here is whether 
a decision should be made on current information or whether to invest in additional 
information by considering its potential impact on the payoff that, as a result, can lead to 
revisiting the decision. The VoI is a key tool to improving research prioritization and to the 
collection of more information to reduce uncertainty and make more accurate and less 
uncertain decisions.  

VoI can be considered the amount that you would be willing to pay to obtain a piece of 
information. It is the difference between the utility of having the information and the utility 
without that information. In several fields of research, the decision is often made from the 
information and measures available and, in case of uncertainties, the decision making relies 
on a subjective approach that constitutes a consensus among experts, decision makers and 
even stakeholders. VoI is used to tackle this uncertainty as it helps to illuminate the 
importance of understanding the uncertainty and taking it into account to substantially 
decrease the overall uncertainty.  

2.2 Types of VoI measurements 

How we define a VoI model is different in each field and each application. A utility function 
has to be defined as well as its unit. This depends on the stakeholders or the decision makers 
interests. This function will either help compute avoided losses, which is often used in the 
healthcare field and the evaluation of losses due to external hazards (Williams, Gardoni, & 
Bracci, 2009) or compute a maximization of gains, which is mainly considered in marketing 
and economics. The unit of this function can be monetary (dollars, euros etc.), representing 
profit or revenue, or it can be more abstract like welfare or happiness. Many more 
characteristics are important for VoI calculations. Some of these are the number of 
alternative decisions, the type and number of parameters considered and their type of 
uncertainty, e.g. probability values or functions.  
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VoI can be calculated by quantifying the Opportunity Loss which represents the cost of being 
wrong when making a decision. We can define the Expected Opportunity Loss (EOL) as: 

                      𝐸𝑂𝐿 = 𝑐ℎ𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑤𝑟𝑜𝑛𝑔 × 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑤𝑟𝑜𝑛𝑔                      (1) 

Now that we have defined the EOL, the Expected Value of Information (EVI) is:  

                                       𝐸𝑉𝐼 = 𝐸𝑂𝐿𝐵𝑒𝑓𝑜𝑟𝑒 𝐼𝑛𝑓𝑜 − 𝐸𝑂𝐿𝐴𝑓𝑡𝑒𝑟 𝐼𝑛𝑓𝑜                                         (2) 

The EVI simply represents the reduction in risk after considering extra information. When 
it comes to a perfect information that eliminates completely the uncertainty, the associated 
EOL will be zero and the EVI will simply be the EOL without that information. This is called 
the Expected Value of Perfect Information (EVPI). If EVPI has a value that is less than the 
cost of the obtained information, obtaining that information should be rejected because even 
when the information completely eliminates the uncertainty and leads to making the less 
risky choice, it is not worthwhile in terms of the unit considered (e.g. financial cost).  

Acknowledging that in this field of research and especially in SHA, perfect information does 
not exist and that whatever the measurements, uncertainties will always remain, we will 
likely not consider EVPI but instead the Expected Value of Imperfect Information (EVII).   

3. Assessing the value of information: The must-have 

Assessing VoI has advantages in the optimisation of time and money that one is willing to 
spend. In the field of earth sciences and civil engineering, even if VoI is not always referred 
to as VoI, we find some attempts in estimating the benefit of a piece of information or a 
design. VoI has been used to assess risk and reliability of retrofitting structures (Williams et 
al., 2009), designing site investigations (Gilbert & Habibi, 2015) and making drilling 
decisions (Eidsvik et al., 2015). 

In order to consistently assess the VoI, there are the following three must-have to express 
the relationships and dependencies between the various variables. 

- Conditional probabilities  

Conditional probabilities are important for VoI analysis as conditioning an observation from 
information could lead to improvement in decision making. It is essential, within the 
framework to be built, to express the dependencies between the variables.  

- Graphical models  

To understand the degree to which variables are linked, connected and influenced by each 
other, graphical models are a powerful tool to serve this purpose. Such graphical models are 
referred to as Bayesian networks (BNs), Bayes nets or belief/decision trees. By using 
conditional probability density functions within the statistical model, the evidence regarding 
a parameter will be propagated to other nodes. 

- Priors, likelihood functions and Bayes’ rule 

When collecting a piece of information y on a measure of interest x, y can be “perfect” 
meaning that it perfectly informs us about x, or “imperfect/partial” mainly because of noise 
or because it represents only one variable of a multivariate set. For example, in seismic 
hazard assessment, 1D shearwaves velocity (Vs) profile could be the measure of interest x. 
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We would like to compute the posterior model for x conditioned on y p(x|y). This is done 
using Bayes’ rule and requires a prior model for x, p(x), a conditional probability density 
function on the data y known as the likelihood function p(y|x) and the marginal probability 
density function on the data y, p(y). Thus, p(x|y) is expressed as follows: 

                                                        𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥) 

𝑝(𝑦)
                                                           (3) 

The latter can be viewed as a trade-off between prior knowledge and information brought by 
the data. Bayes’ rule is used to construct posterior distributions that are essential for VoI 
calculations.  

4. Application of VoI for a hypothetical case study  

Seismic hazard assessment is an essential step to define an appropriate seismic design for 
structures. Seismic design is mandatory in earthquake-prone regions to ensure sufficient 
levels of safety and to prevent significant damage and collapse. The higher the seismic 
design, the costlier it is to implement. Seismic design must serve two potentially conflicting 
purposes: safety and economics. Thus, there should be a trade-off between constructions 
costs and the acceptable target levels of safety. Risk-targeted and minimum-cost design 
procedures has proved to be effective in satisfying this compromise (Gkimprixis et al., 
2020). 

In this section, we define a case study to build a methodology for VoI and proceed to simple 
calculations to evaluate the VoI of a parameter used in site-response analysis and hence to 
infer an appropriate seismic design.  

4.1 Methodology 

We aim to determine an appropriate seismic design for a reinforced concrete four-storey 
building. We face a lack of information about one specific parameter, Vs30, i.e. the time-
averaged shear-wave velocity in the top 30m. The dilemma here is between two major 
options:  

1- Choose a particular seismic design and take the risk of choosing a higher, and more 
costly, seismic design than needed, or choose a lower and less-resistant seismic 
design where the seismic hazard and the soil response at the site of the building can 
result in damage or even total collapse. 

2- Conduct geophysical/geotechnical tests in order to decrease the uncertainties on 
Vs30. This will reduce the risk of choosing an inappropriate seismic design. 
Nevertheless, the test will have a cost that depends on the test type, the company 
hired to perform the test and the price of renting the equipment.  

In this specific case, Vs30 is likely to have one of two possible values: V1 or V2. Available 
data and experts’ knowledge will help assign prior probabilities to V1 and V2. We clarify 
that this is a simple case where the parameter of interest has binary possible values. More 
realistically, a probability distribution covering a range of Vs30 should be used - this is the 
object of ongoing work. 
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4.1.1 Inputs and parameters 

The purpose of the site-response analysis performed in this study is to estimate the resulting 
ground motion at a theoretical site, in terms of peak ground acceleration (PGA on soil), based 
on the PGA on a reference outcropping rock and the amplification factor of the site. This 
PGA on soil is used to choose the appropriate seismic design.  

 
Fig.1 - Framework for site-response analysis and the estimation of the expected costs and losses. Blue circles 
represent non-uncertain parameters and the red circle (Vs30) is the uncertain parameter. The lozenge yellow 

node is the outcome (estimated cost and losses) 

Fig.1 shows an influence diagram that summarises the parameters that are computed and/or 
used to infer the appropriate PGA to seismically design the building. 

In this simple case study, site-response analysis is simplified by neglecting the non-linear 
site amplification and by computing the frequency-independent amplification factor Fs of 
the site using Bindi et al., (2014) for PGA as follow: 

                                                                𝐹𝑠 = 𝛾 log10(
𝑉𝑠30

𝑉𝑟𝑒𝑓
)                                                              (4) 

Where 𝑉𝑟𝑒𝑓 is fixed to 800 m/s and 𝛾= -0.3019.  

Prior probabilities 

The prior probability, p, is the probability that V1 is believed to be the Vs30 of the site. 
Similarly, 1-p is the probability that V2 is believed to be Vs30. These probabilities are often 
inferred by the seismic analyst from available data or expert knowledge. 

Probability of failure 

The work of Gkimprixis et al., (2020) provides the fragility curves for the defined building 
for different PGAd (PGA to which the building is designed). These fragility curves were 
derived using Incremental Dynamic Analysis (IDAs) (Vamvatsikos & Cornell, 2002). These 
fragility curves, fc, indicate the probability of total collapse for each PGA value.  

Outcomes: Expected Losses 

As the VoI here is in monetary units, we need to estimate the losses associated to seismically 
designing the building for a specific PGAd. The losses due to possible earthquakes are a 
function of the seismic hazard in the site location and the vulnerability of the structural and 
non-structural components. The decision’s outcomes are the expected consequences for each 
of the possible decisions. These expected consequences are defined to be the Expected Life-
Cycle Losses, E[LCC] in case of total collapse.  
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For one decision d, the expected outcomes are as follows: 

                                            𝐸(𝑜(𝑥, 𝑑)) = 𝐶0 + ∑ 𝑜(𝑥, 𝑑)𝑝(𝑥)𝑥                                          (5) 

Where o(x,d) represents the outcomes for a decision d if Vs30 is in the state x. x is the measure 
of interest and p(x) is the prior probability of the state x. The outcomes for a measure x and 
a decision d are expressed as follows: 

                                                𝑜(𝑥, 𝑑) = 𝐸[𝐿𝐶𝐶](𝑥). 𝑓𝑐(𝑑, 𝑥)                                             (6) 

Where 𝑓𝑐(d,x) is the probability of failure for a PGA associated with state x and extracted 
from the fragility curve for a PGAd of decision d. 

4.1.2 Calculations 

Decision trees are an excellent way of representing the various important parameters and 
their causal dependency.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 - Decision tree for the computation of EVPI (up) and EVII (bottom). Probabilities are displayed in red. 

pm is the marginal probability of test result being V1. 
 

In the decision trees presented in Fig.2, decisions emerge from the square nodes and 
probabilities from circle nodes. These two decisions trees depict three possible decisions:  

1. Applying seismic design 1 (associated with a Vs30=V1) with available data. 
2. Applying seismic design 2 (associated with a Vs30=V2) with available data. 
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3. Conduct a perfect test (left)/imperfect (right) test in order to have information about 
Vs30. 

Prior Value 

In the case of Before information, two choices are possible, applying Seismic design 1 or 
Seismic design 2. The expression of the associated Prior Value, PV, is as follows: 

                              𝑃𝑉 = 𝑚𝑎𝑥𝑑∊𝐷{𝐸(𝑜(𝑥, 𝑑))} = 𝑚𝑎𝑥𝑑∊𝐷{∑ 𝑜(𝑥, 𝑑)𝑝(𝑥)𝑥 }                     (7) 

Where D is the domain of decisions d, o(x,d) represents the outcomes for a decision d if 
Vs30 is in the state x  and, p(x) is the prior probability of the state x.  

Posterior Value 

EVPI 

The posterior Value PoV is the resulting outcome of conducting a perfect test and thus, 
obtaining perfect information about x (Vs30) and applying the appropriate design. 

                                       𝑃𝑜𝑉 =  ∑ 𝐸(𝑜(𝑥, 𝑑𝑥))𝑝(𝑥)𝑥                                             (8) 

Where dx is the appropriate design decision for state x.  

EVII 

Realistically, geotechnical or geophysical information cannot be completely free of 
uncertainties, i.e. perfectly accurate. Because most surveys would need analysis and 
interpretation to infer the measure of interest, results are likely to have dispersion, 
characterised, for example, by a normal distribution with a given standard deviation. The 
test being imperfect, there is the need to include this uncertainty in the decision tree. An 
accuracy probability is then assigned to the test. This probability is set by experts from 
available information about the particular test or by the person applying the test and 
expresses its reliability.  If y is data from the imperfect test and x is the measure of interest, 
then the probability of the test being truthful to the real state of x is p(y|x), which is called 
the likelihood. This  equals 1 in case of perfect information. We define the posterior model 
of x conditioned on the data y, p(x|y), which is computed using Bayes’ rule in (3) to perform 
Bayesian updating. 

Therefore, the posterior value (PoV) is expressed as follows: 

                                           𝑃𝑜𝑉 = ∑ 𝑝(𝑦). max 𝑦 {∑ 𝐸(𝑜(𝑥, 𝑑))𝑝(𝑥|𝑦)𝑥 }                                (9) 

Where p(y) is the marginal probability. 

Value of Information 

The value of information is simply the difference between the posterior value and the prior 
value.   

                                                    𝐸𝑉𝑃𝐼/𝐸𝑉𝐼𝐼 = 𝑃𝑜𝑉 − 𝑃𝑉                                              (10) 
Irrespective of the type of value of information to compute, PV is always constant. VoI is 
never negative as adding information always has benefits or no impact in the decision-
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making process. The VoI is then compared to the cost of the test to decide whether to proceed 
with data collection. 

4.2 Results 

We acknowledge that the VoI definition and expressions are being used for the first time in 
this type of application. Thus, several sensitivity analyses need to be performed and key 
values computed to validate the method. 

The studied building is assumed to be located in the city of Patras, Greece. The hazard curves 
associated with this location were used to retrieve the expected losses and the PGA on a 
reference rock (PGAr). The PGAr is fixed to 0.43g as well as the Vs30 couple that translates 
our uncertainty and we proceed to the variation of the prior probability. V1 is fixed to 100 
m/s and V2 to 500 m/s in Fig.3. The likelihood probability in case of imperfect information 
is set to 70%. 

Fig.3 - Sensitivity to prior probabilities for the Expected outcomes of the three main decisions in the decision 
tree (left) and EVPI (solid line), EVII (dashed line) for the couple [100,500] m/s (right) 

 
Fig.4 - Sensitivity of EVII to likelihood probability for fixed prior probability (0.5) 

The left-hand graph in Fig.3 displays the expected outcomes in euros (losses) combining the 
construction cost and the expected damage for the three main branches of our decision tree 
Fig.2. In the legend, Ec1 refers to the expected consequences computed from the branch 
associated to performing Design1, Ec2 to Design2 and Ect perfect/imperfect are the expected 
losses after obtaining the perfect/imperfect information and choosing the optimal design. 
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The outcomes for each decision are computed for a range of all possible prior probabilities 
for V1 and V2. The right-hand graph represents the VoI for several prior probabilities. Having 
an imperfect information reduces the VoI independently of the prior probabilities. 

 

 

 

 

 

 

 

 

Fig.4 displays the EVII for fixed prior probabilities and different likelihoods. There is no 
EVII when the test accuracy is 50%. A test with 50% accuracy is of no help as there is 50% 
chance the test being right (or wrong). On the other side, a test accuracy of 100% is 
equivalent to a perfect test and EVII is then equal to EVPI. In our example, increasing the 
likelihood by 10% increases the EVII by around 2000 euros. The increase seems to have a 
linear behaviour. This linearity is further confirmed when visualising, in Fig.5, the EVII for 
several prior probabilities and different likelihoods where we can also verify that EVII for a 
test accuracy of 100% is equal to the EVPI. This is an additional validation of the method. 
Moreover, the less accurate the test, the smaller the range of prior probabilities given to V1 
and V2. If we take the example of a test that is 90% accurate, we find that beyond a V1 prior 
probability of about 85%, there is no value to the additional information. For any likelihoods, 
there is no value of information when the prior probability is equal or above the likelihood. 
In other words, it is not worth conducting a test if we are more confident about the value of 
the measure of interest than the test itself. 

5.Conclusion 

In SHA and earth sciences in general, the EVII is more likely to be used as it expresses the 
uncertainties regarding the tests conducted to infer information. The developed method has 
been shown to validate the intuitive behaviour of VoI regarding the inputs. VoI decreases 
when information is imperfect, which makes EVII always smaller than EVPI. The level of 
confidence given to a test has a strong correlation with the prior probabilities when it comes 
to VoI. A test with less accuracy than the prior probabilities set by available data and experts’ 
knowledge is not worth conducting. Moreover, the more accurate the test the higher the 
benefits of obtaining the information. Another important finding is that for site rock 
conditions, uncertainties regarding the Vs30 have little influence on the EVPI and it might 
not be worthwhile to conduct tests to obtain more information. Calculations using extreme 
and specific values have enabled a validation of the presented method.  

Fig.5- Sensitivity of EVII to prior probability for different likelihoods and comparison with EVPI 
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These sensitivity analyses highlight the parameters and inputs that influence most the VoI. 
This stresses the fact that some inputs should be estimated and chosen carefully in order to 
have a high reliability in the VoI estimation. The prior probability given to the possible 
values of the uncertain parameter Vs30 was shown to highly influence the EVI. Thus, it is 
important to wisely and thoroughly use available information to infer the prior probabilities. 
The estimation can be given, for example, through experts from past experiences as well as 
through Empirical Bayes Estimation, which  has proven to provide a good estimate of these 
probabilities in other fields (Carlin & Louis, 1996; Casella, 1985; Efron, 2010; Robbins, 
1956). 

We recall that the binary uncertainty assumed for the distinction of interest Vs30 is not 
realistic, especially when V1 and V2 have a large gap. Uncertainties for a parameter like Vs30 
should be expressed continuously and ideally through probability distributions. Methods in 
the literature have proved to infer probability distributions from available data (e.g., 
Empirical Bayes Theory). An ongoing stage of the research aims at developing the method 
to express uncertainties with probability distributions. Nevertheless, this method is 
applicable to other case studies where choices or decisions can be binary. For example, this 
simplified method can be used when there is uncertainty about a fault being active or inactive 
(i.e. it does not generate large earthquakes). In this case, this method can be a great tool in 
justifying in-situ or satellite remote sensing data collection as well as estimating the 
maximum worthwhile investment in time and money. 
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