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Abstract

The landing of probes on minor solar system bodies allows for in depth analyses on the formation and evolution of
these types of bodies. Due to the long descent time and highly non-linear environment, a minor body landing trajectory
can be highly sensitive to uncertainties in the deployment state and environment parameters. In this research, a method
to design robust ballistic landing trajectories is introduced and applied to the case of Didymos. Specifically, the landing
trajectory is initiated from a self-stabilized terminator orbit (SSTO) and lands on the surface of the secondary body
Dimorphos. Starting from a range of allowable landing conditions and uncertainties in the gravitational fields of
the bodies, a set of trajectories together with its uncertainties is propagated backwards in time using the generalised
intrusive polynomial algebra method until it intersect with the SSTO. This solution is then refined using a grid search
together with the non-intrusive Chebyshev interpolation method to propagate the uncertain state forward in time. It is
shown that the trajectory found with this technique is able to improve the landing success percentage by 26 percent
compared to conventional methods. The approach developed in this work allows for the design of ballistic trajectories

under uncertainties, and increases the safety and feasibility of these types of missions.

Keywords: Didymos System, Uncertainty Analysis, Ballistic Landing, Trajectory Design

1 Introduction

Planned for late September 2022, NASA’s Double Aster-
oid Redirection Test (DART) will impact the secondary
body of binary asteroid system Didymos to test the ability
of a kinetic impactor to redirect an asteroid. This mission
is part of the Asteroid Impact and Deflection Assessment
(AIDA) collaboration between NASA and ESA, where
ESA will send its spacecraft, Hera, to investigate the re-
sult of DART’s impact in more detail. After arrival, two
CubeSats on board Hera will be released around the sys-
tem, ending with a landing on the secondary Dimorphos
[1]. During this landing, several instruments on-board
the CubeSats will measure the internal structure from the
bouncing motion and do some in-situ measurements to
characterize Dimorphos and the result of DART’s impact
in more detail.

Similar landings can be found for the Hayabusa mission
[2], Rosetta [3], Hayabusa 2 [4], and OSIRIS-REx [5].
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The requirements on the guidance, navigation, and control
(GNC) system for precise landings are quite stringent and
could add a significant amount of complexity to the design
of the CubeSats. Therefore, ballistic landings, i.e. with no
active control of the translational state during descent, are
good options for the landing maneuver as this reduces the
complexity of the GNC system. Specifically, as CubeSats
have limited mass and volume budgets, the extra AV and
GNC sensors and actuators that are required for the active
descent option can have a large impact. Therefore, the
ballistic landing trajectory option is preferable. However,
the problem with ballistic landing trajectories is that they
are more sensitive to errors in the deployment maneuver
and uncertainties in the dynamical parameters [6]. Thus,
the design of the landing trajectory needs to account for
this to increase the likelihood of a successful landing.

The dynamics governing the landing on the secondary
of a binary asteroid system can be complex due to the
low gravitational forces and the large influence of the pri-
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mary body. In [7], favourable ballistic landing trajectories
were constructed using the hyperbolic manifolds around
the Ly Lagrange point. Uncertainties were also consid-
ered for this specific maneuver in [8], which showed that
for the deployment from Lo, this approach can be quite
robust. This work was further extended to deployment
from certain periodic orbits, e.g. terminator orbits, near
the Lo point [9]. Additionally, [10] looked at the change
of these hyperbolic manifolds used for landing when con-
sidering non-spherical gravitation perturbations and dif-
ferent rotational rates. It was found that these parameters
have a significant impact on the amount of trajectories be-
ing able to land on the surface. Extending to general de-
ployment points beyond the Lo point, [11] developed a
bisection based method to find minimum touchdown ve-
locity landing trajectories for any landing location on the
body. The implementation of an uncertainty propagation
technique to improve the robustness of this technique was
performed in [12]. The specific investigation for ballistic
landing trajectories specifically on the secondary of the
Didymos system has seen an increase in interest in recent
years due to the Hera mission, see e.g. [13] and [14].

For this work, a landing trajectory specifically from a
Self-Stabilized Terminator Orbit (SSTO) is considered.
This requires an adaptation of the techniques discussed
in the previous works. This type of orbit was found to be
stable in case of a relative large influence of the Solar Ra-
diation Pressure (SRP) force [15], and thus are desirable
options for the operational orbits of the CubeSats [1]. For
regular landing trajectory design, first a nominal model
is used to find trajectories that (locally or globally) mini-
mize a certain objective function. Then, the sensitivity of
the solution is tested against both initial state uncertainties
and dynamical model uncertainties, also called parametric
uncertainties. The solution is then adjusted to reduce the
sensitivity to the uncertainties in case the requirements are
not met anymore. In case of large uncertainties, or very
sensitive systems, this approach might fail as the most ro-
bust solution might differ significantly from the nominal
optimal solution [16]. This can be shown graphically in
figure 1, where d is the objective, x the decision variable,
and 8 some model parameter. In case of uncertainties in
x1 or f31, the value for the optimal solution d; can pos-
sible change by a large amount as the distribution of d
due to Azy/Ap; is spread out over a large range of val-
ues. Whereas for the solution corresponding to ds, the
value does not change significantly due to the uncertain-
ties in x5 or f5. Therefore, do might be more desirable at
it is more robust even if it increases the minimum possi-
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Figure 1: Diagram explaining the concept of finding a ro-
bust trajectory. Trajectory 1 nominally has the best value
for the objective d. However, when adding the uncertainty
in the state x or model parameter 3, the change A in these
values can cause a large increase in d. Trajectory 2 has a
lower nominal value for d, but is less sensitive to changes
in z and/or 3, thus is more robust.

ble value of d. An example of robust trajectory design for
landing on an asteroid using active control during descent
can be found in [17].

In this work, the design of a robust ballistic landing tra-
jectory from a SSTO is considered. A technique to find
several possible robust trajectories is discussed and an ex-
ample of one of these trajectories is shown as well. This
paper is structured as follows: first the dynamical system
is discussed in section 2. Second, the uncertainty propa-
gation techniques necessary for this work are explained in
section 3. Afterwards, section 4 introduces the method to
find an initial guess for the robust landing trajectory. Fi-
nally, section 5 discusses the final step for the trajectory
solution and 6 states the conclusions of this work.

2 Binary Asteroid Dynamics

The Didymos (68503) binary system consists of two
seperate bodies, the 780 meter diameter primary called
Didymos and the 164 meter secondary Dimorphos. Some
of the relevant physical properties of the binary system
coming from recent observations can be found in Table
1. The circular restricted three-body problem (CR3BP) is
applied to model the system, as Dimorphos is in a nearly
circular planar orbit around Didymos, and the mass of the
CubeSat is negiligible compared to the mass of the two
asteroids. For the equations of motion in the CR3BP, a
synodic reference frame that rotates together with the or-
bit of Dimorphos is considered. The origin of this frame is
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Table 1: Relevant physical parameters of the Didymos
system, taken from [18].

Parameter Value and Uncertainty
5.28 (£ 0.54) -10'! kg

0.0093 £+ 0.0013

System mass
Mass ratio

Didymos Diameter 780 m £ 3 m
Didymos Rotational Period 2.26 h £ 0.0001 h
Dimorphos Diameter 164m =+ 18m
Dimorphos Orbital Period 12 h

Body separation distance 1.19 km

located in the barycentre of the system, the x-axis points
towards Dimorphos, the z-axis to the orbit normal, and the
y-axis completes the right-handed frame.

The dynamics of the CubeSats in the synodic frame can
be formulated as follows [19]:

. oU
i—2y= 9z’ (1)

oU
§+20=——, 2

dy

. oU

Here, z, y, and z are dimensionless parameters, where
the mass parameter . = mo/(m1 + ms), the body sep-
aration distance R, and the time constant 1/n (where n
is the mean motion of Dimorphos) were used to obtain
them. This also significantly simplifies the equations as
they now only depend on the mass parameter p and the
dimensionless state variables. The potential U includes
both the rotational terms stemming from the non-inertial
reference frame used, and the gravitational forces acting
on the third body. For the close proximity motion that
is considered here, the gravitational forces from both as-
teroids dominate the dynamics compared to other forces
like the Solar radiation pressure or the Solar gravity [20].
Thus, only these forces are considered. The uncertainties
in the gravitational forces considered in this work stem
from both the estimation of the physical properties and the
accuracy of the dynamical models. Therefore, a simple
and more numerically efficient point mass gravity model
is used, and the lower accuracy of this model compared
to e.g. a polyhedron gravity model, is accounted for in
the size of the uncertainties. The specific effect of non-
spherical gravity and its uncertainty on the landing trajec-
tory can still have some impact on the trajectory design
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process, and are thus left for future work. The potential U
in the case considered here is given by:

1 — U
U=-(2*+y¥)+—L+L+
2(33 y°) " ra’

“

where r1 and ro represent the distance from the space-
craft to the primary and secondary, respectively.

The CR3BP allows an integral of motion called Ja-
cobi’s constant, given by [19]:

C =2U-V?, 5)

where V' is the velocity of the 3rd body. This variable
can be seen as an energy measure, where lower values cor-
respond to higher energy spacecraft trajectories. Constant
values of C' = 2U give surfaces where the velocity of
the spacecraft is zero and are called zero-velocity surface
(ZVS).

It is expected that the impact of DART will result in
potentially significant changes to both the physical state
of Dimorphos and its translational and rotational motion
[21]. As it is difficult to predict these changes beforehand,
the current estimates will be used in the dynamical mod-
elling of the system. The uncertainties considered in this
work can be assumed to stem from both the current obser-
vations and the physical mis-modelling due to the DART
impact. The implementation and analysis of the effect of
these uncertainties on the landing design process is out of
the scope of this work.

3 Uncertainty Propagation

Consider an initial value problem defined as follows:

{a‘c = f(z(t),B.1) ©

z(to) = xo

where ¢ is the time, @ is the state vector, and 3 is the
dynamical model parameters. If the initial state y and
model parameters [ are uncertain, a set of N realisation or
samples can be taken as follows: [x¢ 1, 31, ..., Zo,~, BN].
Propagating each sample through Eq.(6) until time ¢ re-
sults in the trajectories x;(t5) = ¢i (%o, Bi, ty).

The set of all possible initial states is given as follows:

Qu, = {x(t0,€) | € € Qe ©)
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Where £ = [z, 3]. This set can be propagated up until
a specific time ¢ to obtain the set:

(&) ={=(t) = ¢(&,1) | § € Qe}- (8)

This set represents all possible trajectories at time ¢
from the realisations of the uncertainty vector &€ within the
uncertainty set {)¢. Therefore, to understand the effect of
the uncertainties on this system, an analytical expression
of this set needs to be obtained.

If x; is continuous in & and the set is compact, €2;(£)
can be approximated using a polynomial function:

N
Q&bRM@szmﬁ% ©9)

1=0

where «; (&) are a set of multivariate polynomial ba-
sis functions, ¢;(t) are the corresponding coefficients, and
N = ("jl'd) is the number of terms of the polynomial,
where n is the degree of the polynomial and d is the num-
ber of variables. There are various option to obtain the
polynomial of function (9). Two different techniques are
used in this work. The first method is an intrusive tech-
nique called the generalised intrusive polynomial alge-
bra (GIPA) [22]. Besides this intrusive method, a non-
intrusive Chebyshev interpolation (NCI) [23] method is
also used here. Both these methods are discussed in the
following sections.

3.1 Generalised Intrusive Polynomial Alge-
bra

The GIPA technique is a generalisation of several tech-
niques based on higher order expansions of the flow using
Taylor polynomials, like Differential Algebra [24] or Jet
Transport [25]. In GIPA, a specific polynomial basis « is
selected and used to approximate the initial set (25,. To
be able to propagate this set using the dynamics speci-
fied by f(x(t),8,t) in Eq. (6), the space of polynomials
P,.a(c) needs to be equipped with a set of elementary
arithmetic operations. This enables the use of (numeri-
cal) integrators to propagate the polynomial function. In
GIPA, instead of defining a specific set of operations for
each different polynomial basis, a change of basis is per-
formed to a monomial basis ¢. Its main advantage is that
it significantly reduces the computational cost and makes
sure that only one set of elementary arithmetic operations
needs to be implemented.
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A set of elementary functions, ®, corresponding to
similar operations in a floating point algebra, & €
{+,—,",/},is combined with the function space P, 4(¢)
to create an algebra. Then, given any two functions f, and
fv, and their polynomial approximations F, and Fj, the
same operations between the two functions in the floating
point algebra can be represented in the polynomial alge-
bra:

fa® fo~Fy @ F,. (10)
Besides the set of elementary operations,
a set of elementary functions h(y), e.g

{1/y,sin(y),exp(y), log(y),etc.}, needs to be rep-
resented in the algebra as well. This can be done using

the composition operator as follows:

h(f(x)) ~ H(y) o F(a), (1

where H (y) is the univariate polynomial representation
of h(y) and F(x) the polynomial algebra representation
of the multivariate set f (). The composition operator is
defined as follows:

0: Ppi1(¢) X Ppa(d) = Pra(d). 12)

Compared to the elementary operations, the polynomial
approximation of the elementary functions H (y) differs
between the chosen polynomial bases. In [12] the accu-
racy of different polynomial bases for landing trajecto-
ries on Dimorphos were tested. From this analysis, the
Chebyshev polynomial basis is selected for this work as it
provides accurate results and is defined over a closed set.
It was shown in [22] that a range estimation techniques
is needed for the Chebyshev basis. It was shown that a
coefficient based range estimation method results in an
overestimation of the range, which decreases the overall
accuracy. A sampling based method does not suffer from
this drawback, however it is less efficient compared to the
coefficient based method as a number of samples need to
be taken from the polynomial function. For this work, the
sample based range method is selected as an accurate rep-
resentation of the state is needed to obtain feasible landing
trajectories.

The basic process of using GIPA for uncertainty prop-
agation is now as follows. First a polynomial approxi-
mation is taken over the uncertain variables at the ini-
tial time using the Chebyshev basis. This basis is then
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transformed to the monomial basis to be able to use the
general set of elementary operations, while using the el-
ementary function approximation methods of Chebyshev
polynomial basis. Using the desired numerical integrator,
e.g. Runge-Kutta 4, the set can be propagated to the final
desired time, using the algebra to replace each elemen-
tary operation and elementary function in the integrator
and dynamical system. The convenience of this method is
that no significant changes need to be made to the imple-
mentation of the methods that are normally used to propa-
gate a single trajectory, as only the elementary operations
and functions need to be replaced, which can be done in
several different coding languages by overloading the op-
erations. Here, the SMART-UQ package is used for this
[26], which contains implementations of the algebra for
various different polynomial bases.

3.2 Non-Intrusive Chebyshev Interpolation

For non-intrusive methods, the dynamics are treated as a
black box. A set of input points are taken, and propagated
through the dynamical system to obtain a set of responses.
These responses can then be analysed in several differ-
ent manners to get a better idea of the relation between
the inputs and responses. The most basic and often used
method is the Monte Carlo technique, where a large num-
ber of randomly sampled inputs are taken and the sample-
based statistics are used to analyse the system. For an
infinite amount of samples, the system can be represented
perfectly. However, practically this is not possible and a
finite set of points are used. To obtain convergence, of-
ten a large number of samples are required, which can
become computationally expensive, and determining the
necessary amount of samples can also be non-trivial [27].

Recent works (see e.g. [23], [28]) have shown that it is
possible to find an analytical approximation of the dynam-
ical response as a function of the input using polynomials.
These polynomials can be constructed using significantly
less points and information on the dynamical system can
be obtained through the coefficients [29]. A multivariate
Chebyshev polynomial basis is used here as its interpola-
tion characteristics allow for uniform convergence, even
in case of large uncertainties.

The coefficients of the polynomial shown in Eq. (9),
where « is chosen to be the Chebyshev polynomial basis
T, can be obtained by solving the following equations:

HC =Y, (13)
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where:
T, (&1) T;.(&1) Ciy Y1
H=| L= ly= |
Crﬁ (5@) T'?S (59) Cis Ys
(14)

where s = N = ("zlrd), &1,. .., & are the interpolation
points, and Y the vector containing all the correspond-
ing propagated samples y; = ¢;(&;,t). The interpolation
points are chosen according to a Latin Hypercube Sam-
pling (LHS) method, which divides the sampling space
into several subspaces in which a random sample is taken
for each individual subspace. Other sampling methods
like the Smolyak sparse grid more efficiently use the prop-
erties of Chebyshev interpolation polynomials and thus
are able to improve the accuracy. However, they are more
complex to implement and are thus left for future work.

4 [Initial Trajectory Generation

The goal of this work is to generate a robust landing tra-
jectory from a Self-Stabilized Terminator Orbit (SSTO) to
the surface of the moon Dimorphos. A general set of re-
quirements can be set for this trajectory, which are derived
from e.g. [9] and [11]. Namely, the maximum impact ve-
locity should be below 10 ¢m/s, the impact angle should
be below 30 deg, and the maximum deployment AV from
the SSTO should be below 20 ¢m/s. As there are a large
possible set of decision parameters (e.g. the deployment
point along the SSTO, the relative phase with respect to
Dimorphos, and the AV direction and magnitude), with
a wide range of possible values, it is important to reduce
the search area by obtaining an appropriate initial guess
for the landing trajectory.

Similar to the technique from [12], a backwards propa-
gation method is used to find sets of trajectories that origi-
nate from the surface of the asteroid and intersect with the
SSTO. This process is shown graphically in Figure 2. For
a certain desired landing location, velocity, and direction,
a polynomial representing the set of landing states can be
initialized as in Eq. (7). This set can then be propagated
backwards in time, i.e. from the time of landing to the de-
ployment time, using the GIPA technique. At each point
in time, the minimum distance, d*, between the mean of
the lander position set (i(€;41,4) and the mean of the SSTO
position set p(x,,p) is measured. If it is assumed that the
SSTO is close to a circle in the y-z plane with nominal ra-
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Figure 2: Diagram explaining the intersection between the
orbiter and lander trajectory considering the uncertainties
in the state.

dius R = 2 km, a simple formula for d* and true anomaly,
u, corresponding to the closest point is given by [30]:

d" = V yzz)rb + Zgrb - R’ (15)
u = arctan (Z"“’> . (16)
Yord

If the distance is small enough, the variance of the lan-
der set, o(1qanq), can be used to define a region of possi-
ble deployment maneuvers from the SSTO. The mean and
variance of the two sets can be calculated from the coeffi-
cients of the polynomial approximation of the state, as is
shown in [29]. A high overlap between the SSTO and lan-
der position sets corresponds to a high density of possible
deployment maneuvers that allow for landing on Dimor-
phos. As the polynomial algebra allows for the calcula-
tion of the set of required AV vectors, which correspond
to all the possible maneuvers between the SSTO and lan-
der sets, the lower and upper bounds on the AV can be
determined from this polynomial.

A grid search in the landing velocity magnitude, impact
azimuth angle, and impact elevation angle is performed.
For each grid point, the landing location is kept constant
(at —90 deg longitude and 0 deg latitude), with an allow-
able landing footprint of 5 deg in all directions. Together
with this state uncertainty, an uncertainty of 10% is also
introduced in the gravitational parameters of both Didy-
mos and Dimorphos. This uncertainty allows for robust-
ness of the landing trajectory not only against deployment
errors but also against modelling errors. For each of these
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grid points, the minimum distance along the landing tra-
jectory d* and the upper bound of the magnitude of the
AV is calculated.

A Pareto front is generated from the grid search con-
sidering the landing velocity, AV upper bound, and d*,
which is shown in figure 3a. If the trajectory constraints
are considered together with the assumption that there is
a 50 m uncertainty in the position of the SSTO as well,
several of the points in the Pareto front can be removed
(see figure 3b). These points represent sets of trajecto-
ries with similar landing conditions which depart from a
region around the SSTO. An example point is shown in
figure 4, where it can be seen that there is a dense region
of trajectories around a specific point along the SSTO. As
a polynomial representation of the dynamics is available,
a large number of samples can be taken efficiently to char-
acterise the AV distribution, which is shown in figure 5.
As this is a dense region of possible landing trajectories,
there is a high likelihood that robust landing trajectories
are contained in this region of phase space. Therefore, ei-
ther the mean of this distribution can be used as the target
landing trajectory, or the distributions of deployment po-
sitions and AV obtained here can be used to initialise a
more refined search of robust ballistic landing trajectories.

5 Robust Landing Design

Using the results from the backwards propagation using
GIPA, a more refined search using the distribution of the
resulting AV can be performed. As now the forward
propagation is used, the GIPA method will not be suitable
anymore as parts of the propagated set will likely intersect
with the singularity associated with the gravitational force
of the secondary body, i.e. the % term. The non-intrusive
Chebyshev interpolation (NCI) method is more suited to
this problem as it only uses individual points that are prop-
agated up until the time of landing. Nevertheless, the large
discontinuity of part of the samples landing and others re-
maining in ballistic flight can also cause a divergence in
the interpolation polynomial. Therefore, the propagation
is stopped when a part of the samples have landed.

Another grid search is performed using the bounds of
figure 5, where 40 points in the AV Magnitude, elevation
oav, and azimuth Oay are taken. Additionally, 40 de-
ployment times are also considered, centered around the
original deployment time ¢4, with a quarter of the period
of Dimorphos as bounds, i.e. [tg = iTDim]. As was dis-
cussed in section 1 and shown in figure 1, for a robust tra-
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Figure 3: Pareto fronts generated from the grid search for the initial trajectory generation. The markers with a ”+” sign
are the points in the full 3-dimensional objective space, whereas the colored dots are the projections of these points on

the 2-dimensional planes.

Figure 4: A set of 500 samples taken from the polynomial
representing the landing trajectory.

jectory it is important to look at not just the objective vari-
able, but also at its variation as a result of the uncertain-
ties. In this case, the main objective variable that is con-
sidered is the distance with respect to the nominal landing
location plus its 3o variation (calculated using the coef-
ficients of the final polynomial). Besides that, the upper
bound for the landing velocity and the mean impact angle
are also taken into account into the Pareto front. However,
for these two variables the variance in these values is not
considered. A 0.5 cm/s uncertainty is considered in the
velocity magnitude, together with a 1 degree uncertainty
in the AV angles. As before, a 10 percent uncertainty
is also introduced for the gravitational parameter of both
bodies.

The resulting Pareto front is shown in figure 6. Most of
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the points are within the constraints that were discussed
in section 4. As the grid search was performed from the
region of parameters taken from the backwards propaga-
tion method, a relatively large amount of points are found
to be within the constraints. Additionally, the landing ve-
locities show some relatively low values which were not
considered in the initial backwards grid search. However,
most of these are due to the fact the not all parts of the
lander set have landed yet due to the necessity of stopping
the propagation earlier. Hence, the velocity can increase
further in the final ballistic phase of these parts of the set,
possibly increasing the velocity.

A specific point from the grid was selected to be inves-
tigated further, where a set of 500 samples from this poly-
nomial approximation are shown in figure 7. This point
was selected due to the low value of the distance metric
and low impact angle. As the distance metric is low, the
spread of trajectories at the end of the propagation is rela-
tively small. Additionally, the mean impact angle is quite
low, meaning that the mean velocity vector of the set is
pointing near perpendicular with respect to the surface of
Dimorphos. As time increases, this will also mean that
most of the other trajectories which have not (yet) landed
will, generally, move towards the direction of the surface
of Dimorphos.

To compare the robustness of the resulting trajectory,
it is compared with two other methods. The first method
is a simple single shooting method from the mean posi-
tion of the SSTO, not considering any uncertainties. The
COBYLA solver [31] was used to obtain the minimum
distance ballistic landing trajectory. The second trajec-
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Figure 5: A V distributions taken from sampling the backwards propagated polynomial.

Table 2: Results for different landing trajectories.

Trajectory Decision Vector Landing Success (%)
Single, no uncertainty  (17.9538, 48.5128, -3.8786, 2.5539) 51.8
GIPA Backwards (17.9957, 49.0544, -4.8891, 2.5299)  60.0
NCI Forwards (17.3077, 49.4872, 3.6410, 3.5903)  78.2
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Mean Impact angle [deg]

Figure 6: The Pareto front for the NCI forward propa-
gation grid search. The markers with a ”+” sign are the
points in the full 3-dimensional objective space, whereas
the colored dots are the projections of these points on the
2-dimensional planes.

Figure 7: 500 samples from the trajectory with the lowest
distance metric.
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Figure 8: The distribution of the landing locations for the
MC analysis of the three cases: no uncertainty shooting
result, GIPA backwards propagation method, and the full
GIPA + NCI forwards propagation method.

tory is the mean trajectory found from the selected point
from the GIPA backwards propagation grid search. This
method results in a dense area of landing trajectories, thus
this trajectory should be more robust compared to the sin-
gle shooting method. The resulting trajectory and land-
ing success percentage, measured using a Monte Carlo
method, is shown in table 2. The GIPA + NCI trajectory
shows a significant increase (about 26 percent increase
to a final value of 78.2 percent) in the amount of land-
ings compared with the other two methods. The GIPA
only method does increase the robustness compared to
the single shooting method, but the refining NCI step sig-
nificantly increases the performance afterwards. The dif-
ference in landing footprint can also be seen in figure 8§,
where it shows that the NCI method compared to the other
two methods significantly reduces the spread of the land-
ing locations.

The difference in the distribution of landing conditions
(i.e. the landing velocity and landing angle) can be seen
in figure 9. For these results, some of the advantage
of the GIPA backwards process can be seen, as it has a
lower mean value and upper bound for the velocity and a
higher amount of points with (near) perpendicular land-
ings. However, it does produce also a set of points with
high impact angles. As the GIPA method propagates from
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a region with pre-set desired landing conditions, it is to be
expected that the landing conditions would be closer to
the desired values compared to the NCI method.

6 Conclusion

This research developed new methods to generate robust
ballistic trajectories from the self-stabilized terminator or-
bit for landing on the secondary of a binary asteroid sys-
tem. The GIPA backwards propagation method found
several feasible trajectories, using a grid search, which
intersect with the SSTO. Applying several constraints re-
duced the amount of possible deployment maneuvers, but
several were still available. A specific set of trajectories
was investigated in more detail and it was found that this
method is able to increase the landing success compared
to a simple single shooting trajectory finding method by
around 10 percent. However, the success percentage of
60 percent is still not sufficient for most mission opera-
tions application. This occurs as there is no perfect over-
lap between the multivariate distribution of the states of
the lander and the distribution of states of the orbiter.

Starting from the distribution of the GIPA back-
wards propagation method, the NCI forwards propagation
method is able to find much more robust trajectories, in-
creasing the success percentage to 78.2 percent. The dis-
tributions of landing locations is also much more concen-
trated compared to the GIPA only method. However, the
distribution of landing velocities and angles is found to be
less concentrated around the desired values compared to
the GIPA method, as this method starts propagating from
these desired values and thus more trajectories will end up
around those values.

Future research will focus on improving the dynam-
ical model to be more realistic. Including for example
non-spherical gravity perturbations and/or Solar radiation
pressure. Furthermore, a better trajectory searching ap-
proach could be used for the final step, e.g. an optimiza-
tion method or finer grid size, to be able to improve the
found solution even more.
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