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Abstract: Alzheimer’s disease (AD) is a significant health concern with enormous social and economic
impact globally. The gradual deterioration of cognitive functions and irreversible neuronal losses are
primary features of the disease. Even after decades of research, most therapeutic options are merely
symptomatic, and drugs in clinical practice present numerous side effects. Lack of effective diagnostic
techniques prevents the early prognosis of disease, resulting in a gradual deterioration in the quality
of life. Furthermore, the mechanism of cognitive impairment and AD pathophysiology is poorly
understood. Microfluidics exploits different microscale properties of fluids to mimic environments
on microfluidic chip-like devices. These miniature multichambered devices can be used to grow cells
and 3D tissues in vitro, analyze cell-to-cell communication, decipher the roles of neural cells such
as microglia, and gain insights into AD pathophysiology. This review focuses on the applications
and impact of microfluidics on AD research. We discuss the technical challenges and possible
solutions provided by this new cutting-edge technique to understand disease-associated pathways
and mechanisms.

Keywords: Alzheimer’s disease; microfluidics; lab-on-chip; 3D culture; organ-on-chip

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative condition in which cognition
and memory formation decline progressively due to an irreversible loss of neurons in the
hippocampus and cortex regions [1]. It is characterized by the extracellular formation
of senile plaque mainly constituted by amyloid-beta 42 (Aβ42)peptide and intracellular
neurofibrillary tangles (NFTs), composed of hyper-phosphorylated paired helical filaments
of the microtubule-associated protein tau (MAPT) [2–4]. Apart from Aβ and tau pathol-
ogy, processes such as impaired synaptic functions, neurotransmission dysfunction, and

Life 2021, 11, 1022. https://doi.org/10.3390/life11101022 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0001-6413-8509
https://orcid.org/0000-0003-4693-0513
https://orcid.org/0000-0001-7801-2966
https://orcid.org/0000-0001-9486-4069
https://orcid.org/0000-0003-2730-5974
https://doi.org/10.3390/life11101022
https://doi.org/10.3390/life11101022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11101022
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11101022?type=check_update&version=1


Life 2021, 11, 1022 2 of 24

microglia-mediated inflammation play a key role in AD pathogenesis [5]. Primary symp-
toms of the disease comprise memory deterioration, apathy, depression, and changes in
personality and behavior that finally require full-time medical care [6]. The majority of
AD cases present as a late-onset sporadic form (SAD) occurring in individuals aged 65
or older. SAD shows a complex etiology and results from a combination of genetic and
environmental influences. To date, the only confirmed genetic risk is represented by the
presence of the ε4 allele of Apolipoprotein E (ApoE), the main carrier of cholesterol in the
central nervous system (CNS). This variant accelerates the onset of AD by enhancing the
Aβ deposition into plaques and reducing its clearance from the cerebral tissue [7]. On the
contrary, the rare early-onset forms of AD are familiar with FAD with an autosomal domi-
nant pattern of inheritance in one of the known genes, APP, PSEN1, and PSEN2, encoding
the Aβ precursor protein (APP), presenilin-1, and presenilin-2, respectively. As all of these
are involved in the maturation and processing of APP, mutations in these genes result in
increased production or aggregation of Aβ peptides [8]. The ‘World Alzheimer Report
2019’ shows that AD accounts for more than 70% of the total dementia cases diagnosed
worldwide [9,10], therefore an early diagnosis of AD is crucial for disease management [11].

Despite AD prevalence and many years of research, several aspects of its complex
etiology remain unexplored [12,13]. Moreover, the current therapeutic strategies are merely
symptomatic, attenuating only behavioral symptoms but presenting several side-effects
such as confusion, dizziness, depression, constipation, and diarrhea, reported in most med-
ications [14]. Therefore, a more in-depth understanding of the molecular mechanisms un-
derlying AD pathogenesis, revisiting numerous existing concepts, and effective screening
for therapies aimed at halting or preventing neurodegeneration in AD is required [15,16].
The lack of suitable experimental models has also presented a bottleneck in understanding
the AD pathological mechanism. Moreover, widely accepted notions such as the deposition
of Aβ and hyperphosphorylation of microtubular protein tau also lack a direct correlation
between the deposition or phosphorylation and the disease progression [17,18].

In recent years, microfluidics is emerging as an economical and versatile platform
for biologists to mimic and control the cellular microenvironment in order to model
diseases, study cell behavior from single- to multi-cellular organism level, and develop
multiple experiments in miniaturized devices suitable for diagnostics, biomedical analysis,
pathological studies of neural degeneration and drug developments [19,20]. These devices
are popular, especially for their flexibility of design, experimental flexibility, leverage of a
sufficient number of controls, handling single cells, controlled co-culture, reduced reagent
consumption, reduced contamination risk, and efficient high throughput experimentation.

The past decade has witnessed a surge in the use of microfluidics technology in
neurodegenerative diseases to gradually minimize biomedical research dependence on
in vivo models [21]. These platforms have been widely implicated in growing 3D gels
that could be further applied in producing a three-dimensional tissue representative of
human organs. With the help of these miniaturized devices, the growth of neurons,
astrocytes, and microglia have also been facilitated in the form of triculture models [22].
This review describes the latest advances in the progress of microfluidics technologies and
elaborates various ways through which the domain of microfluidics presents solutions
to the management of neurodegenerative disease, with a particular focus on AD. First,
we emphasized the applications of microfluidics in the study of disease pathophysiology
and the early detection of AD with the help of known biomarkers at a miniaturized level.
Subsequently, we examined the impact of microfluidics on accelerating AD research. We
then discussed the possible challenges that this field needs to overcome and the directions
to be taken before realizing its full-fledged application in the AD field.

2. Revisiting Alzheimer’s Disease: What Is Known?
2.1. History

AD was first diagnosed by a German psychiatrist and neuropathologist, Alois Alzheimer,
in 1906 [16]. However, after 1907, the behavioral and physiological changes in AD and
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naturally occurring senility and dementia were differentiated [23]. Symptoms such as
failure of storage and retrieval of memory, confusion, and poor judgment have been
categorized as characteristic features of AD. Other symptoms include language disturbance,
agitation, withdrawal, and hallucinations followed by occasional seizures, increased muscle
tone, and mutism [1,9,10,12]. Even after decades of research, the social and economic
impact of the disease has not decreased, and the projections of the World Alzheimer Report
2019 predict more than 150 million cases by 2050 [9,10,12]. Due to remarkable advances
in science and technology, increased understanding of the disease pathophysiology and
causes has led to improved diagnosis and treatment [13,24].

2.2. Causes

Several hypotheses have been proposed to define the etiology of AD based on observed
clinical, neuropathological features: cholinergic hypothesis, amyloid cascade hypothesis,
and tau propagation hypothesis [25]. Some other potential hallmarks of Alzheimer’s de-
mentia are mitochondrial dysfunction, calcium deregulation, neurovascular disintegration,
neuroinflammation, metal ion dyshomeostasis, and defective lymphatic system [9,26–28].
However, the most well-known and defining features representing AD are Aβ accumula-
tion, phosphorylated tau aggregation, and neuroinflammation [1,29,30]. In Figure 1, we
have summarized the various AD hallmarks in the Alzheimer’s brain and have shown
how excessive amyloid deposition leads to neuronal disease. As mentioned above, the
amyloid cascade hypothesis postulates that APP metabolism and Aβ42 accumulation are
the most important triggering factors for AD pathogenesis [31]. This hypothesis holds the
accumulation of Aβ peptide responsible for the eventual loss of synapses and neuronal
cell death [3,28]. An increasing body of evidence supports toxic Aβ as the primary cause
of pathology, which can initiate neuronal dysfunction by inducing granulovacuolar de-
generation, astrocytosis, microgliosis, and deficient endosomal transport when deposited
extracellularly [32]. Moreover, the Aβ can also deposit around the small blood vessels of
the brain, leading to the development of cerebral amyloid angiopathy (CAA), a common
neuropathological condition usually occurring in AD patients, probably caused by the
failure of Aβ clearance [33].

Tau hypothesis correlates AD pathology with the hyperphosphorylation and intra-
cellular deposition of neurofibrillary tangles (NFTs) of microtubular protein tau [17]. It
further elucidates that the propagation of the pathological form of tau protein from one
neuron to another may drive the disease aggressively. Few studies linking both the above
hypotheses highlight that aggregation of amyloid plaques leads to the activation of vaious
kinases, causing hyperphosphorylation of the tau protein [18]. The deposition of plaques
and NFTs initiate a neuroinflammatory response by activating microglia and astrocytes
that detect aggregated proteins and promote the release of pro-inflammatory cytokines
such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, as well as reactive
oxygen species (ROS), giving rise to a chronic inflammatory process [34–37]. The link
between Aβ and tau aggregation may be related to microglia activation. Indeed, it has
been reported that soluble Aβ oligomers can activate microglial cells that in turn promote
the hyperphosphorylation of tau with the subsequent formation of NFTs via cytokine
release [38]. In addition to microglia and astrocytes, recent evidence has suggested that
oligodendrocytes can also play a role in AD pathogenesis. Several cellular processes such
as neuroinflammation and oxidative stress may trigger oligodendrocyte dysfunction and
Aβ can impair the maturation of oligodendrocyte progenitor cells and the consequent
formation of the myelin sheath [39]. Furthermore, the neuroinflammation and dysfunction
of the blood–brain barrier (BBB) resulting from enhanced permeability and reduced expres-
sion of tight junction proteins due to increased production of Aβ, overexpression of matrix
metalloproteinases (MMP)-2/-9, and ApoE, are also often independently linked with AD
pathogenesis [40–44].
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The cytokines (IL-33) produced in the due process help in Aβ clearance whereas IL-8 and IL-1β cause synaptic dysfunction.
This molecular mechanism reflects the complex.

2.3. Diagnostic Biomarkers and Therapeutics

The definitive diagnosis of AD is only possible by post-mortem histopathological
assessment of extracellular Aβ plaques and intraneuronal NFTs [45]. Although the treat-
ment is mainly supportive with symptoms managed on an individual basis, some of the
therapeutic options approved for AD from the FDA include the cholinesterase inhibitors
such as donepezil, rivastigmine, galantamine (reversible AChEIs), and memantine (NMDA
inhibitor) [14,46–49]. However, the effectiveness of these drugs is often questioned [50]. As
the pathological changes silently occur in the brain over years before the onset of symptoms,
the current challenge is the search for novel biomarkers for an easy and accurate diagnosis
of the disease in its initial stages. The actual diagnostic methods rely on the measures
of Aβ42, phosphorylated (p-tau), and total tau (t-tau) protein levels in the cerebrospinal
fluid (CSF) of patients, in combination with advanced neuroimaging techniques such as
magnetic resonance imaging (MRI) and positron emission tomography [51]. Different
reliable biomarkers comprising several signaling proteins in blood plasma have also been
discovered that can detect Alzheimer’s with approximately 90% accuracy even in patients
with a mild cognitive impairment (MCI) which may later progress to AD [52]. A similar
study with serum proteins, including a disintegrin and metalloprotease 10 (ADAM10),
also retained diagnostic accuracy for the early diagnosis of AD [53]. Several blood-based
microRNAs (Let-7b and microRNA-206) have also been found to have a strong correlation
with cognitive decline and may be used as predictive biomarkers for AD [54]. Although
promising, the use of these blood biomarkers in the clinical setting requires validation
in further studies and standardization of pre-analytical sample processing and different
methods.
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3. Unsolved Mysteries in Alzheimer’s Disease Research

There are long-standing differences in opinion regarding the roles of soluble Aβ fibrils
and tau tangles in ameliorating neurotoxicity, inflammation, and AD initiation. Due to the
overrated role of amyloids in AD pathology, immunization against Aβwas presumed to
be an effective strategy, which unfortunately failed to deliver expected outcomes in clinical
trials [30,55]. In subsequent studies, failure to reverse AD pathology following Aβ42
targeting or delaying plaque formation led researchers to believe that Aβ42 deposition
is not the sole reason for AD pathogenesis [56]. Nonetheless, this observation and other
findings, such as genetic mutations in presenilin-1/-2 and abnormal APP processing in AD,
emphasized a significant shift in the focus towards alternative theories [57,58].

The believers in tauopathy also have found challenges in establishing the correlation
between the biochemical observations of tau tangles and the clinical progression of the
disease in the patients [59]. The specific tau species involved in neurotoxicity are ambigu-
ous and arduous to decipher from the results obtained in the macroscopic experimental
setup [60]. Recent evidence indicates that it is not only the amyloid plaques but also
the intermediate amyloidic species and oligomeric assemblies that are neurotoxic and
may exaggerate the disease pathology [61,62]. The major drawback experienced in the
current laboratory practices is that it is incapable of assessing these deleterious oligomeric
assemblies due to the problems associated with its separation from the Aβ.

The absence of validated biomarkers, probably due to the inconsistent results pro-
duced due to analytical hindrances such as epitope masking and lack of reproducibility,
prevents early detection of disease symptoms and poses additional challenges [63,64].
More robust investigation of genetic risk factors, the mechanism of receptor-mediated
transport of Aβ and the role of interstitial fluid in regulating the metabolism of Aβ in vitro
models need to be determined.

Activation of astrocytes leads to an exacerbated immune response causing neuronal
damage and degeneration [65]. Contemporary experimental approaches involve mutant or
transgenic animals with disease pathology leading to immense animal mortality [66].

Recently, exosomes have gained considerable attention both as a drug delivery system
and a significant biomarker for diagnostics by offering prognostic information [67,68].
These small membrane-bound extracellular vesicles are ubiquitously released from eu-
karyotic cells to carry and deliver proteins, lipids, and nucleic acids, to the target cells [67].
Though most studies substantiate the benefits of exosomes in the clearance of proteotoxic
burden by transferring neuroprotective substances between neural cells, recent findings
revealed that exosomes are also involved in the transportation of protein aggregates in-
volved in different neurodegenerative diseases [67,69]. Furthermore, these loaded moieties
play a crucial role in AD pathology by spreading Aβ and hyperphosphorylated tau, induc-
ing oxidative/proteotoxic stresses, neuroinflammation, and neuronal loss [68–70]. Since
exosomes may prove to be a significant biomarker, better techniques are required to isolate
exosomes at a large scale and perform experiments at a co-culture level. However, for the
successful implication of these nanovesicles in the domain of exosomes, extensive research
is required to ascertain the probable route of administration and safety aspects for clinical
application.

4. Cellular and Animal Models of AD
4.1. In Vitro Models

The study of AD in vitro has been largely used to elucidate disease pathogenesis at
molecular and cellular levels as well as for drug screening and discovery. Different cellular
models have been developed to study various aspects of AD, including primary cultures,
cancer cell lines, and induced pluripotent stem cells (iPSCs). However, cell culture systems
cannot recapitulate the complex environment of the human brain and the interactions with
other non-neuronal cells [71].
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4.1.1. Primary Cell Lines

Primary cell lines can be derived from transgenic animal or human patients. The major
advantages in the use of these cultures rely on their easy availability and the potential
to obtain different cell types, including specific neuron subtypes. Primary cultures have
been extensively used to investigate the role of Aβ pathology both in astrocytes [72] and
microglia [73]. Primary neurons, mainly derived from the hippocampus and cortex, were
also employed to examine the neuroprotection mechanisms and the effect of Aβ oligomers
on neuron function and apoptosis [74], as well as to reproduce the pathophysiological
events occurring in AD, such as inflammation, altered signal pathways or epigenetic
changes.

4.1.2. Human Neuroblastoma (SH-SY5Y) Cell Lines

Originally isolated from human bone marrow with neuroblastoma, SH-SY5Y cells are
derived from a neuronal lineage in its immature stage. According to the treatment, this cell
line can differentiate into several various neural lineages which phenotypically resemble
mature neuron-like features, including decreased proliferation rate, neuronal morphology,
and expression of neuron-specific markers [75]. In regard to AD, SH-SY5Y cells can be
modified to model some pathological aspects of the disease, such as neurodegeneration
after exposure to Aβ oligomers [76], oxidative stress [77] and apoptosis [78], as well as to
better understand the role of ApoE in AD [79]. Although this model has the potential to
study the known molecular mechanisms associated with AD, it cannot fully recapitulate
specific characteristics of the sporadic forms of the disease and age-dependent risk factors.

4.1.3. iPSCs-Based Models of AD

Recent advances in iPSC technology have revolutionized the study of neurodegenera-
tive disorders, given the limited access to living cells from brain patients. Reprogrammed
from mature somatic cells of both familial (FAD) and sporadic AD (SAD) individuals,
iPSCs can be differentiated into different disease-relevant cell types, maintaining the
patient’s precise genome. The majority of studies performed on iPSC-derived neurons
from fibroblasts of FAD and SAD patients showed high levels of Aβ42 and response to
β- and γ-secretase inhibitors [80–82], as well as increased hyperphosphorylated tau, the
two main pathological hallmarks of AD [81,83]. Regarding other cell types, iPSC-derived
astrocytes from AD patients displayed severe pathology and dysfunction [84]. Addition-
ally, iPSCs have also been used to investigate the role of the ApoE ε4 allele in different
cell types, including neurons, astrocytes and microglia [85]. The inherent limitations of
iPSC-derived two-dimensional (2D) cultures can be partially overcome by the generation
of three-dimensional (3D) organoids, complex self-organized aggregates of different cell
types derived from iPSCs that closely mimic the complexity of the brain’s architecture.
Regarding AD, 3D cerebral organoids successfully recapitulate Aβ deposits, tau pathology
and neuroinflammation [86,87].

4.2. In Vivo Models

In recent decades, different experimental models in various species have been gen-
erated to replicate AD pathology. Invertebrate animal models, including Caenorhabditis
elegans, Danio rerio, or Drosophila melanogaster, have been selected for their short lifes-
pan, well-characterized development and behavior [71]. However, mammalian models,
especially mice, have been commonly used in AD research due to their similar anatomy to
humans and easy manipulation [71].

4.2.1. Transgenic Animal Models of AD

Since the discovery of AD-associated genes, different transgenic animal models have
been generated by introducing the human mutant gene into the animal genome or by delet-
ing a specific gene from the animal genome to develop the pathological hallmarks of AD.
Many transgenic mouse models have been developed so far, harboring mutations in the
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APP, presenilin (PSEN1, PSEN2), MAPT genes or in combination (APP/Tau, APP/PSEN1
double transgenic mice, APP/Tau/PSEN1 triple transgenic mice (3xTg-AD) and five trans-
genic mice (5xFAD). However, these models do not reproduce all AD pathological features,
as they mimic the genetic forms of AD without giving any information on sporadic AD.
Single transgenic mouse overexpressing different mutations in APP gene and APP/PSEN1
double transgenic mice exhibited Aβ plaques and cognitive deficits but failed to develop
NFTs, whereas the tau transgenic model showed NFTs, neuronal loss, and behavioral
and motor impairments without developing Aβ plaques [88]. The two features of AD
pathology were recapitulated with the generation of the APP/Tau double transgenic mice
that displayed Aβ deposition, NFTs and motor deficits, representing a candidate tool to
investigate the interaction between Aβ and tau protein. Compared to single and double
transgenic models, the 3xTg-AD harboring mutations in APP, PSEN1 and MAPT genes
exhibited more severe pathology but slow development of Aβ [89]. To accelerate the plaque
formation, 5xFAD mice co-expressed five AD-linked mutations in human APP and PSEN1
genes, showing thus an early amyloid pathology, but lacking NFTs [90].

As ApoE represents the genetic risk factor for sporadic AD, transgenic, knock-in and
knock-out mice expressing human APOE genes have been generated to investigate the
mechanisms occurring in SAD. Knock-in mice expressing the human form of ApoE ε4 allele
exhibited cognitive deficits [91] and high deposition of plaque or exacerbated tau-mediated
neurodegeneration when crossed with APP or tau transgenic mice, respectively [92,93].

4.2.2. Non-Transgenic Animal Models of AD

Non-transgenic animal models are used not only to study the classical AD hallmarks
but also to model other pathological mechanisms, including oxidative stress, apoptosis,
synaptic dysfunction, neuroinflammation, alterations in gut microbiota–brain axis, or
autophagy [94]. As memory deficits and cognition loss are common traits of aged animals
ranging from rodents to non-human primates, they can be used as a natural model of AD.
Among them, the senescence-accelerated mouse-prone 8 (SAMP8) displayed age-related
learning and memory decline as well as most features related to AD pathogenesis, such as
oxidative stress, inflammation, Aβ plaques, NFTs, altered autophagy activity, and intestinal
flora disruption, representing thus an ideal model to study this disorder [95]. Alternatively,
animals can also be induced to develop AD by cerebral injection with Aβ synthetic peptide
or other chemicals, by administering a high-fat diet to resemble metabolic abnormalities
associated with AD, or generating radiofrequency lesions to the brain to induce cognitive
deficiencies [88].

5. Microfluidics: An Overview and Biological Applications

The interdisciplinary field of microfluidics, derived from molecular biology, molecular
analysis, and microelectronics, emerged in the late 1980s [96]. A timeline of the develop-
ment of microfluidics from these physical and chemical innovations to its application in
biological research has been provided in Figure 2. The emergence of this field began after
discovering physical techniques such as photolithography and soft-lithography, later used
for the fabrication of chips, and is still evolving with further technological advancements.
The emergence of fabrication techniques facilitated the design and fabrication of chip-like
3D structures from solid substrates such as glass, silica, thermoplastics, etc. [96–99]. The
first microfluidic devices or chips were made of silicon and glass. Still, due to their brit-
tle nature, low gas permeability, and costly fabrication methods, they have never been
considered an attractive option in microfluidics. Investigating alternative materials that
could be optically transparent, easy to process, flexible, and comparatively cheap resulted
in the discovery of several materials, which have been examined to date for the making of
microfluidic devices (Table 1).
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For the materials used in designing microfluidic devices, polydimethylsiloxane (PDMS),
an elastomer introduced in the 1990s, is a material of choice for cell co-cultures [99–102].
As PDMS is compatible with cells, microfluidic devices made from it started to be used
for cell biology applications and studies of co-cultures [98,103]. Technology is usually
characterized as an engineering subject. Still, the implementation of the proof-of-concept
experiments in the domain of microfluidics serves biologists and clinicians in enhancing
capabilities in their everyday research. This technology allows the manipulation of small
fluid volumes in a fabricated microscale system and has emerged as an excellent tool in
modern biology. These microscale, multichambered tiny devices can grow cells and 3D
tissues for biology research [20] and has enabled us to recreate experimental conditions at
microscopic levels. This allows manipulation of biological specimens and cells at extraordi-
nary spatiotemporal resolution and reveals otherwise hidden mechanistic insights, leading
to a range of biological applications [104]. Properties such as rapid sample processing and
precise control of fluids in microfluidic technologies have presented an attractive way to
replace traditional experimental approaches. The microliter volumes of reagents mobile in
laminar flow match with the biological microenvironments. Multiple diverse biochemical
assays can be performed in a small volume, and the flow control feature at the micron
level allows for improvement over the traditional macroscale assays. This is widely used
in the imaging, bioinformatics, and molecular biology approaches [105,106]. Integration
of fluid handling and signal detection features in microfluidics has allowed us to design
cheaper yet sensitive point-of-care assay devices for different infectious diseases such as
cancer, AIDS, malaria, SARS, dengue, etc. [107–109]. Even paper-based microfluidics such
as DNA diagnostics have been developed in recent years, which are low-cost, multiplexed
diagnostics [110].

Liquid marble (LM) is also a new type of digital microfluidics (DMF) that can be
employed in a variety of biological applications. Cryoprotectant-free cryopreservation of
mammalian cells using LM-based digital microfluidics is a potential method. This opens
up new ways to cryopreserve rare biological samples without the risk of cryoprotectants
causing toxicity [111]. LM can also be utilized for diagnostic testing, cell culture, and
drug screening in the biomedical area [112]. DMF, a novel multifunctional microfluidics
technology, offers a great deal of potential in the automation and miniaturization fields.
In DMF, discrete droplets containing samples and reagents are controlled to implement
a series of operations via electrowetting-on-dielectric. This process works by applying
electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer.
DMF, unlike microchannels, allows for exact control of various reaction processes without
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the need for complicated pump, microvalve, and tubing networks. Other distinguishing
characteristics of DMF include portability, lower sample consumption, faster chemical
reaction time, versatility, and better integration with other technology types. DMF has been
used in a wide range of fields (including chemistry, biology, medicine, and the environment)
due to its distinct advantages [113]. Droplet-based microfluidics, which can be employed
in drug discovery, transcriptomics, and high-throughput molecular genetics, has recently
been reported. This enables researchers to work with relatively limited materials, such
as primary cells, patient biopsies, or expensive reagents, and to perform tests at very
high throughput (up to thousands of samples per second). The ability to undertake large-
scale genotypic or phenotypic screens at the single-cell level is another advantage of the
technology [114].

Isolated brain tissue, particularly brain slices, can be used to investigate neuronal
function at the network, cellular, synaptic, and single channel levels. Neuroscientists have
perfected ways for maintaining brain slice viability and function, settling on principles
that are strikingly similar to the engineers’ approach to building microfluidic devices.
With respect to brain slices, microfluidic technology may (1) provide better spatiotemporal
control over solution flow/drug delivery to specific slice regions; (2) overcome the tradi-
tional limitations of conventional interface and submerged slice chambers and improve
oxygen/nutrient penetration into slices; and (3) permit successful integration with modern
optical and electrophysiological techniques [115]. Tissue culture (brain tissue slice) and
drug screening have recently been performed using microfluidic platforms. In a study,
microfluidic tissue culture system has been utilized to enable culturing of brain tissue
slices for a sufficiently long period (up to 3 weeks) to facilitate studies on integration of
neuronal stem cells into brain tissue and differentiation into dopaminergic neurons. This
also allows for long-term culturing on a microscope stage for real-time microscopic imaging
during neural stem cell integration experiments in brain slices [116]. This method has the
potential to improve treatment success rates by identifying possible responders earlier in
the treatment process and allowing direct drug testing on patient tissues during the early
stages of drug development [117].

Cell-patterning techniques are also useful for neuron function and activity investi-
gation and are one of the clear advantages of using microfluidics. So far, many neuron
patterning techniques, such as in-mold patterning (iMP), and gel micropatterning by micro-
casting, or by laser or protein patterning, have been reported. Many applications, ranging
from neurodegenerative research to neural computation, require oriented neuronal net-
works with controlled connectivity. An efficient, directed, and long-lasting guidance of
axons toward their target is required to establish such networks in vitro. However, the best
guidance achieved so far relies on confining axons in enclosed micro-channels, making
them difficult to investigate further. iMP improves axon confinement efficiency on the
tracks by 10 to 100 times, resulting in mm-long, highly regular, and fully accessible on-chip
axon arrays. iMP also enables well-defined axon guidance from small populations of
multiple neurons confined at predefined places in µm-sized wells, thereby opening up new
avenues for the construction of complex and precisely regulated neural networks [118].
Gel micropatterning by micro-casting is another neuron patterning approach. By using the
repellency of agarose gel toward cell adhesion, patterned cultures of myoblasts and cortical
neurons can be prepared. This technology is said to be beneficial for repellency-guided
cell patterning in a variety of cell types, with applications in cell–cell interactions and axon
guidance. With the repellency of agarose and no specific molecules for cell adherence,
this technology is user-friendly and useful not just for micro-molding but also for cellular
patterning [119]. Further, Stripe assays have been frequently used as in vitro test systems to
investigate the responses of developing axons, as well as migrating cells, to established or
novel guidance molecules. Silicon matrices are used to produce striped patterns of active
molecules on a surface (referred as a “carpet”), which are then used to culture neurons or
any other cell type. Purified proteins were utilized to produce stripe patterns on a silicon
matrix [120].
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Table 1. Properties of materials used in microfluidic chips.

Properties Inorganic Materials Elastomers Thermoset Thermoplastics Hydrogel Paper

Examples Silicon/Glass PDMS Polyester

Polyethylene,
Polystyrene

Polycarbonate
Polyurethane, Teflon,

Cyclic Olefin
Co-polymer (COC/COP)

Hyaluronic Acid, Agarose,
PEG-DA, Alginate, PMMA,

And Chitosan
-

Biological Use Drug Screening, Assays Assays, Cell Culture Capillary Electrophoresis, DNA
Sequencing, PCR

Study Cell-Cell and
Cell-Matrix Interaction Diagnostics

Young’s Modulus 130–180/50–90 ~0.0005 2.0–2.7 1.4–4.1 Low 0.0003–0.0025

Fabrication
Technique Photolithography Casting, 3D Printing Casting/

Photopolymerization Thermomoulding Casting/Photopolymerization Photolithography,
Printing

Valving Yes Yes No No Yes Yes

Channel
Dimension/Profile <100 nm/3D <1 µm/3D <100 nm/Arbitrary 3D ~100 nm/3D ~10 µm/3D ~200 µm/2D

Thermostability Very High Medium High Medium-High Low Medium

Oxygen Permeability <0.01 ~500 0.03-1 0.05–5 >1 >1

Solvent
Compatibility Very High Low High Medium-High Low Medium

Hydrophobicity Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophilic Amphiphilic

Surface Charge Very Stable Stable Stable Stable - -

Transparency No/High High High Medium-High Low-Medium Low

Cost High Low High Low Medium Low

Disadvantage High Cost, Brittle
Protein Adsorption,

Permeability,
Autofluorescence

Rigid, Poor Conductivity,
Non-Recyclable

Low Melting Point,
Brittle

Non-Adherent, Low
Mechanical Strength

Porous, Sample
Consumption

Reference(s) [121,122] [123,124] [125] [126–128] [129,130] [131]

Abbreviations: PEG-DA, Polyethylene Glycol Diacrylate.
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Since the 2000s, organ-on-a-chiptechnology has been widely proposed and engineered
on the structure and function of tissues and organs 2000 [132]. However, this has evolved
rapidly in the past decade due to advancement in rapid prototyping methods such as 3D
printing, widely used to produce 3D scaffolds for tissue engineering and devices mimicking
a complex microfluidic environment [133]. The first “human-on-a-chip” cell culture systems
to investigate physiological processes and “physiome-on-a-chip” systems to investigate
novel compounds and their side effects on the human body have emerged [132,134–136].
The emulation of the pathophysiology of several neurodegenerative diseases in vitro
through microfluidic devices has also risen rapidly [137,138]. A comprehensive study of
the application of microfluidics in the study of neurodegeneration has been provided in
the following sections. Several microfluidic tools available to date are shown in Figure 3.
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6. Application of Microfluidics in Neurodegenerative Studies

Convergence of biology with engineering is evident in microfluidic devices used
extensively nowadays in different domains of biomedical research contributing to a more
powerful tool for drug delivery, point of care devices, and medical diagnostics [139]. Using
microfluidics, a multichambered device can be readily prepared and used to grow neurites,
glial cells, endothelial cells, and skeletal muscle cells, along with the maintenance of fluid
isolation [140]. These devices can recapitulate organ-like structures and provide an opportu-
nity to investigate organogenesis and disease etiology, accelerate drug discovery, screening,
and toxicology studies by mimicking pathological conditions [141]. Utilizing hydrostatic
pressure and chemical gradient profiles, localized areas of neurons grown in different
compartments could be exposed to different kinds of insults applied insoluble form. A vast
amount of literature exists highlighting applications of microfluidics in neurodegenerative
diseases along with several neurodegenerative-disease-on-a-chip models focusing on AD,
Parkinson’s disease, and amyotrophic lateral sclerosis [137,138,142–145]. Furthermore, the
microfluidic system has been implicated in the study of regulated cell-cell interactions, elu-
cidating the complexity of intercellular interactions in the neuroinflammation of growing
primary brain cells.
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It is well known that many brain cells interact with each other under varied conditions
to cause neuroinflammation. The microfluidic devices facilitate cell culture, e.g., astrocytes
in separate chambers exposed to varied situations. These chambers can be independently
regulated and monitored for analyzing morphology, vitality, calcium dynamics, and elec-
trophysiology parameters [146]. It has provided a platform to study neuronal cell death
within the brain through simultaneous observation of neuronal connectivity and tau pathol-
ogy [147]. Unlike 2D culture systems, these 3D cell cultures and microfluidic lab-on-a-chip
technologies with in vitro microfluidics systems do not lack the mobility of the cultured
cells allowing a better physiological extracellular environment, for examining, neuron-glia
interactions minimizing animal morbidity and mortality [148–150]. With the help of 3D
culture techniques, the discrepancies in the results of in vitro culture systems and animal
models in drug discovery can be avoided [151].

Studying brain development and degeneration at the cellular level suffers several
limitations due to the inability to isolate cell culture systems, the absence of an organized
physiological neuron connection architecture, and so forth. In this regard, microfluidic
systems present an irreplaceable tool to simulate the BBB microenvironment, study ax-
onal functions’ construction of neuronal networks, and develop drug delivery systems
through devices such as axonal diodes and minimized wireless devices [22,145,152–155].
Furthermore, the technology has led to the minimization of animal models in the study
of neurodegenerative diseases, drastically cutting down labor-intensive efforts, time, and
animal mortality. Besides, the discrepancies that arise due to species differences between
humans and animal models can also be minimized.

The lab-on-chip technologies, with features on a similar physical scale to that of cells,
have facilitated the study of complex neural signaling pathways to detect abnormalities,
and check whether the application of inhibitors can reverse these without the requirement
of animals [156,157]. The microfluidic entities can replicate complicated cell biological
processes that control synaptic function, visualize them and manipulate synaptic regions
and presynaptic and postsynaptic compartments independently under in vitro conditions,
and manipulate synapses and presynaptic and postsynaptic cell bodies independently [101].
Studies show that synapses lose native circuitry and order due to the dissociating of neurons
for in vitro studies. The organization of cultured neurons and their connections can be
improved and restored by mimicking the natural circuitry in vivo conditions through
microfluidic approaches [101]. With the help of microfluidic culture devices, two distinct
micro-environments can be established, which may be maintained in fluidic isolation to
allow for targeted investigation and treatment.

A compartmented kind of setup to co-culture a wide variety of cells is required to
understand the mechanisms of a range of neurodegenerative diseases and model neuro-
muscular signaling [158,159]. The microfluidic devices fulfill all these requirements and
mimic the unique anatomical and cellular interactions of this circuit [159,160]. 3D assay
systems have been developed, human brain models allowing the measurement of action
potential and velocity, monitoring cell growth, drug discovery, and study of neural–glial
interactions and various neurotrophic factors [156,161]. Furthermore, microfluidic neuro-
muscular co-culture enables innervation by axons crossing from the neuronal to the muscle
compartment [162]. The same setup can be used to decipher the impact of genetic alter-
ations on the synaptic function of CNS disorders [163]. Therefore, microfluidics applied
widely in various studies of disease, including neurodegeneration. Similarly, its impact on
the research and development of AD is overwhelming and promising.

7. Impact of Microfluidic Tools in Alzheimer’s Disease Research: Recent Developments

Advancements in microfluidic technology have played a significant role in accelerat-
ing the research dedicated to the field of AD, as with other diseases, in terms of both drug
discovery, exploring novel drug targets, understanding the pathophysiology, or discov-
ering novel biomarker-based diagnostics. A list of such initiatives has been provided in
Table 2. Novel AD models, which are more helpful in mimicking the complex features of
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AD pathology, have started to replace the traditional models. The 3D culture platforms
are more suitable for studying AD pathophysiological mechanisms involving cell–cell
interactions, controlled flow dynamics, circulating blood cells, and a brain-specific microen-
vironment. In a study, distinct roles of Aβ on microglial accumulation have been elucidated
by quantifying microglial responses in order to gain insights into the pathophysiological
role of microglial migration [164].

Similarly, the effects of axonal trauma on the neuronal networks of primary brain
cells and the role of astrocytes were studied on a microfluidic platform [165,166]. The ease,
accuracy, and reproducibility of the experiments encouraged a more significant number
of studies. Apart from basic research, many disposable biosensors for early detection of
AD biomarker ADAM10 and Aβ peptide in the serum have also been developed (limit of
detection ~0.35 fg/mL) [167,168]. These low-cost diagnostic kits exhibit better accuracy
and sensitivity than the well-established enzyme-linked immunosorbent assay test.

The emerging role of exosomes in the detection and study of AD has created the
need for large-scale separation of exosomes, which is cumbersome and challenging with
traditional techniques like ultra-centrifugation. Microfluidic devices are emerging as an
ideal tool for exosome separation and have also started to gain recognition as excellent
exosome detection tools [169]. These miniaturized platforms enable quick and cheap
processing of nanovesicles even in the small volumes of liquid samples. Several mi-
crofluidic chips based on 3D neuro spheroids have been developed to mimic in vivo brain
microenvironment [143]. These kinds of 3D culture-based microfluidic chip provide in vivo
microenvironments for high-throughput drug screening and allow the investigation of
dendrite-to-nucleus signaling [170]. Synthetic models with AD features such as aggre-
gation of Aβ, and accumulation of phosphorylated tau protein with neuroinflammatory
activities have been produced to emulate pathological states. A triculture in vitro model
comprising the combination of neurons, astrocytes, and microglia has evolved to address
the physiological features and study the durotactic behavior of cells [171]. The human AD
triculture model provides an opportunity to learn about microglial recruitment, neurotoxic
activities, and astrocytes [171]. A co-culture system with segregated cell bodies, while
simultaneously forming myelin sheaths, could also be obtained through a microfluidics
approach [172].

These studies claim to reverse the demyelination of axons which can recover the loss of
sensory and motor function with the help of co-cultures. The microfluidic devices allow the
study of AD-derived tau propagation from neuron to neuron. Application of microfluidic
cell culture must be undergone only upon testing the cell lines with the PDMS formulations,
checking for leaching of toxic compounds, and examining that the medium composition is
well adjusted to suit the device and cells. Microfluidic systems present a reliable method
to mimic in vivo fluid conditions of neural tissues by generating gradients to allow the
diffusion of two separate fluid phases at the interface [36]. The microfluidic technology
facilitates understanding of the mechanism of Aβ under interstitial fluid flow conditions.
These kinds of 3D culture-based microfluidic chips provide in vivo microenvironments for
high-throughput drug screening [106,132]. These devices have also been used to isolate
axons and the cell body to study the targets of excitotoxicity observed in neurodegeneration.
In another study, the distal axon is the main target. These models can be widely used for
basic mechanistic studies involved in the interaction between neural-glial cells and drug
discovery. The microfluidic approach has also been used to grow a 3D human neural cell
culture wherein a BBB-like phenotype was developed. The generation of such a phenotype
helps in screening novel drugs capable of passing through the BBB to reach deeper neural
tissues [148]. This technology facilitates the culturing of cortical neurons in two distinct
cell compartments of the same microfluidic device to generate neuronal networks [173].
This setup can bring axonal degeneration in the distal axon chamber without degenerative
changes in the untreated somal section [174]. Insults to the selective areas of neurons can
be obtained without affecting other neurons by applying hydrostatic pressure [142].
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Table 2. Details of microfluidic devices and their application in the AD research.

Cells/Peptide Flow Control
Device Flow Surface Active/Passive Application Reference(s)

Axon NA Glass P Study axonal function [154]

Neural Progenitor
Cell

Osmotic
micropump - A Study the neurotoxicity of

amyloid beta [36]

Neuron Osmotic
micropump Glass A & P

in vitro brain model,
high-throughput drug

screening
[143]

Brain Cells
Pneumatically-

driven
pumps

Polysulfone P To provide MPSs for in vitro
drug discovery [175]

Aβ42 Peptide Precision pump Glass A Aβ (1–42) detection [168]

Aβ Peptide Syringe - A - [176]

Axons N/A Glass P Study impaired axonal deficit [156]

Axons N/A MEA P Investigate axonal signals in
developmental stage [177]

Neurites Syringe Glass A Study durotactic behavior of
cells and neurite growth [161]

Axons Gravity/Hydrostatic
pressure PCB/Glass P Study axonal physiology and

modeling CNS injury [178]

Soma and Axon N/A Glass P

Compartmentalizing the
network structure

into interconnected
sub-populations

[179]

Hippocampal
Neuronal/Glia

Cells
Pressure gradient Glass P

Probing the functional
synaptic connectivity between

mixed primary
hippocampal co-cultures

[163]

Dendrite N/A PDMS NM Investigate
dendrite-to-nucleus signaling [170]

Oligodendrocyte N/A Glass P - [172]

Drg/Mc3t3-E1 N/A Glass NM

Mimicking the in vivo
scenario to study the

interaction between the
peripheral nervous system

and bone cells

[160]

Nmj Pipette Glass N/A

Study subcellular
microenvironments, NMJ
formation, maintenance,

and disruption

[162]

Axons Pipette Glass P Perform drug
screening assays [180]

Dendrites and
Somata Syringe Glass A

Manipulate synaptic regions
and presynaptic and

postsynaptic compartments
in vitro

[101]

Glial Cells/Motor
Neurons N/A Glass P

Study interactions with glial
cells and other skeletal cells in

the chamber
[159]
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Table 2. Cont.

Cells/Peptide Flow Control
Device Flow Surface Active/Passive Application Reference(s)

Astrocyte N/A acrylic plate P

AD triculture model showing
beta-amyloid aggregation,

phosphorylated tau
accumulation, and

neuroinflammatory activity

[144]

Tau N/A Glass P Study effects of tau on
mitochondrial transport [181]

(Aβ) Peptides N/A Glass P

Study effects of local Aβ
stress on neuronal

sub-compartments and
networks

[182]

ADAM10 Syringe N/A A
ADAM10 biomarker detection

in plasma and
cerebrospinal fluid

[167]

Tau N/A Glass P Quantify AD-derived
Tau propagation [147]

Aβ N/A Glass P Study roles of Aβ on
microglial accumulation [183]

Aβ Syringe
Overflow

microfluidic
networks

A

Study cell-to-cell
communication, role of

astrocytes derived from cortex
and hippocampus on

neuronal viability

[146]

Axons - Glass - Study mechanisms of indirect
axonal excitotoxicity [174]

Neurites Hydrostatic
pressure

Glass and
Polystyrene P Grow neuronal culture [142]

Cortical Neurons Pressure difference Glass P
Synthesize experimental

models emulating
pathological states

[173]

Ren-WT/Ren-AD
Cells N/A Glass P

Grow 3D human neural cell
culture, screen novel drugs
capable of passing through

the BBB to reach deeper
neural tissues

[148]

Protein N/A Glass P Detect protein aggregation [184]

Axons Hydrostatic
pressure

Glass or
Polystyrene P Study localized axon-glia

interaction and signaling [185]

Axons N/A Glass P Examine axonal trauma in
neuronal networks [166]

Axons-glia Hydrostatic
pressure Glass P Study axon-glia interactions [186]

Neurites Syringe Glass A Investigating chemotaxis
of neutrophils [187]

Abbreviations: MPSs, Micro-physiological systems; DRG, Dorsal root ganglion; NMJ, Neuromuscular junction; MEA, Microelectrode arrays.

8. Challenges in the Application of Microfluidics in the Alzheimer’s Disease Research

Although microfluidics provides a state-of-the-art facility that enables investigations
in biomedical research, there are many challenges that need to be addressed before the
optimal utilization of this field’s potential. Experts believe that the area of microfluidics
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research needs to grow further in order to outperform existing laboratory methods and
overcome barriers that hinder researchers from adopting microfluidic-based devices as a
common research tool.

First of all, the lack of precise fluid handling techniques at such a microscopic level
poses great difficulty in attaining the exact quantity of reagents for performing molecular
experiments. Though achieved once, it becomes difficult to replicate the experiments
with acceptable accuracy. The second major problem is that it is difficult to scale up the
experiments under the same experimental conditions with the same volume of reagents.
This is because of inability in fluid handling and duplicating culture or reaction conditions.
Often cells may respond differently toa change in the substrate of microfluidic devices.
Thirdly, the majority of the culture protocols have been optimized on polystyrene culture
plates, a significant component in macroscale devices, unlike microfluidic cell culture
devices that use PDMS. New production techniques favoring mass production such as
microfluidic hot embossing in polystyrene have been found useful in minimizing the risk of
translation failure in microfluidic devices, yet PDMS is the most commonly used substrate
for fabricating these devices [188].

Any variation in the reagent volume or reaction conditions leads to inaccurate results
and protocols. Moreover, a direct comparison with the macroscale experiments become
very difficult as a change in the substrate may hinder the transition of the protocols to
the microscale levels. Studies indicate that PDMS may absorb or adsorb the biomolecules
from the medium, causing biased experimental conditions [189,190]. Absorption and/or
adsorption of reagents will alter the reaction volumes, which is another demerit that
microfluidic devices currently face. In addition, we do not know whether PDMS, a material
known for its transparency and gas permeability, has any impact on cellular behavior. Since
it is the material of choice at present, ascertaining its effect on cellular behavior is essential.

Excessive permeability, technical robustness, and other properties might lead to sam-
ple drying and change in osmolarity, posing a considerable obstruction. Samples collected
on chips/microfluidic channels for analysis using chip-based PCR, histochemistry, western
blots, or MS-Spectrometry will fail to give accurate results upon a slight change in the
volume of reaction constituents [104,191]. Additionally, these experiments require the
reagents to be properly mixed, but microfluidics produces slow diffusive mixing due to
laminar flows, posing a major limitation for these systems wherein fast homogenization is
required [192].

The lack of a universal blood substitute or standard culture media that supports
all types of tissue is an additional setback. Other drawbacks that must be addressed
in the future for the optimal application of microfluidics in Alzheimer’s research is its
interdisciplinary nature, wherein standardized protocols are generally absent. A combined
effort of engineers and molecular biologists is required to fabricate new device designs
and carry out biologically relevant experiments [36]. As a range of cell lines are cultured in
these devices, generalization in device designs is difficult.

It is well known that physical parameters such as flow, pressure, temperature, pH,
and real-time monitoring are equally important in carrying out biological experiments with
accuracy. To ascertain these parameters, newly designed chips are now well integrated with
the in-line sensors and microfluorimetric imaging facilities, but the chip still lacks features
such as feedback control, continuous monitoring, and experimental sample processing.
Unlike macroscopic laboratory practices, an automated control system is required to
expand the domain of users and replace the 2D or 3D culture systems. The 3D tri culture
AD model is gaining popularity as it is undoubtedly advanced over in vitro human AD
models. Nonetheless, physiologically relevant in vivo studies are still required to confirm
its clinical utility [144].

9. Conclusions

Even after a century of extensive research, the field of AD requires more work in the ap-
propriate direction to come up with effective diagnostics and therapeutic cures [12,56,193].
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The crucial research problems are challenging with current macroscopic laboratory equip-
ment and practices. The research is at a crossroads where rigor is required to determine
the right direction and appropriate focus. Microfluidic systems facilitate work on func-
tional organs at the level of molecular analysis, significantly minimizing the complications
involved in handling in vivo systems. These devices outperform age-old methodologies
through features such as rapid sample processing, fluid control, flexibility of design, con-
trolled co-culture, reduced reagent consumption, low contamination risk, and efficient high
throughput experimentation. Undoubtedly, these novel neurotechnological tools are very
useful in gaining an in-depth understanding of the brain’s functions and discovering novel
therapeutic strategies for neurological disorders like AD. However, the extent to which this
technology can serve in AD detection and management is still in a nascent phase. This
is because the technology has not been developed to recapitulate biological responses to
various stimuli such as chemicals or toxins. Although organs-on-chips may lead to the
identification of biomarkers and validation of lead drug candidates, clinically relevant
PK/PD models are required to determine the drug doses. In this regard, better scaling
approaches to keep an account of fluid flows and volumes of distribution would ensure
functional PK/PD models. It is doubtful that organs-on-chips will replace animal testing
anytime soon, as the organ function and regulatory requirements are highly complex.
Nonetheless, these low-cost techniques are up-and-coming and have accelerated the pace
of AD research.
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