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Abstract: Many systems in the real world are periodic due to periodic phenomena in nature. Periodic hybrid stochastic
differential equations are often used to model them. In many situations, it is inappropriate to study whether the solutions
of periodic hybrid stochastic differential equations will converge to an equilibrium state (say, 0 or the trivial solution)
but more appropriate to discuss whether the probability distributions of the solutions will converge to a stationary
distribution, known as stability in distribution. This paper aims to determine whether or not a periodic stochastic state
feedback control can make a given nonlinear periodic hybrid differential equation, which is not stable in distribution, to
become stable in distribution. We will refer to this problem as stabilisation in distribution by periodic noise. There is little
known on this problem so far. This paper initiates the study in this direction.

1 Introduction

Many practical systems may experience abrupt changes in
their structure and parameters. These practical systems include
electric power systems, the control system of a solar thermal
central receiver, manufacturing systems, financial systems.
Hybrid ordinary differential equations (ODEs) and stochas-
tic differential equations (SDEs) have been widely used to
model these systems (see, e.g., [5, 15, 16, 40, 42, 48, 49]).
On the other hand, periodicity (e.g., seasonal changes) is
a natural phenomena which occurs in many practical sys-
tems too. Naturally, many authors have devoted their interests
to the study of periodic hybrid ODEs and SDEs (see, e.g.,
[4, 9, 13, 23, 25, 38, 44, 45]).

Since systems in the real world often need to run for a
long period of time, their stability is one of the major con-
cerns. On the asymptotic stability of SDE systems, there are
two fundamental categories: (ASE) asymptotic stability of an
equilibrium state; (ASD) asymptotic stability in distribution.
ASE is to study whether the solutions of a given SDE system
will tend to the equilibrium state (e.g., 0 as in most papers)
in moment or in probability; while ASD is to study whether
the probability distributions of the solutions of the given SDE
system will converge to a probability distribution, known as
stationary distribution. There is an intensive literature on ASE
(see, e.g., [6, 11, 19, 30, 34, 37] and many others). The liter-
ature on ASD is much less than ASE but has been growing
quickly for the past 10 years (see, e.g., [46, 51, 52]), in par-
ticular, several recent papers [21, 22, 50]. The reason why
there are fewer papers on ASD than ASE is because the math-
ematics involved is much more complicated than that used
for the study of ASE but certainly not because ASD is less

important. In fact, it is inappropriate to study ASE for many
stochastic hybrid systems in the real world but more appropri-
ate to study ASD. For example, for many population systems
under random environment, the stochastic permanence is a
more desired control objective than the extinction (see, e.g.,
[7, 8, 17]). In this situation it is useful to investigate whether or
not the probability distribution of the solutions will converge
to a probability distribution (i.e., ASD), but not to zero (i.e.,
ASE) (see, e.g., [17, 31, 43]). The two stability categories can
also be illustrated by the control of Covid-19. There are essen-
tially two control strategies: one is to suppress infected to 0
but the other is to live with Covid-19. The former is to stabilise
the infected to 0 with probability 1 (i.e., ASE), while the lat-
ter is to stabilise the distribution of the infected to a stationary
distribution (i.e., ASD).

We have here just mentioned the concept of control. It
is a normal practice that a feedback control is used to make
the controlled system to be stable if a given system is not and
this is known as stabilisation by feedback controls. For SDE
systems, most of papers on the stabilisation use the feedback
controls in the drift term, referred to as deterministic feedback
controls for convenience (see, e.g., [19, 41, 47]). Neverthe-
less, there are some papers where feedback controls driven by
Brownian motions, referred to as stochastic feedback controls
for convenience, are used (i.e., controls are in the diffusion
term). Comparison between deterministic and stochastic feed-
back controls, in particular, some advantages of the latter can
be found in, e.g., [32]. In particular, stochastic feedback con-
trols have been used or observed in many real world systems.
For example, the stochastic volatility stabilise the financial
markets (see, e.g., [14] and the control here is the volaility);
the environmental noise suppresses explosion in population
dynamics (see, e.g., [33] and here the control is the natural
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environmental noise), noise suppresses or expresses exponen-
tial growth in biological and ecological systems (see, e.g., [12]
and here the control is noise again). The pioneering work on
the latter was due to Hasminskii [20, p.229], who investigated
how an ODE system could be stabilised by using two white
noise sources. The theory on stabilisation driven by Brownian
motion has since then been developed by several authors (see,
e.g., [2, 3, 10, 26, 28, 35, 39]). It is noted that all of the existing
papers in this area aim to make the solutions of stochastically
controlled SDEs to tend to the equilibrium state (i.e., 0 by
default) with probability 1 (i.e., in the area of category ASE).

However, there is so far little known on the problem: if
a stochastic feedback control can make a given unstable sys-
tem stable in distribution. The aim of this paper is to address
this problem. To explain more precisely in mathematics, we
assume that the given unstable system is described by a peri-
odic hybrid ODE driven by a continuous-time Markov chain
of the form

ẋ(t) = f(x(t), r(t), t), (1.1)

where x(t) is in general referred to as the state and r(t) is
regarded as the mode and is modelled by a Markov chain
on a finite state space S = {1, 2, · · · , N}. (The notation used
in this section will be explained in more detail in the next
section). We assume that the coefficient f is periodic in t with
period h, that is

f(x, i, t) = f(x, i, h+ t) ∀(x, i, t) ∈ Rn × S× R+.

Our aim is to discuss if we can design a periodic feedback con-
trol driven by anm-dimensional Brownian motionB(t) of the
form u(x(t), r(t), t)dB(t) so that the stochastically controlled
system

dX(t) = f(X(t), r(t), t)dt+ u(X(t), r(t), t)dB(t) (1.2)

becomes stable in distribution, where u : Rn × S× R+ →
Rn×m and is periodic in t with period h, that is

u(x, i, t) = u(x, i, h+ t), ∀(x, i, t) ∈ Rn × S× R+.

Please also note that we have replaced the state process x(t) by
X(t) to highlight the state X(t) of the controlled system dif-
fers from the state x(t) of the given system. For convenience,
we will call the problem above as the stabilisation in distri-
bution by periodic noise. Before we develop our theory, let
us highlight some special features of this paper to close this
section:

• This paper is the first to study the stabilisation in distribution
by periodic noise.
• The challenge lies in the fact that it is much harder math-
ematically to study if the probability distributions of the
solutions to the periodic controlled SDE will converge to a
stationary distribution periodically.
• The usefulness of this paper is because it is more desired to
have the property of stability in distribution for many systems
in the real world, e.g., the control of Covid-19.

2 Notation and Definition

Throughout this paper, unless otherwise specified, we let Rn
be the n-dimensional Euclidean space and B(Rn) denote the

family of all Borel measurable sets in Rn. If x ∈ Rn, then
|x| is its Euclidean norm. Let R2n

0 = {(x, y) ∈ Rn × Rn :
x ̸= y}. If A is a vector or matrix, its transpose is denoted
by AT . If A is a matrix, its trace norm is denoted by |A| =√

trace(ATA) while its operator norm is denoted by ∥A∥ =
sup{|Ax| : |x| = 1}. If A is a symmetric matrix, denote by
λmax(A) and λmin(A) its largest and smallest eigenvalue,
respectively. By A > 0 and A ≥ 0, we mean A is positive and
non-negative definite, respectively. If both a, b are real num-
bers, then a∧b = min{a, b} and a∨b = max{a, b}. Let N+

denote the set of nonnegative integers. If G is a set, IG(·)
denotes its indicator function, that is IG(x) = 1 for x ∈ G and
0 otherwise. We set inf ∅ = ∞, where ∅ denotes the empty set.
Moreover, x := y means x is defined by y while y =: xmeans
y is denoted by x.

We let (Ω,F , {Ft}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual con-
ditions (i.e. it is increasing and right continuous while F0

contains all P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T

be an m-dimensional Brownian motion defined on the proba-
bility space. Let r(t), t ≥ 0, be a right-continuous irreducible
Markov chain on the probability space taking values in a finite
state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N
given by

P{r(t+∆) = j|r(t) = i} =

{
γij∆+ o(∆) if i ̸= j,

1 + γii∆+ o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j
if i ̸= j while γii = −

∑
j ̸=i γij . We assume that the Markov

chain r(·) is independent of the Brownian motion B(·).
For a positive number h, denote by Kh the family of

càdlàg (right continuous with left limits) periodic functions κ
from R+ to [0, 1] with period h. If κ ∈ Kh, we set κ(ν) =
(1/h)

∫h
0 κ

ν(s)ds for ν = 1, 2, where throughout this paper
we write (κ(s))ν = κν(s). Denote by Ch the family of con-
tinuous functions ξ from [0, h] to Rn with norm ∥ξ∥h =
sups∈[0,h] |ξ(s)|. Denote by P(Ch) the family of probability
measures on Ch. For P1, P2 ∈ P(Ch), define the Kantorovich
metric dΦ by

dΦ(P1, P2) = sup
ϕ∈Φ

∣∣∣ ∫
Ch

ϕ(ξ)P1(dξ)−
∫
Ch

ϕ(ξ)P2(dξ)
∣∣∣

where

Φ ={ϕ : Ch → R satisfying |ϕ(ξ)− ϕ(ζ)| ≤ ∥ξ − ζ∥h
and |ϕ(ξ)| ≤ 1 for ξ, ζ ∈ Ch}.

It is known that (Ch, dΦ) is a complete metric space (see, e.g.,
[18] for the details on the Kantorovich metric).

Let us consider the stochastically controlled system
(1.2). For it to be well defined, we impose the following
assumption.

Assumption 2.1. The coefficients f(x, i, t) and u(x, i, t) are
mappings from Rn × S× R+ to Rn and Rn×m, respectively,
and they are continuous and periodic in t with period h (> 0)
and locally Lipschtiz in x. There are moreover periodic func-
tions κ1, κ2 ∈ Kh and non-negative numbers ai, bi, ci (i ∈ S)
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such that

(x− y)T (f(x, i, t)− f(y, i, t)) ≤ aiκ1(t)|x− y|2,
|u(x, i, t)− u(y, i, t)| ≤ biκ2(t)|x− y|,

|(x− y)T (u(x, i, t)− u(y, i, t))| ≥ ciκ2(t)|x− y|2

for all (x, y, i, t) ∈ Rn × Rn × S× R+.

Set K1 := maxi∈S(ai ∨ bi). It then follows from
Assumption 2.1 that

(x− y)T (f(x, i, t)− f(y, i, t)) ≤ K1|x− y|2, (2.1)

|u(x, i, t)− u(y, i, t)| ≤ K1|x− y|. (2.2)

It is hence well known (see, e.g., [30, 36]) that under Assump-
tion 2.1, for any given initial dataX(0) = x̂ ∈ Rn and r(0) =
î ∈ S at time 0, the SDE (1.2) has a unique global solution on
t ≥ 0, which will be denoted by Xx̂,̂i(t) in this paper in order
to highlight the role of the initial data, though we often write it
as X(t) for convenience. We also denote by rî(t) the Markov
chain starting from î at time 0. It is also known that the second
moment of the solution Xx̂,̂i(t) is finite for all t ≥ 0.

To discuss the stability in distribution, we need the time-
homogeneous Markov property (see, e.g., [1]). It is known that
the joint process (Xx̂,̂i(t), rî(t)) is a Markov process on t ≥
0 (see, e.g., [36]) but not time-homogeneous. Fortunately, the
coefficients are periodic with period h. This enables us to form
two time-homogeneous Markov processes for the use of this
paper:

• For any fixed number h̄ ∈ [0, h), {(Xx̂,̂i(h̄+ kh), rî(h̄+

kh))}k∈N+
forms a discrete-time Rn × S-valued time-

homogeneous Markov process.
• For k ∈ N+, define X̃x̂,̂i(kh) = {Xx̂,̂i(kh+ s) : 0 ≤ s ≤
h} which is Ch-valued. Then {(X̃x̂,̂i(kh), rî(kh))}k∈N+

forms a discrete-time Ch × S-valued time-homogeneous
Markov process.

In fact, the time-homogeneous property for both pro-
cesses defined above follows clearly from the periodic prop-
erty of the coefficients. So we only need to explain their
Markov property. It is easy to see that the first process is
Markov by the known fact that (Xx̂,̂i(t), rî(t)) is a Markov
process on t ∈ R+. This first process with h̄ = 0 will play its
important role in this paper and we denote by P (k, x̂, î; dy ×
{j}) its k-step transition probability measure, namely

P (k, x̂, î;B × S) = P((Xx̂,̂i(kh), rî(kh)) ∈ B × S)

for any B ∈ B(Rn) and S ⊂ S. To see why the second pro-
cess is Markov, we observe that once (X̃x̂,̂i(k1h), rî(k1h))

for some k1 ∈ N+ is given, (Xx̂,̂i(k1h), rî(k1h)) is
known and then (Xx̂,̂i(t), rî(t)) for all t ≥ k1h, namely
(X̃x̂,̂i(kh), rî(kh)) for all k ≥ k1, can be uniquely deter-
mined by solving the SDE (1.2) with initial data (Xx̂,̂i(k1h), rî(k1h))
at time k1h, but the information on how the process reaches
(X̃x̂,̂i(k1h), rî(k1h)) starting from (x̂, î) at time 0 is of no

further use. These do not only explain the Markov property
but also show the following important property that

Eϕ(X̃x̂,̂i((k + q)h))

=
∑
j∈S

∫
Rn

ϕ(X̃y,j(qh))P (k, x̂, î; dy × {j}) (2.3)

for ϕ ∈ Φ and k, q ∈ N+. It should be emphasised
that the formula above uses the transition probability
measure of {(Xx̂,̂i(kh), rî(kh))}k∈N+

but not that of
{(X̃x̂,̂i(kh), rî(kh))}k∈N+

. This formula will play a critical
role in the proof of our main theorem in this paper.

Denote by L(X̃x̂,̂i(t)) the probability measure on Ch
generated by X̃x̂,̂i(t). (Please see, e.g., [18], for more details
about probability measures generated by stochastic processes
and Definition 2.2 below.) We can now give the definition of
the stability in distribution.

Definition 2.2. The controlled SDE (1.2) is said to be asymp-
totically stable in distribution if there exists a probability
measure µh ∈ P(Ch) such that

lim
k→∞

dΦ(L(X̃x̂,̂i(kh)), µh) = 0

for all (x̂, î) ∈ Rn × S.

It should be pointed out that in the literature (see, e.g.,
[51]), the asymptotic stability in distribution is in general
defined on the joint process (X̃x̂,̂i(kh), rî(kh)). On the other
hand, given the known fact that the probability distribution of
the Markov chain rî(t) converges to its unique stationary dis-
tribution (see, e.g., [1]), our definition here only on X̃x̂,̂i(kh)
is consistent with that in the literature.

3 Stabilisation by Periodic Noise

In this section, we shall impose some additional conditions on
the coefficient f and the control function u so that the con-
trolled SDE (1.2) will be stable in distribution. However, we
will only address in Section 5 the issue how to design the con-
trol function u to meet these additional conditions given that
f satisfies its corresponding conditions. Let us begin with a
lemma which will play a fundamental role in this section.

Lemma 3.1. Under Assumption 2.1,

P(Xx̂,̂i(t)−Xŷ,̂i(t) ̸= 0 for all t ≥ 0) = 1 (3.1)

for any x̂, ŷ ∈ Rn with x̂ ̸= ŷ and î ∈ S.

Proof. If (3.1) were false, there would exist some
(x̂, ŷ, î) ∈ Rn × Rn × S with x̂ ̸= ŷ such that P(τ <∞) >
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0, where

τ = inf{t ≥ 0 : Xx̂,̂i(t)−Xŷ,̂i(t) = 0}.

We can then find a pair of positive numbers R and T such that
P(Ω1) > 0, where

Ω1 ={ω ∈ Ω : τ(ω) ≤ T and

sup
0≤t≤τ(ω)

(Xx̂,̂i(t, ω)| ∨ |Xŷ,̂i(t, ω)|) ≤ R− 1}.

Recall (2.1), (2.2) and let K1 = 2K1 + 4K2
1 . Define the

Lyapunov function

V1(z, t) = e−K2t|z|−2

for (z, t) ∈ (Rn − {0})× R+. For any ε ∈ (0, |x̂− ŷ|),
define a stopping time

τε = inf{t ≥ 0 : |Xx̂,̂i(t)−Xŷ,̂i(t)| ≤ ε

or |Xx̂,̂i(t)| ∧ |Xŷ,̂i(t)| ≥ R}.

Set Z(t) = Xx̂,̂i(t)−Xŷ,̂i(t). Applying the Itô formula (see,
e.g., [29]), we can show that

EV1(Z(τε ∧ T ), τε ∧ T )− |Z(0)|−2

=E
∫τε∧T
0

e−K2sLV1(Xx̂,̂i(s), Xŷ,̂i(s), rî(s), s)ds (3.2)

where LV1 : R2n
0 × S× R+ → R is defined by

LV1(x, y, i, t) = −K2|z|−2

− |z|−4(2zT f̄ + |ū|2) + 4|z|−6|zT ū|2,

in which z = x− y, f̄ = f(x, i, t)− f(y, i, t) and ū =
u(x, i, t)− u(y, i, t). Applying (2.1) and (2.2) yields

LV1(x, y, i, t)

≤ −K2|z|−2 + (2K1 + 4K2
1 )|z|−2 = 0.

It then follows from (3.2) that

E
[
e−K2(τε∧T )|Z(τε ∧ T )|−2] ≤ |x̂− ŷ|−2.

Noting that τε ≤ T and |Z(τε)| = ε whenever ω ∈ Ω1, we
see from the inequality above that

E
[
e−K2T ε−2IΩ1

]
≤ |x̂− ŷ|−2.

This implies

P(Ω1) ≤ ε2|x̂− ŷ|−2eK2T .

Letting ε→ 0 yields that P(Ω1) = 0. This is in contradiction
with P(Ω1) > 0. The required assertion (3.1) must hence hold.
The proof is complete. ✷

The following is the first technical assumption. We will,
in Section 5, explain how the control function u can be
designed to satisfy it plus Assumption (3.3) below.

Assumption 3.2. There is a constant p ∈ (0, 1) such that

A := diag(σ1 − pa1, · · · , σN − paN )− Γ (3.3)

is a nonsingular M-matrix, where

σi = 0.5p[(2− p)c2i − b2i ], i ∈ S. (3.4)

In the Appendix, we will give a couple of easy-to-check
sufficient criteria for Assumption 3.2 to hold. We need a
number of new notations. Define

(θ1, · · · , θN )T = A−1(1, · · · , 1)T . (3.5)

By the theory of M-matrices (see, e.g., [36, Theorem 2.10 on
page 68]), θi > 0 for all i ∈ S. Set

θ̂ = min
1≤i≤N

θi, θ̌ = max
1≤i≤N

θi, (3.6)

â = min
1≤i≤N

ai, b̌ = max
1≤i≤N

bi, σ̌ = max
1≤i≤N

σi. (3.7)

It should be pointed out that we must have σ̌ > 0. If not, σi ≤
0 for all i ∈ S and hence, by Proposition 8.3 in the Appendix,
A can never be a nonsingular M-matrix. Let us now state our
second assumption.

Assumption 3.3. With the notations above, assume

β̄ :=
1

θ̌
+ pâ

(
1− κ

(1)
1

)
− σ̌

(
1− κ

(2)
2

)
> 0. (3.8)

It is useful to observe that under Assumption 3.2, if
κ2(·) ≡ 1, then Assumption 3.3 always holds. Let us present
four lemmas in order to show our main theorem.

Lemma 3.4. Let Assumptions 2.1, 3.2 and 3.3 hold. Define

β(t) =
1

θ̌
+ pâ(1− κ1(t))− σ̌(1− κ22(t)) (3.9)

for t ≥ 0. Then

∣∣∣ ∫ t
0
β(s)ds− β̄t| ≤ (pâ+ σ̌)h. (3.10)

Proof. Let k be the integer part of t/h, whence kh ≤
t < (k + 1)h. By the properties of the Kh-class functions κ1
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and κ2, we derive

−
∫ t
0
β(s)ds

=

∫ t
0

(
− 1

θ̌
− pâ(1− κ1(s)) + σ̌(1− κ22(s))

)
ds

≤ − t

θ̌
− pâ(1− κ

(1)
1 )hk + σ̌(1− κ

(2)
2 )h(k + 1)

≤ − t

θ̌
− pâ(1− κ

(1)
1 )(t− h) + σ̌(1− κ

(2)
2 )(t+ h)

= −β̄t+ (pâ+ σ̌)h. (3.11)

Similarly, we can show

−β̄t− (pâ+ σ̌)h ≤ −
∫ t
0
β(s)ds. (3.12)

Combining both (3.11) and (3.12) together gives the assertion.
The proof is complete. ✷

Lemma 3.5. Let Assumptions 2.1, 3.2 and 3.3 hold. Then for
any (x̂, î) ∈ Rn × S,

E|Xx̂,̂i(t)|
p ≤ C1(1 + |x̂|p) (3.13)

for all t ≥ 0, where C1 is a positive number independent of
the initial data (x̂, î).

Proof. Fix (x̂, î) ∈ Rn × S arbitrarily and writeXx̂,̂i(t) =
X(t) and rî(t) = r(t) for convenience. It is easy to show from
Assumption 2.1 that there is a positive constant K3 such that

2xT f(x, i, t) ≤ 2κ(t)ai|x|2 +K3|x|,

|u(x, i, t)|2 ≤ κ2(t)b2i |x|
2 +K3(|x|+ 1), (3.14)

|xTu(x, i, t)|2 ≥ κ2(t)c2i |x|
4 −K3(|x|3 + |x|2)

for all (x, i, t) ∈ Rn × S× S. Define a Lyapunov function

V2(x, i, t) = θi(1 + |x|2)0.5pe
∫t
0
β(s)ds

for (x, i, t) ∈ Rn × S× R+, where β(·) was defined by (3.9).
Applying the generalised Itô formula (see, e.g., [36, Theorem
1.45 on page 48]), we can easily show that

EV2(X(t), r(t), t)− θî(1 + |x̂|2)0.5p

= E
∫ t
0
e
∫s
0
β(v)dv

(
β(s)θr(s)(1 + |X(s)|2)0.5p

+ LV2(X(s), r(s), s)
)
ds (3.15)

for t ≥ 0, where LV2 : Rn × S× R+ → R is defined by

LV2(x, i, s)

= 0.5pθi(1 + |x|2)0.5p−1[2xT f(x, i, s) + |u(x, i, s)|2]

− 0.5p(2− p)θi(1 + |x|2)0.5p−2|xTu(x, i, s)|2

+

N∑
j=1

γijθj(1 + |x|2)0.5p. (3.16)

Recalling p ∈ (0, 1), we observe that (1 + |x|2)0.5p−1(|x|+
1) and (1 + |x|2)0.5p−2(|x|3 + |x|2 + 1) are bounded for
x ∈ Rn. Using (3.14) and (3.5), we then derive that

LV2(x, i, s)

≤ K4 + (1 + |x|2)−0.5p
(
paiθiκ1(s) + 0.5pb2i κ

2
2(s)

− 0.5p(2− p)c2i θiκ
2
2(s) +

N∑
j=1

γijθj

)

=≤ K4 + (1 + |x|2)−0.5p
(
− (σi − pai)θi +

N∑
j=1

γijθj

− paiθi
(
1− κ1(s)

)
+ σiθi

(
1− κ22(s)

))
≤ K4 + (1 + |x|2)−0.5p

(
− 1− pâθi

(
1− κ1(s)

)
+ σ̌θi

(
1− κ22(s)

))
, (3.17)

where K4, the following K5,K6,K7 and K8, are all positive
numbers independent of the initial data. On the other hand,

β(s)θr(s) =
(1
θ̌
+ pâ(1− κ1(s))− σ̌(1− κ22(s))

)
θr(s)

≤ 1 + pâθr(s)(1− κ1(s))− σ̌θr(s)(1− κ22(s)). (3.18)

Applying (3.17) and (3.18) to (3.15), we obtain

EV2(X(t), r(t), t)− θî(1 + |x̂|2)0.5p ≤ K4

∫ t
0
e
∫s
0
β(v)dvds.

This implies

θ̂E(1 + |X(t)|2)0.5pe
∫t
0
β(s)ds

≤ θ̌(1 + |x̂|2)0.5p +K4

∫ t
0
e
∫s
0
β(v)dvds.

Applying Lemma 3.4, we then have

θ̂E(1 + |X(t)|2)0.5peβ̄t−(pâ+σ̌)h)

≤ θ̌(1 + |x̂|2)0.5p +K4

∫ t
0
eβ̄s+(pâ+σ̌)h)ds

≤ θ̌(1 + |x̂|2)0.5p + (K4/β̄)e
β̄t+(pâ+σ̌)h.

This implies that

E(1 + |X(t)|2)0.5p ≤ K5(1 + |x̂|p), (3.19)

hence the assertion (3.13) follows. The proof is complete. ✷

Lemma 3.6. Let Assumptions 2.1, 3.2 and 3.3 hold. Then for
any (x̂, ŷ, î) ∈ R2n

0 × S,

E∥X̃x̂,̂i(kh)− X̃ŷ,̂i(kh)∥
p
h ≤ C2|x̂− ŷ|pe−β̄kh (3.20)

for all k ∈ N+, where C2 is a positive constant independent
of the initial data (x̂, ŷ, î).
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Proof. Fix (x̂, ŷ, î) ∈ R2n
0 × S arbitrarily. Set Z(t) =

Xx̂,̂i(t)−Xŷ,̂i(t) and write rî(t) = r(t) simply. By Lemma
3.1, Z(t) ̸= 0 for all t ≥ 0 with probability 1. Define a
Lyapunov function

V3(z, i, t) = θi|z|pe
∫t
0
β(s)ds

for (z, i, t) ∈ Rn × S× R+, where β(·) was defined by (3.9).
Applying the generalised Itô formula, we can show that

EV3(Z(t), r(t), t)− θî|Z(0)|
p

=E
∫ t
0
e
∫s
0
β(v)dv

(
β(s)θr(s)|Z(s)|

p

+ LV3(Xx̂,̂i(s), Xŷ,̂i(s), r(s), s)ds (3.21)

for t ≥ 0, where LV3 : R2n
0 × S× R+ → R is defined by

LV3(x, y, i, s) = pθi|z|p−2zT f̄ + 0.5pθi|z|p−2|ū|2

− 0.5p(2− p)θi|z|p−4|zT ū|2 +

N∑
j=1

γijθj |z|p, (3.22)

in which z = x− y, f̄ = f(x, i, s)− f(y, i, s) and ū =
u(x, i, s)− u(y, i, s). By Assumption 2.1 as well as (3.5), we
derive

LV3(x, y, i, s)|z|−p

≤ pθiaiκ1(s) + 0.5pθib
2
i κ

2
2(s)

− 0.5p(2− p)θic
2
i κ

2
2(s) +

N∑
j=1

γijθj

= −(σi − pai)θi +

N∑
j=1

γijθj

− paiθi(1− κ1(s)) + σiθi(1− κ22(s))

≤ −1− pâθi
(
1− κ1(s)

)
+ σ̌θi

(
1− κ22(s)

)
.

Applying this and (3.18) to (3.21) we obtain

EV3(Z(t), r(t), t)− θî|Z(0)|
p ≤ 0,

which yields

θ̂E|Z(t)|p ≤ θ̌|Z(0)|pe−
∫t
0
β(s)ds (3.23)

for all t ≥ 0. This, together with Lemma 3.4, yields

E|Z(t)|p ≤ K6|Z(0)|pe−β̄t (3.24)

for all t ≥ 0, where K6 = (θ̌/θ̂)e(pâ+σ̌)h.

Now, for any k ∈ N+, set Z̃(kh) = {Z(kh+ s) : 0 ≤
s ≤ h}. By the Itô formula (see, e.g., [29]) and (2.1), (2.2), it

is easy to show that

E∥Z̃(kh)∥ph ≤ E|Z(kh)|p + E
(

sup
0≤s≤h

H1(s)
)

+K7

∫ (k+1)h

kh
E|Z(t)|pdt, (3.25)

where

H1(s) =

∫kh+s
kh

p|Z(t)|p−2ZT (t)û(t)dB(t)

in which û(t) = u(Xx̂,̂i(t), r(t))− u(Xŷ,̂i(t), r(t)). By the
Burkholder-Davis-Gundy inequality (see, e.g., [36, page 76])
and (2.2), we can derive

E
(

sup
0≤s≤h

J1(s)
)

≤ 3E
( ∫ (k+1)h

kh
p2K2

1 |Z(t)|2pdt
)1/2

≤ 3pK1E
(
∥Z̃(kh)∥ph

∫ (k+1)h

kh
|Z(t)|pdt

)1/2

≤ 0.5E∥Z̃(kh)∥ph + 4.5p2K2
1

∫ (k+1)h

kh
E|Z(t)|pdt.

Substituting this into (3.25) yields

E∥Z̃(kh)∥ph ≤ 2E|Z(kh)|p +K8

∫ (k+1)h

kh
E|Z(t)|pdt.

Making use of (3.24), we obtain the required assertion (3.20).
The proof is complete. ✷

Lemma 3.7. Let Assumptions 2.1, 3.2 and 3.3 hold. Then for
any compact subset G of Rn,

lim
k→∞

dΦ(L(X̃x̂,̂i(kh)),L(X̃ŷ,ĵ(kh))) = 0 (3.26)

uniformly in x̂, ŷ ∈ G and î, ĵ ∈ S.

Proof. Note that {r(kh)}k∈N+
is a discrete-time ergodic

Markov chain with its one-step transition probability matrix
ehΓ. Define the stopping time

κîĵ = inf{kh : rî(kh) = rĵ(kh), k ∈ N+}.

Then κîĵ <∞ a.s. (see, e.g., [1]). Hence, for any ε ∈ (0, 1),
there is a positive number T1 > 0 such that

P(κîĵ ≤ T1) > 1− ε/6 ∀î, ĵ ∈ S. (3.27)

Recalling a known result ([36, p. 99, Theorem 3.24]) that

sup
(x̂,̂i)∈G×S

E
(

sup
0≤t≤T1

|Xx̂,̂i(t)|
2
)
<∞,

we see there is a sufficiently large ρ > 0 such that

P(Ωx̂,̂i) > 1− ε/12 ∀(x̂, î) ∈ G× S, (3.28)

where Ωx̂,̂i =
{
ω ∈ Ω : sup0≤t≤T1

|Xx̂,̂i(t, ω)| ≤ ρ
}

. We
now fix x̂, ŷ ∈ G and î, ĵ ∈ S arbitrarily. For any ϕ ∈ Φ and
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k ∈ N+ with kh ≥ T1, we have

|Eϕ(X̃x̂,̂i(kh))− Eϕ(X̃ŷ,ĵ(kh))| ≤
ε

3
+H2(kh),

(3.29)

where

H2(kh) = E
(
I{κîĵ≤T1}|ϕ(X̃x̂,̂i(kh))− ϕ(X̃ŷ,ĵ(kh))|

)
.

Set Ω1 = Ωx̂,̂i ∩ Ωŷ,ĵ ∩ {κîĵ ≤ T1}. By the time-homogeneous
Markov property (please recall the paragraph containing
(2.3)), we derive

H2(kh)

=E
(
I{κîĵ≤T1}E

(
|ϕ(X̃x̂,̂i(kh))− ϕ(X̃ŷ,ĵ(kh))|

∣∣Fκîĵ

))
=E

(
I{κîĵ≤T1}

× E|ϕ(X̃w,l(kh− κîĵ))− ϕ(X̃z,l(kh− κîĵ)|
)

≤ ε
3
+ 2E

(
IΩ1

× E
[
1 ∧ (0.5∥X̃w,l(kh− κîĵ)− X̃z,l(kh− κîĵ)∥h)

])
≤ ε
3
+ 2E

(
IΩ1

E∥X̃w,l(kh− κîĵ)− X̃z,l(kh− κîĵ)∥
p
h

)
,

(3.30)

where w = Xx̂,̂i(κîĵ), z = Xŷ,ĵ(κîĵ) and l = rî(κîĵ) =

rĵ(κîĵ). Observing that for any given ω ∈ Ω1, |w| ∨ |z| ≤ ρ,
we can apply Lemma 3.6 to see that there is another positive
constant T2 such that

E∥X̃w,l(kh− κîĵ)− X̃z,l(kh− κîĵ)∥
p
h ≤ ε

6

for kh ≥ T1 + T2. Substituting this into (3.30) yields that
H2(kh) ≤ 2ε/3 for all kh ≥ T1 + T2. This, together with
(3.29), implies that

|Eϕ(X̃x̂,̂i(kh)− Eϕ(X̃ŷ,ĵ(kh))| ≤ ε (3.31)

for kh ≥ T1 + T2. Since ϕ is arbitrary, we must have

dΦ(L(X̃x̂,̂i(kh)),L(X̃ŷ,ĵ(kh))) ≤ ε, ∀kh ≥ T1 + T2

for all x̂, ŷ ∈ G and î, ĵ ∈ S. This proves (3.26). The proof is
complete. ✷

We can now establish our main theorem in this paper.

Theorem 3.8. Let Assumptions 2.1, 3.2 and 3.3 hold. Then
there exists a unique probability measure µ ∈ P(Ch) such that

lim
k→∞

dΦ(L(X̃x̂,̂i(kh)), µ) = 0 (3.32)

for all (x̂, î) ∈ Rn × S. In other words, the SDE (1.2) is
asymptotically stable in distribution.

Proof. We claim that {L(X̃0,1(kh))}k∈N+
is a Cauchy

sequence in P(Ch) with metric dΦ. In other words, we need to
show that for any ε > 0, there is an integer k0 > 0 such that

dΦ(L(X̃0,1((v + q)h)),L(X̃0,1(qh))) ≤ ε (3.33)

for all integers q ≥ k0 and v ≥ 1. Let ε ∈ (0, 1) be arbitrary.
By Lemma 3.5, there is a ρ > 0 such that

P{ω ∈ Ω : |X0,1(vh, ω)| ≤ ρ} > 1− ε/4 (3.34)

for any integer v ≥ 1. For any ϕ ∈ Φ, we can then derive,
using (2.3) and (3.34), that

|Eϕ(X̃0,1((v + q)h))− Eϕ(X̃0,1(qh))|

=|E(E[ϕ(X̃0,1((v + q)h))|Fvh])− Eϕ(X̃0,1(qh))|

=
∣∣∣∑
j∈S

∫
Rn

Eϕ(X̃y,j(qh))P (v, 0, 1; dy × {j})

− Eϕ(X̃0,1(qh))
∣∣∣

≤
∑
j∈S

∫
Rn

|Eϕ(X̃y,j(qh))− Eϕ(X̃0,1(qh))|

× P (v, 0, 1; dy × {j})

≤ ε
2
+

∑
j∈S

∫
Bρ

dΦ(L(X̃y,j(qh)),L(X̃0,1(qh)))

× P (v, 0, 1; dy × {j}),

where Bρ = {x ∈ Rn : |x| ≤ ρ}. By Lemma 3.7, there is a
positive integer k0 such that

dΦ(L(X̃ŷ,ĵ(qh)),L(X̃0,1(qh))) ≤
ε

2
∀q ≥ k0

whenever (y, j) ∈ Bρ × S. We therefore obtain

|Eϕ(X̃0,1((v + q)h))− Eϕ(X̃0,1(qh))| ≤ ε

for q ≥ k0 and v ≥ 1. As this holds for any ϕ ∈ Φ, we must
have (3.33) as claimed. Consequently, there is a unique µ ∈
P(Ch) such that

lim
k→∞

dΦ(L(X̃0,1(kh)), µ) = 0.

This, together with Lemma 3.7, implies that

lim
k→∞

dΦ(L(X̃0,1(kh)), µ)

≤ lim
k→∞

dΦ(L(X̃x̂,̂i(kh)),L(X̃0,1(kh)))

+ lim
k→∞

dΦ(L(X̃0,1(kh)), µ) = 0

for all (x̂, î) ∈ Rn × S, which is assertion (3.32). The proof is
complete. ✷

Note that Ch is an infinite space and P(Ch) is huge. It
may therefore be hard to numerically approximate µ, not men-
tioning to obtain its probability distribution theoretically. For-
tunately, in practice, we are more concerned with the probabil-
ity distribution ofXx̂,̂i(t) in long term. For this purpose, let us
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return to the discrete-time Rn × S-valued time-homogeneous
Markov process {(Xx̂,̂i(h̄+ kh), rî(h̄+ kh))}k∈N+

, where
h̄ ∈ [0, h). Accordingly, let us denote by P(Rn) the family of
probability measures on Rn. For P1, P2 ∈ P(Rn), define the
Kantorovich metric dΨ by

dΨ(P1, P2) = sup
ψ∈Ψ

∣∣∣ ∫
Rn

ψ(x)P1(dx)−
∫
Rn

ψ(x)P2(dx)
∣∣∣

where

Ψ ={ψ : Rn → R satisfying |ψ(x)− ψ(y)| ≤ |x− y|
and |ϕ(x)| ≤ 1 for x, y ∈ Rn}.

Denote also by L(Xx̂,̂i(h̄+ kh)) the probability measure
on Rn generated by Xx̂,̂i(h̄+ kh). Noting that L(Xx̂,̂i(h̄+

kh)) is a marginal probability measure of L(X̃x̂,̂i(kh)), we
obtain the following useful corollary (which can be proved
directly in the same fashion as Theorem 3.8 was proved).

Corollary 3.9. Let Assumptions 2.1, 3.2 and 3.3 hold. Then,
for every h̄ ∈ [0, h), there exists a unique probability measure
µh̄ ∈ P(Rn) such that

lim
k→∞

dΨ(L(Xx̂,̂i(h̄+ kh)), µh̄) = 0 (3.35)

for all (x̂, î) ∈ Rn × S.

4 Special but Important Cases

In this section we will demonstrate that our theory established
in the previous section can be applied to several special but
important cases.

4.1 Time-homogeneous ODE

Let us first consider the case where the given unstable system
is described by a time homogeneous ODE

ẋ(t) = f(x(t), r(t)), (4.1)

where f : Rn × S → Rn. Assume that f(x, i) is locally Lip-
schtiz in x and there are non-negative numbers ai (i ∈ S) such
that

(x− y)T (f(x, i)− f(y, i)) ≤ ai|x− y|2 (4.2)

for all (x, y, i) ∈ Rn × Rn × S. We first consider to design a
time-homogeneous control function u : Rn × S → Rn×m for
which we can find non-negative numbers bi, ci (i ∈ S) such
that

|u(x, i)− u(y, i)| ≤ bi|x− y|, (4.3)

|(x− y)T (u(x, i)− u(y, i))| ≥ ci|x− y|2 (4.4)

for all (x, y, i) ∈ Rn × Rn × S. The corresponding con-
trolled SDE is

dX(t) = f(X(t), r(t))dt+ u(X(t), t)dB(t). (4.5)

If we regard both f and u as a periodic function with period
h = 0, this SDE is a special case of our underlying SDE (1.2).

In this case, Ch reduces to Rn and Assumption 2.1 holds with
κ1(·) = κ2(·) ≡ 1. If Assumption 3.2 holds, then, by (3.8),
β̄ = 1/θ̌ which is always positive, whence Assumption 3.3
must hold. The following useful corollary follows therefore
from Theorem 3.8.

Corollary 4.1. Let conditions (4.2), (4.3) and (4.4) as well
as Assumption 3.2 hold. Then there exists a unique probability
measure µ0 ∈ P(Rn) such that for every initial data (x̂, î) ∈
Rn × S, the solution of the SDE (4.5) satisfies

lim
k→∞

dΨ(L(Xx̂,̂i(kh)), µ0) = 0. (4.6)

4.2 Intermittent control

Although it is natural to design a time-homogeneous control
function given that the ODE (4.1) is time homogeneous, it may
be necessary to design a periodic control function. For exam-
ple, a controller needs a rest periodically and an intermittent
control is required to be used (see, e.g., [27, 53]). A typical
intermittent control function has the form κ2(t)u(x, i), where
u(x, i) is the same as in Section 4.1 and

κ2(t) =

∞∑
k=0

I[kh,(k+1−δ)h)(t), t ≥ 0, (4.7)

in which δ ∈ [0, 1) is a positive constant. The corresponding
controlled SDE is

dX(t) = f(X(t), r(t))dt+ κ2(t)u(X(t), t)dB(t). (4.8)

In operation, the stochastic control is switched on and off
periodically. That is, on during time periods [0, (1− δ)h)),
[h, (2− δ)h), [2h, (3− δ)h), · · · , while off during [(1−
δ)h, h), [(2− δ)h, 2h), [(3− δ)h, 3h), · · · . The parameter
δ is the proportion of rest in one period of h or in long
term. Under conditions (4.2)-(4.4), Assumption 2.1 is satisfied
with κ1(·) ≡ 1. If Assumption 3.2 holds, then Assumption 3.3
becomes

1

θ̌
− σ̌δ

h
> 0. (4.9)

We hence have the following useful corollary.

Corollary 4.2. Let conditions (4.2), (4.3) and (4.4) as well
as Assumption 3.2 hold. If (4.9) is satisfied, then there exists
a unique probability measure µ ∈ P(Ch) such that for every
initial data (x̂, î) ∈ Rn × S, the solution of the SDE (4.8)
satisfies

lim
k→∞

dΦ(L(X̃x̂,̂i(kh)), µ) = 0. (4.10)

4.3 Worst case

Let us return to the underlying ODE (1.1). Given the periodic
coefficient f , it is easy to identify non-negative numbers ai
(i ∈ S) such that

(x− y)T (f(x, i, t)− f(y, i, t)) ≤ ai|x− y|2 (4.11)

for (x, y, i, t) ∈ Rn × Rn × S× R+. On the other hand, it
may be hard to identify a common κ1 ∈ Kh for all i ∈ S so
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that the first inequality in Assumption 2.1 holds. In this worst
case, we just simply let κ1(·) ≡ 1. However, we could still
design the periodic control function u as required by Assump-
tion 2.1. In particular, it is unnecessary to choose κ2(·) ≡ 1,
which is only one of many possible choices. Let us form
another corollary to cope with this worst case.

Corollary 4.3. Let Assumption 2.1 hold with κ1(·) ≡ 1. If,
moreover, Assumption 3.3 holds and

1

θ̌
− σ̌

(
1− κ

(2)
2

)
> 0,

then the conclusion of Theorem 3.8 holds.

5 Design of Control Function

The use of Theorems 3.8 depends on whether the control func-
tion u(x, i, t) can be designed to meet Assumptions 2.1, 3.2
and 3.3, given that the coefficient f(x, i, t) satisfies the first
inequality in Assumption 2.1. In this section we will demon-
strate how to design the control function in various situations.
Due to the page limit, we will only design the linear periodic
control function in the form

u(x, i, t) = κ2(t)(A1ix,A2ix, · · · , Amix) (5.1)

for (x, i, t) ∈ Rn × S× R+, where Aki ∈ Rn×n is symmet-
ric and nonnegative definite for i ∈ S and k = 1, 2, · · · ,m
and κ2 ∈ Kh. For (x, y, i, t) ∈ Rn × Rn × S× R+, we have

|u(x, i, t)− u(y, i, t)|2 = κ22(t)

m∑
k=1

|Aki(x− y)|2

≤ κ22(t)
( m∑
k=1

∥Aki∥2
)
|x− y|2

and

|(x− y)T (u(x, i, t)− u(y, i, t))|2

=κ22(t)

m∑
k=1

|(x− y)TAki(x− y)|2

≥κ22(t)
( m∑
k=1

λ2min(Aki)
)
|x− y|2.

These imply u satisfies Assumption 2.1 with

bi =

√√√√ m∑
k=1

∥Aki∥2 and ci =

√√√√ m∑
k=1

λ2min(Aki). (5.2)

What we need to do is: (I) to refine the choices of Aki for
Assumption 3.2 to hold, (II) to design κ2(·) for Assumption
3.3 to hold.

Let us first explain (II) should (I) has been done.
Compute κ

(1)
1 by definition and â, σ̌, θ̌ by (3.5)-(3.7). For

Assumption 3.3 to hold, all we need is to design κ2(·) for

σ̌
(
1− κ

(2)
2

)
<

1

θ̌
+ pâ

(
1− κ

(1)
1

)
(5.3)

to hold. There are lots of choices κ2 ∈ Kh to make this hap-
pen. For example, κ2 ≡ 1. Another example is the κ2 defined

by (4.7). In this case, κ(2)2 = 1− δ/h and hence, by (5.3), all
we need is to set

δ <
h

σ̌

(1
θ̌
+ pâ

(
1− κ

(1)
1

))
. (5.4)

We leave the other choices of κ2 to the reader but explain (I)
in two useful situations.

Case 1. Consider the situation where the state X(t) can
be observed in every mode i ∈ S at any time and the stochastic
feedback control can be applied in every mode as well. In this
case, for i ∈ S and 1 ≤ k ≤ m, choose symmetric matrices
Āki such that

√
2λmin(Āki) > ∥Āki∥. (5.5)

Obviously, there are lots of such matrices. Choose a positive
number α sufficiently large so that

0.5α2
(
2

m∑
k=1

λ2min(Āki)−
m∑
k=1

∥Āki∥2
)
> ai (5.6)

for all i ∈ S. This guarantees that there is a p ∈ (0, 1) suffi-
ciently small for which

0.5α2
(
(2− p)

m∑
k=1

λ2min(Āki)−
m∑
k=1

∥Āki∥2
)
> ai (5.7)

for all i ∈ S. Let us now set Aki = αĀki. Noting that σi
defined by (3.4) has the form

σi = 0.5α2p
(
(2− p)

m∑
k=1

λ2min(Āki)−
m∑
k=1

∥Āki∥2
)
,

we see
σi > pai, ∀i ∈ S. (5.8)

By the theory of M-matrices (see, e.g., [36, Theorem 2.10
on page 68]), we see that A defined by (3.3) is a nonsigular
M-matrix. In other words, Assumption 2.1 holds if Aki’s are
defined as above.

Observe that the arguments above still hold as long as

2

m∑
k=1

λ2min(Āki) >

m∑
k=1

∥Āki∥2, ∀i ∈ S (5.9)

but it is unnecessary for (5.5) to hold for every i ∈ S and
1 ≤ k ≤ m. This gives us an opportunity to design the con-
trol function to fit into various situations in the real world. For
example, we may let Āki = 0 for all k = 2, · · · ,m but only
need

0.5α2
(
(2− p)λ2min(Ā1i)− ∥Ā1i∥2

)
> ai

for all i ∈ S. This is equivalent to the situation when m = 1.
In other words, we may only use a scalar Brownian motion
as the noise source to achieve the stochastic stabilisation in
distribution.

The observation above also reveals another useful sit-
uation, where a different and independent scalar Brownian
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motion is used in different mode i ∈ S. In terms of mathemat-
ics, we have that m = N and Aki = 0 in (5.1) for all k ̸= i.
In this situation, we may choose Āii’s and α for which

0.5α2
(
(2− p)λ2min(Āii)− ∥Āii∥2

)
> ai

and then set Aii = αĀii for all i ∈ S.
Case 2. We now consider a situation where the state

X(t) cannot be observed in some modes, whence the stochas-
tic control cannot be used in these modes. Without loss of any
generality, we let S1 = {1, 2, · · · , N1} contain these modes
(1 ≤ N1 < N ). Mathematically speaking, we are forced to set

Aki = 0 for i ∈ S1, 1 ≤ k ≤ m,

whence bi = ci = 0 for i ∈ S1. What we need to do is
to design matrices Aki for i ∈ S2 = {N1 + 1, · · · , N} and
1 ≤ k ≤ m. To establish a simple criterion, we impose an
additional condition: there is some ĵ ∈ S for which

γiĵ > 0 for all i ∈ S but i ̸= ĵ. (5.10)

Moreover, let υ = (υ1, υ2, · · · , υN ) ∈ R1×N denote the
unique stationary distribution of the Markov chain. It is known
that all υi’s are positive. (Please see the appendix below for
further details). Choose symmetric positive definite matrices
Āki for N1 + 1 ≤ i ≤ N and 1 ≤ k ≤ m so that

m∑
k=1

λ2min(Āki) > 0.5

m∑
k=1

∥Āki∥2.

Then choose a positive number α so large that

N∑
i=N1+1

υiα
2
m∑
k=1

(
0.5∥Āki∥2 − λ2min(Āki)

)

+

N∑
i=1

υiai < 0. (5.11)

Now set Aki = αĀki. Recalling (5.2), we see

b2i = α2
m∑
k=1

∥Āki∥2 and c2i = α2
m∑
k=1

λ2min(Āki)

for N1 + 1 ≤ i ≤ N . Consequently, it follows from (5.11)
that

N∑
i=1

υiai +

N∑
i=N1+1

υi(0.5b
2
i − c2i ) < 0.

That is
N∑
i=1

υi(ai + 0.5b2i − c2i ) < 0

if we recall that bi = ci = 0 for i ∈ S1. By Proposition 8.2 in
the appendix below, we see Assumption 3.2 is satisfied as long
as Aki’s are designed as above.

6 Example

Due to the page limit we will only discuss an example to
illustrate our new theory.

Linear hybrid ODEs of the form ẋ(t) = (ζr(t) +
Fr(t))x(t) have been used widely in many branches of science
and industry (see, e.g., [6, 11, 19]), where Fi ∈ Rn×n and
ζi ∈ Rn for i ∈ S . Taking into account the natural phenomena
of periodicity, e.g., seasonal changes (see, e.g., [4, 9, 23, 38]),
we arrive at the periodic hybrid ODEs of the form

ẋ(t) = [αr(t)(t)ζr(t) + βr(t)(t)Fr(t)]x(t). (6.1)

We assume that αi : R+ → R and βi : R+ → (0, 1] are all
continuous and periodic with period h while Fi + FTi > 0
for all i ∈ S. If we define f(x, i, t) = [αi(i)ζi + βi(t)Fi]x
for (x, i, t) ∈ Rn × S× R+, the ODE (6.1) is in the form of
(1.1). It is obvious that f is continuous and periodic in t with
period h (> 0) and globally Lipschtiz in x. Moreover, define

ai = 0.5λmax(Fi + FTi ) and κ1(t) = max
i∈S

βi(t) (6.2)

or let κ1(t) ≡ 1 to make it simple (see the worst case in
Section 4). Then, for all (x, y, i, t) ∈ Rn × Rn × S× R+,

(x− y)T (f(x, i, t)− f(y, i, t))

=0.5βi(t)(x− y)T (Fi + FTi )(x− y) ≤ aiκ1(t)|x− y|2.

In other words, f satisfies Assumption 2.1. Let x1(t) and
x2(t) be two solutions of (6.1) with different initial states (i.e.,
x1(0) ̸= x2(0)) but the same initial mode (i.e., the same r(0)).
It is straightforward to show that

d

dt
(|x1(t)− x2(t)|2) ≥ λ̂β̂|x1(t)− x2(t)|2,

where λ̂ := mini∈S λmin(Fi + FTi ) > 0 and β̂ := mini∈S
min0≤t≤h βi(t) > 0. This implies immediately that |x1(t)−
x2(t)| → ∞ with probability 1. Hence the ODE (6.1) is not
stable in distribution.

Let us now design a stochastic feedback control to sta-
bilise it. To make it simple, we will use a scalar Brownian
motion B(t) as the stochastic source, while look to design
the control function in the form u(x, i, t) = κ2(t)Aix for
(x, i, t) ∈ Rn × S× R+, namely, we need to design κ2 ∈
Kh and matrices Ai ∈ Rn×n for i ∈ S. So the stochastically
controlled system is

dX(t) = [αr(t)(t)ζr(t) + βr(t)(t)Fr(t)]x(t)dt

+ κ2(t)Ar(t)X(t)dB(t). (6.3)

We will consider the situation described in Case 2 in Section 5
and use the notations there, bearing in mind that m = 1 in this
example. In particular, we also assume (5.10). We hence set
Ai = 0 for i ∈ S1. For each i ∈ S2, choose a symmetric n×
nmatrix Āi such that λmin(Āi) >

√
0.5∥Āi∥. Then choose a
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positive number α so large that∑
i∈S2

υiα
2(0.5∥Āi∥2 − λ2min(Āi)

)
+

∑
i∈S

υiai < 0. (6.4)

Now set Ai = αĀi. Recalling Section 5, we see u(x, i, t)
satisfies Assumption 2.1 with bi = ci = 0 for i ∈ S1 and
bi = α∥Ai∥ and ci = αλmin(Āi) for i ∈ S2. Consequently,
it follows from (6.4) that∑

i∈S
υiai +

∑
i∈S2

υi(0.5b
2
i − c2i ) < 0.

That is ∑
i∈S

υi(ai + 0.5b2i − c2i ) < 0.

By Proposition 8.2 in the appendix below, we see Assump-
tion 3.2 is satisfied. In other words, we can find p ∈ (0, 1)
for matrix A defined by (3.3) to be a nonsingular M-matrix.
Finally, we can design κ2 for Assumption 3.3 to hold as
explained in the paragraph just before Case 1 in Section 5 or
simply let κ2 ≡ 1. In the latter case, Assumption 3.3 holds
automatically and there is no need to determine p.

To perform computer simulation, we consider the 2-
dimensional ODE (6.1), where the Markov chain r(t) has its

state space S = {1, 2} and generator Γ =

(
−1 1
3 −3

)
and

the others are: h = 0.1,

a1(t) = 0.5 + cos(2πt/h), β1(t) = 0.5 + 0.4 sin(2πt/h),

a2(t) = 0.5 + sin(2πt/h), β2(t) = 0.5 + 0.4 cos(2πt/h),

ζ1 =

(
1
−1

)
, ζ2 =

(
−1
1

)
,

F1 =

(
0.2 0.5
−0.5 0.1

)
, F2 =

(
0.1 −0.2
0.3 0.1

)
.

By (6.2), we have that a1 = 0.2, a2 = 0.1309 but we let
κ1(t) ≡ 1 to make it simple. Consider the case where S1 =
{2} and S2 = {1}. Accordingly, A2 = 0 but we need to
designA1. We chooseA1 = αĀ1 with Ā1 = diag(1, 1). Not-
ing that r(t) has its stationary distribution υ = (0.75, 0.25),
(6.4) becomes −0.375α2 + 0.182725 < 0, i.e., α > 0.6980
and we choose α = 2 so the existence of p ∈ (0, 1) is guaran-
teed for Assumption 3.2 to hold. We finally choose κ2(t) ≡ 1
so Assumption 3.3 holds as well and there is no need to deter-
mine p. In other words, the controlled system (6.3) is stable in
distribution with the system coefficients specified above.

We apply the well-known Euler-Maruyama method (see,
e.g., [29]) with the stepsize 0.001 to perform the simulation of
three sample paths of the solution with 3 different initial values
(0, 0)T , (5,−2)T and (−2, 5)T for X(0) but the same initial
value 1 for r(0), which are corresponding to Sample 1, 2 and
3 in Fig. 1, respectively. The simulation does not only show
that three sample paths approach to each other very quickly
but also that three sample paths look like stationary sequences.
We observe that most of these sample paths are within [−1, 1]
but some outside. This is significantly different from the given

ODE—any of its two different solutions will diverge to infinity
with probability 1. In other words, the simulation illustrates
clearly that the stochastic feedback control stabilise the given
ODE in distribution.
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Fig. 1: Three sample paths of the controlled SDE.

7 Conclusion

In this paper we proposed a new problem of stabilisation in dis-
tribution by periodic noise: whether or not a periodic stochastic
state feedback control can make a given nonlinear periodic
hybrid differential equation, which is not stable in distribution,
to become stable in distribution. We pointed out that there is
little known on this problem so far but also explained why such
a problem is required to be addressed from real applications
including the control of Covid-19. We did not only inves-
tigated the problem successfully but also demonstrate how
periodic stochastic feedback controls could be designed to sta-
bilise given systems in distribution. A linear multi-dimensional
example was discussed with computer simulation to illustrate
our new theory on stabilisation in distribution by periodic
noise.

8 Appendix

In this Appendix, we first give a couple of easy-to-check suf-
ficient criteria for Assumption 3.2 to hold. The first one is
[36, Theorem 5.13 on page 174] which we cite here as a
proposition.

Proposition 8.1. Assumption 3.2 holds if

∣∣∣∣∣∣∣∣∣
c21 − 0.5b21 − a1, −γ12, · · · , −γ1N
c22 − 0.5b22 − a2, −γ22, · · · , −γ2N

...
...

c2N − 0.5b2N − aN , −γN2, · · · , −γNN

∣∣∣∣∣∣∣∣∣ > 0

IET Research Journals, pp. 1–13
© The Institution of Engineering and Technology 2015 11

Stabilisation in distribution of hybrid ordinary differential equations by periodic noise



and, moreover, there is some ĵ ∈ S for which

γiĵ > 0 for all i ∈ S but i ̸= ĵ. (8.1)

To state another useful criterion, we recall that r(t) is an
irreducible Markov chain in the finite state space S. Hence, it
has a unique stationary distribution υ = (υ1, υ2, · · · , υN ) ∈
R1×N which can be determined by solving the linear equation
υΓ = 0 subject to

∑
i∈S υi = 1 and υi > 0 for all i ∈ S.

Proposition 8.2. Assumption 3.2 holds if (8.1) holds and∑
i∈S

υi(ai + 0.5b2i − c2i ) < 0. (8.2)

This Proposition was proved in the appendix of [35]. We
next give another proposition which has been used to show
why σ̌ > 0 in Section 3.

Proposition 8.3. If D = diag(d1, · · · , dN ) with all di ≤ 0,
then D − Γ is not a nonsingular M-matrix.

Proof. Assume that D − Γ is a nonsingular M-matrix.
Set 1N = (1, · · · , 1)T ∈ RN and z = (z1, · · · , zN )T =
(D − Γ)−11N . Then all zi > 0 and (D −G)z = 1N . Mul-
tiplying it from the left by the stationary distribution υ of the
Markov chain (see the paragraph before Proposition 8.2) gives

υ(D − Γ)z = υ1N = 1.

But

υ(D − Γ)z = υDz − υΓz =
∑
i∈S

υidi ≤ 0.

We see a contradiction. The proposition must hold. ✷
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