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Abstract
Spiking neural networks (SNNs) are largely inspired by biology and neuroscience and leverage
ideas and theories to create fast and efficient learning systems. Spiking neuron models are adopted
as core processing units in neuromorphic systems because they enable event-based processing.
Among many neuron models, the integrate-and-fire (I & F) models are often adopted, with the
simple leaky I & F (LIF) being the most used. The reason for adopting such models is their
efficiency and/or biological plausibility. Nevertheless, rigorous justification for adopting LIF over
other neuron models for use in artificial learning systems has not yet been studied. This work
considers various neuron models in the literature and then selects computational neuron models
that are single-variable, efficient, and display different types of complexities. From this selection,
we make a comparative study of three simple I & F neuron models, namely the LIF, the quadratic
I & F (QIF) and the exponential I & F (EIF), to understand whether the use of more complex
models increases the performance of the system and whether the choice of a neuron model can be
directed by the task to be completed. Neuron models are tested within an SNN trained with
spike-timing dependent plasticity (STDP) on a classification task on the N-MNIST and DVS
gestures datasets. Experimental results reveal that more complex neurons manifest the same ability
as simpler ones to achieve high levels of accuracy on a simple dataset (N-MNIST), albeit requiring
comparably more hyper-parameter tuning. However, when the data possess richer spatio-temporal
features, the QIF and EIF neuron models steadily achieve better results. This suggests that
accurately selecting the model based on the richness of the feature spectrum of the data could
improve the whole system’s performance. Finally, the code implementing the spiking neurons in
the SpykeTorch framework is made publicly available.

1. Introduction

As technology in the neuromorphic (NM) computing field keeps on advancing, so are the software methodolo-

gies and algorithms that can leverage the low-power, low-latency and event-driven properties that characterize

NM [1]. Often, inspired by the success of conventional deep learning, this results in the development of spik-

ing neural networks (SNNs). When it comes to designing an SNN learning system for some machine learning

task, researchers are faced with many decisions to make. Among these comes the choice of a particular neuron

model. This specific aspect of the development of an SNN is an extremely sensitive one as spiking neurons

are the core processing units of an NM system. To draw a parallel with the conventional deep learning (DL)

research, spiking neurons can be thought of as being activation functions (such as the ReLU, ATAN etc), but

holding an internal state. The dynamics of this state through time are governed by the differential equations

that constitute the spiking neuron model.
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Different neuron models exhibit different state dynamics. From a neuroscience point of view, these dif-
ferences are immediately clear [2]. Some models are able to capture certain intrinsic behaviours of neurons,
e.g. they can burst, chatter or fast-spike, while others cannot. Some models are also better at approximating
subthreshold dynamics, thus possibly being more accurate representations of real neurons. However, it is still
unclear how this ability translates into applicability in SNNs. There is in fact no definite answer onto whether
certain types of neural dynamics can be beneficial to particular SNN applications, nor any common knowledge
on the criteria that should drive the choice of such neurons in relation to such dynamics.

Within some specific contexts, the choice is constrained by the available hardware. As a matter of fact,
several neuromorphic chips allow to only adopt the specific neuron model that the chip is able to emulate.
BrainScaleS [3] for instance allows to only adopt the adaptive exponential integrate-and-fire neuron model;
neuroGrid [4] allows only an adaptive quadratic integrate-and-fire model; Loihi [5], SyNAPSE [6, 7] and
TrueNorth [8] allow only leaky integrate-and-fire (LIF) based models; BiCoSS [9] allows using different mod-
els, including the LIF, Izhikevich’s, and Hodgkin–Huxley’s models, for large-scale SNNs and brain simulations.
Until recently, the only chip allowing the implementation of any type of neuron model was SpiNNaker [10].
However, the recently released Loihi 2 adds to the list of chips with programmable neuron models [11], hence
highlighting the importance of an accurate investigation on this matter.

It is thus interesting to look at what are the most suitable neurons models for SNN development. This can
help to understand if the dynamics of the neurons relate, in some way, to the dynamics of the spatio-temporal
features of the data.

Simple LIF neurons are the de-facto standard choice when it comes to SNN design [12–24]. When a ratio-
nale for this is provided, this choice is often attributed to the simplicity and, consequently, to the efficiency
of the LIF neuron model. Whatever the case, such reasons hardly account for the accuracy performance of
the task at hand, neither for the temporal feature representation capability of the model. Other works rely
on more complex neuron models [25–28], attributing the choice to the biological plausibility or, once again,
to efficiency. Neurons with different dynamics are present in areas of the brain with different functionalities
[29–31]; however, the same does not apply to spiking neuron models in ML, where often the simplest neurons
are used, leaving it unclear whether there are advantages or disadvantages relative to different types of NM
data.

This work aims to answer the following research questions:

• Does the chosen neuron model influence the performance of an SNN?

• Should the choice of the neuron model be related with the data it will have to process?

Specifically, we are interested in understanding whether neuron models with different and more complex
neuronal dynamics display any advantages over simpler (LIF) ones in an unsupervised learning context. Fur-
thermore, we investigate whether such differences might exist depending on the task set to the network; hence
we perform experiments using two different datasets. To do this, we first develop a basic experiment, which
represents a simple yet efficient way to start a comparison between neuron models. We select neuron models so
that they scale up in terms of complexity and spiking patterns, and evaluate their performance within the same
neural network architectures on the N-MNIST dataset [32]. Then, we use the same neural network and train it
on classification tasks taken from the DVS gestures dataset [33], which displays a richer distribution of events.
In order to perform the aforementioned experiments, we further contribute by enriching the SpykeTorch [34]
framework with a new set of spiking neurons3.

The rest of this paper is organized as follows: in section 2 we provide some background information regard-
ing the multitude of neuron models found in the literature and highlight some relevant related works; in
section 3 we present our experimentation pipeline in detail, focusing on the datasets, neural network design
and learning paradigms; sections 4 and 5 contain respectively the results obtained through our experiments
and initiate an in-depth discussion on such results; section 6 concludes the paper.

2. Background and related works

Spiking neuron models were first born in the field of neuroscience and neurophysiology, where mathematical
models were developed to reproduce what was found by recording the activity of real neurons [35–37]. Early
SNNs resulted from studies aimed at understanding biological dynamics [38], or simulating areas of the brain
and neuronal interactions [39–41]. The shift towards their use for computational tasks was gradual and was
formalised afterwards [42, 43], with the focus generally being on the overall computational abilities of the
network. When it comes to developing SNNs for ML applications, spiking neurons can be thought of as stateful

3 Code available at https://github.com/daevem/SpykeTorch-Extended.
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activation functions. This means they retain a state of their value (the membrane potential) reached through
previous inputs. They are thresholding functions, therefore allowing to only forward information upon the
reaching of a set threshold.

In conventional DL, activation functions have been extensively studied due to their importance in the prop-
agation of the information. Nonlinear functions such as the sigmoid and Tanh were introduced to break the
linearity of multilayer perceptrons [44, 45]. rectified linear units (ReLUs) substituted them to solve the van-
ishing gradient problem and allow deeper networks. Further variants [46–49] addressed other issues like the
dying ReLU problem and helped to improve the performance of the networks [50–55]. Instead, in the context
of SNNs and spiking neurons, it is hard to find works in the literature relative to the differences in the use of
different neuron models in SNNs for NM and DL applications. To the best of our knowledge, the only work
considering the role of spiking neurons in learning from a DL point of view is the one by Traub et al [56];
however, they focus on the qualitative properties of spike-timing-dependent plasticity (STDP) and the mean
firing rate of the system after training. Furthermore, they consider a non-NM dataset and a different set of
neurons.

Most of the works on spiking neurons concentrate on the neurobiological aspects they expose. One of the
most influential works in this matter is the one by Izhikevich [57], which compared several models of spik-
ing neurons (LIF, LIF with adaptation, LIF-or-burst, resonate-and-fire, QIF, Izhikevich’s, FitzHugh–Nagumo,
Hindmarsh–Rose, Morris–Lecar, Wilson, Hodgkin–Huxley), outlining their ability to reproduce observed
neuronal behaviours and the cost (in terms of floating-point operations) of implementing such neurons
in software applications. Similar work was conducted in [58], but focusing on a smaller subset of neurons
(LIF, Izhikevich’s, FitzHugh–Nagumo, Wilson, Hodgkin–Huxley) and analysing their numerical stability.
Although they closely study spiking neuron models, the two studies above concentrate on their computational
costs and the intrinsic biological mechanics that each model can reproduce. However, they do not consider the
effect of using spiking neurons with different dynamics in a DL system.

A number of other works concentrate on the efficacy of neuron models in representing observed cortical
neurons firing patterns. One example is given by [59], where the authors make an exploratory analysis of how
parameters influence Izhikevich’s neurons in showing different spiking patters. Still regarding Izhikevich’s
neurons, Kumar et al [60] estimate parameters that allow the neuron model to optimally reproduce a given
spike train. Teeter et al [61] use a generalized version of the LIF neuron model (GLIF) to understand whether
more complex models allow to predict spike timing behaviors more closely; they conclude that this ability does
not increase monotonically with the complexity, nor with the ability to reproduce sub-threshold dynamics. In
[62] it is argued that integrate-and-fire (I & F) neuron models are good enough estimators of input spike trains
when coupled with an adaptation variable. This is both quantitatively and qualitatively shown by the authors
and provides a good ground to the adoption of this family of neuron models.

Finally, in [63] the authors compare different neuron models embedded in a liquid state machine (LSM),
a particular type of reservoir computing network. They evaluate their model with two different input pat-
terns and use Euclidean distance and entropy to estimate the ‘separation’ ability of the LSM, i.e. its ability
to generate different response patterns for different stimuli. They test their LSM using six spiking neuron
models (I & F, resonate-and-fire, FitzHugh–Nagumo, Hindmarsh–Rose, Morris–Lecar, and Izhikevich’s) and
perform experiments varying the density of the connections between the neurons. They found that the
LSM failed to achieve satisfactory levels of separation only when using Izhikevich’s neurons. Other models
allowed better separation levels depending on the density of the connections. They conclude by postulat-
ing that, for LSM implementations, Morris–Lecar, resonate-and-fire, and Hindmarsh–Rose models are most
suitable.

2.1. Neuron models in the literature
Neurons in the human brain differ by several characteristics, ranging from the type of neurotransmitters used,
to the shape they have and the spiking patterns they expose. As a common ground, however, they all share a
basic structure composed of a dendritic tree (input channels), an axon (output mean), and a soma (core) [2].
Dendrites (and axons) can be further broken down into several blocks through which signals travel. In the lit-
erature, the neurons have been modelled with different levels of abstraction and detail. Works such as [64–68]
focus on the definition and use of so-called multi-compartment neuron models. These kind of models try to
account for each compartment of a neuron (dendrites, axon and soma) individually to more closely replicate
biological evidence. However, a large number of models considers the neurons as dimensionless entities (point
neurons), hence focussing on the modelization of the soma only. They can be roughly subdivided in two larger
groups (see figure 1), the bio-physical or conductance-based models and the event-based or integrate-and-fire
models. In this work, we concentrate on the study of point neurons as they are largely used in SNNs for ML
applications.
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Figure 1. Venn diagram of some spiking neurons.

2.1.1. Conductance-based models
This class of neuron models is characterized by the fact that all the variables and parameters present in the
model have a biophysical correspondence and are therefore measurable through experiments [69]. Among
them, the Hodgkin–Huxley (HH) model is considered to be one of the most important in computational
neuroscience and defines a system of four non-linear differential equation with four variables and a num-
ber of parameters. While further levels of complexity can be attained by including further variables in the
model, this is not amenable to mathematical analysis. In fact, other simpler conductance-based models
have been derived in the literature in order to ease the analysis, while still retaining biophysical plausibility.
Some examples are the FitzHugh–Nagumo model [70, 71], the Hindmarsh–Rose [72] and the Morris–Lecar
model [73]. Nevertheless, they still remain rather complex for what concerns analysis and computation,
therefore this family of neuron models is often used only when studying single-cell or small population
dynamics [57].

2.1.2. Phenomenological models
The family of integrate-and-fire or phenomenological neuron models comprises all those models that treat
spikes as stereotypical events in time [2]. Therefore, each spike is completely described by the time at which it
occurred, or was emitted. Integrate-and-fire models require at least two equations, one describing the dynamics
of the membrane potential and the other one defining the action potential generation. Events are integrated
over time and convey electrical charges that can cause excitation or inhibition of the membrane potential of
the receiving neuron. Differently from the conductance-based models, the phenomenological ones are more
indicated for the development of neural networks [57, 74, 75], thanks to their overall lower complexity and
the lower number of parameters, which enable easier fitting.

The simplest model, apart from the perfect integrator, is the LIF [35]. The dynamics of the membrane
potential are here described by the following linear differential equation:

τm
du

dt
= −(u(t) − urest) + R · I, (1)

where τm is the membrane time constant, u(t) is the membrane potential as a function of time, urest is the
resting potential of the membrane, R is a resistance and I is the incoming current. Here, the term−(u(t) − urest)
accounts for the leakage of the membrane potential.

Although this model lacks the ability to describe most of the neuronal dynamics, it is the most common
choice for the development of large scale neural networks, mostly because of its efficiency.

More complex I & F models attempt to account for some non-linear dynamics of neurons as a function of
the value of their membrane potential in a certain moment in time. Two examples are given by the exponen-
tial integrate-and-fire (EIF) model [76] and by the quadratic integrate-and-fire neuron (QIF) or theta neuron
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[69, 77]. As shown in equation (2), EIF model expands on the LIF model by including an exponential depen-
dency on the current state of the membrane potential:

τm
du

dt
= −(u(t) − urest) +ΔT exp

(
u(t) −Θrh

ΔT

)
+ R · I, (2)

whereΔT is a parameter determining the sharpness of the exponential curve andΘrh is the rheobase threshold.
When u > Θrh, the exponential term becomes prominent over the linear one, leading to an upswing of the
curve that takes the membrane potential to infinity in finite time.

The QIF model, given by equation (3), employs a quadratic dependency from the membrane potential:

τm
du

dt
= a0(u(t) − uc)(u(t) − urest) + R · I, (3)

where a0 is a parameter of the model that regulates the magnitude of the dependency from the membrane
potential and uc is a cut-off threshold such that, when I = 0 and u > uc, the membrane potential grows until
the emission of a spike.

Both the QIF and the EIF bring in a further level of complexity with the inclusion of non-linear dependen-
cies that affect both the computational costs and the ease of analysis, but allow for a more precise generation
of spikes [2]. Additionally, a hidden cost lies in the use of two extra parameters in each of them.

2.1.3. Other multi-variable I & F models
With the inclusion of adaptation variables within the neuron model, it is possible to account for a larger num-
ber of spiking patterns and to render possible the manifestation of spike bursts, spike-adaptation responses
and irregular spiking [2]. This comes at the cost of more differential equations in the model (one per vari-
able) and two relevant examples are given by the adaptive exponential integrate-and-fire (AdEx) [78] neu-
ron model, which builds on top of the EIF, and by Izhikevich’s neuron model [79] which builds on top of
the QIF.

A number of neuron models have been theorized in the literature, all answering to different modelling
needs or considering different aspects of the observed neuronal behaviours. The ones cited above are amongst
the most relevant for what concerns this study and NM computing. In fact, as reported above, the LIF model
is the most widely used in the development of SNN for NM applications, but at the same time, models like the
AdEx and Izhikevich’s have received a lot of attention in the literature. The EIF and the QIF are on one hand
the baseline of the AdEx and Izhikevich’s models respectively, and, on the other hand, a slightly more complex
single-variable alternative to the LIF neuron model. As such, in this study, we will focus on these single-variable
models.

3. Methods

We are interested in assessing the performance of different neuron models within the context of a spiking
convolutional neural network (SCNN) trained with STDP. Since many factors could determine the outcome
of the training, we begin by designing a simple experiment which involves the minor number of structural
elements possible. This is done in order to limit the number of components that might impact the overall
system performance. Therefore, we use a single-layer convolutional network in which spiking neurons are
embedded right after the convolution operation on the input. The task set to the SCNN is a binary classification
task, with the pairs of classes taken from the neuromorphic MNIST dataset [32] and the DVS Gestures dataset
[33], which contain event-based data samples. To develop the learning pipeline, we utilize SpykeTorch [34]
as a base framework and build on top of it to include the elements required by this study, such as the diverse
spiking neuron models.

3.1. Event-based data
To assess the performance of our simple network, we select the two natively neuromorphic datasets mentioned
above. We purposely discard other non-native NM datasets as they do not possess a temporal domain, nor data
is originally event-based.

Data in the N-MNIST dataset is collected by recording MNIST digits shown on a screen using a moving
DVS camera. Specifically, the camera makes the same three predefined movements for every sample, each
lasting roughly 100 ms. In this way, although the dataset is built on top of a non-neuromorphic one, data
samples in the dataset are natively event-based, rather than being converted from a static image. Figure 2
reports the count of events per time for two example classes and throughout all the classes of the dataset. By
contrast, data samples in the DVS gestures dataset (see figure 3 for the inter-class distribution of events over
time) are recorded using a fixed DVS camera in front of which participants move their arms according to
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Figure 2. Visualization of the number of events over time. figures 2(a) and (b) for classes ‘0’ and ‘3’ are reported as representative.
They depict the count of events for each time-step among samples of one class. Figure 2(c) reports the collective mean and
variation of events throughout all the classes. As can be seen, events tend to appear always within the same time ranges for all the
samples of all the classes in the dataset, thus highlighting the lack of temporal significance. Values on the y-axis are scaled by a
factor of 105.

instructions. Thus, 11 different classes of gestures are obtained, including for example arm rotation, waving or
performing air guitar. The 11th class encodes ‘other’ random movements and is not considered in this work
for simplicity.

Event data comes in the form of address event representation (AER)-encoded files in which every sample
is constituted by a sequence of events. Events are characterized by the specific time at which they occurred,
by the location on the 2D plane and by the polarity (negative or positive light change). Similarly to [80], to
make data usable by a 2D convolutional neural network (CNN) we populate a 2D image using all the events
that took place between time t and t + dt, allowing at most 1 event per (x, y) coordinates. For simplicity, we
consider all events as being positive and use a batch size of 1. As a result, the network processes only 1 event
map with a time resolution dt belonging to only 1 sample at a time. Finally, we characterize each event with a
value of 1

ts
in line with [2]. This is done in order to preserve the amount of charge that a spike carries regardless

of the time-step (ts) size. No further pre-processing is applied to the data.

3.2. Spiking neurons implementation
The phenomenological family of neuron models is the best option when developing SNNs, as outlined in
section 2.1. We specifically concentrate on three integrate and fire neurons, namely the LIF, the QIF and the
EIF. The parameters used for these models in the same-parameter setting of experiments (see section 4) are
reported in table 1. The LIF is the most widely used neuron that embeds a time dependency through the
membrane potential leakage. The QIF and the EIF represent valid alternatives given their ability to best fit
observed cortical neurons [2, 69]. Since they are single-variable models, they stand for a fairer comparison
with the LIF, which is single-variable too. Indeed they all depend on the value of the membrane potential,
but they all employ different types of dependencies from it. Furthermore, they are the base on which other
more complex and popular neuron models are built on, respectively Izhikevich’s neuron and the AdEx neuron
model.
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Figure 3. Visualization of the number of events over time in the DVS gestures dataset. The events span across the whole time
domain and are highly dense for about the first 7 s. At that point, they start to decrease in number, however, the tail of the curve
continues for a long time. This is due to some of the gestures lasting longer than others.

Table 1. Table of hand-tuned parameters used for neurons. Each column
represents a different parameter, as outlined in section 2.1. The capacitance
C is used instead of the resistance R by leveraging the equality R = τrc

C . For
every neuron, the time-step size used was 0.02, and the voltage threshold was
recalculated every 100 samples.

Neurons τm urest C ΔT Θrh a uc

LIF 0.2 0 0.1 — — — —
EIF 0.2 0 0.1 1352 216 — —
QIF 0.2 0 0.1 — — 0.01 216

The SpykeTorch framework comes with a simple version of a I & F neuron model. To enable the use of
these neuron models for our experiments, we expand on the framework and implement the above models
by adapting the equations provided in [2]. State updates in the neurons are thus calculated on a per time-
step basis, where each call to the neuron layer corresponds to an advancement of ts time from the previously
calculated update. Each neuron layer generates a number of neurons that reflects the size of the incoming post-
synaptic currents, multiplied by the number of neuron populations that was specified at creation time. This
allows for a more seamless inclusion in any point of an SNN. When a neuron in a population emits a spike,
all the other neurons belonging to the same population are inhibited and put in a refractory state to promote
learning in other populations. Each neuron model is implemented as a class inheriting from a parent neuron
class, in an object-oriented programming style. This differs from the original SpykeTorch implementation
style, however, this approach was required for neurons that maintain an internal state. Besides, compatibility
with the modules and neurons in SpykeTorch is maintained. Further features and details are present in the
actual implementation, however, these are not relevant to the current study and the authors point the reader
to [81] and to the dedicated repository page for in-depth descriptions.

3.3. SCNN and learning
We develop a simple feedforward convolutional network for our experiments, with a single convolutional
layer that parses the input and connects it to the spiking neurons. Figure 4 illustrates the pipeline for a better
understanding. The weights of the kernel can be thought of as being synapse strengths and the resulting feature
map is the input to a set of spiking neurons arranged accordingly. In other words, the convolution represents
the connectivity scheme for the spiking neurons. The use of a convolutional layer to connect inputs with the
spiking neurons allows them to more easily learn spatial features. The weights of the convolutional layer are
the only parameters being learnt by the network and no pooling nor normalization is applied.
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Figure 4. Diagram of the learning pipeline. A 2D convolution layer parses the input spike map and produces N feature maps
width size W × H. Each value in each feature map is fed to a distinct neuron and the one spiking earliest is chosen as a winner by
the WTA mechanism. STDP weight updates are then applied to the convolution kernel corresponding to that neuron. For ease of
visualization, neuron populations are here represented as individual neurons, but each of them actually contains W × H neurons,
i.e. like one feature map.

We use the STDP presented and used in [82–84] as an unsupervised learning rule. By employing this kind
of learning rule and, therefore, using it to evaluate neurons, we want to take a step closer to local feedforward
learning, which is believed to be the key to exploit the potentials of neuromorphic engineering at its best
[1, 85]. The mentioned STDP rule applies the following weight updates:

ΔWi,j =

{
A+ × (Wi,j − LB) × (UB − Wi,j) if Tj � Ti,

A− × (Wi,j − LB) × (UB − Wi,j) if Tj > Ti,
(4)

where Wi, j is the weight of the synapse connecting neuron j (pre-synaptic) to neuron i (post-synaptic), LB and
UB are a lower and an upper bound value respectively, Tj is the timing of the spike emitted by neuron j, Ti the
timing of the spike emitted by neuron i, and A+ and A− are two parameters used to scale the weight update.

It is thus a system of two parabolic equations that are applied depending on whether long term potentiation
(LTP) or long term depression (LTD) needs to take place. One of the consequences of using this learning rule is
that weight updates are self-regularized. In fact, the closer the weights get to the boundary values, the smaller
the updates will be, allowing the weights to be refined more granularly as the learning proceeds. Another
aspect that is important to highlight is in how this learning rule is applied. While the original theorization of
Hebbian rules such as STDP states that the weight update should be proportional in value and sign on the
time-difference between the post- and the pre-synaptic spikes, in a software implementation some approxi-
mations are required. Therefore, for each time-step of the execution, we apply LTP on weights connected to
input locations where there has been a spike, and LTD in all the others. In order to promote competitive and
differentiated feature learning, we also employ a k-winners take all (WTA) (with k = 1) learning paradigm.
WTA allows only k neurons per time-step to be eligible for STDP updates, specifically the ones firing sooner.

Finally, as an homeostatic mechanism to allow neurons to keep on firing despite the changes in their synap-
tic weights, we re-calculate individual neurons’ thresholds according to equation (5). This for of adaptive
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Table 2. Table of optimized parameters used for neurons. Each column represents a different parameter, as outlined in section 2.1. The
capacitance C is used instead of the resistance R by leveraging the equality R = τrc

C . For every neuron, the time-step size used was 0.02,
and the voltage threshold was recalculated every 100 samples. HC stands for hand clapping, while RHW stands for right hand wave.

Neurons
0 vs 1 HC vs RHW

τm urest C ΔT Θrh a uc τm urest C ΔT Θrh a uc

LIF 0.0602 0 0.2983 — — — — 0.1435 0 0.3020 — — — —
EIF 0.2578 0 0.2178 32 91.14 — — 0.2389 0 0.2086 32 69.42 — —
QIF 0.2804 0 0.2178 — — 0.001 69.72 0.0621 0 0.1026 — — 0.0393 275.95

thresholding is often required when employing STDP, and a common practice for SNNs [83].

Vthresh = λ · R · A · ts

τm
· W · (Wk · Hk) · nc, (5)

and since τm = R · C, we can equivalently re-write:

Vthresh = λ · A · ts

C
· W · (Wk · Hk · Nc), (6)

where A is the amplitude of the spike, in our case assigned to be A = 1
ts

, R is the resistance, C is the capacity, τm

is the membrane time constant, W is the average value of the synaptic weights, Wk, Hk and Nc are the width,
height and depth (number of channels) of the synaptic kernel, and λ is a regulation parameter that takes values
in the range [0, 1]. In equation (6), the term A · ts

C · W , can be explained as being the average effect perceived on
the membrane potential as a result of a single spike, whereas the second term, (Wk · Hk) · nc, scales this effect
to the size of the synaptic kernel. Therefore, equation (6) calculates what would be the average post-synaptic
potential perceived in the case the input was dense with spikes. The parameter λ serves as a regulation of what
percentage of this amount would be necessary to reach before emitting a spike.

3.4. Classification
Because we employ an unsupervised learning rule, labels are not used at any point during the learning of the
weights. However, labels are needed to classify data samples, therefore we adopt a system similar to [86, 87]
and count, for each neuron, the number of times it spiked in response to samples having a given label. At the
end of the training phase, each neuron is assigned the label for which it spiked the most during training.

During the inference phase, for each data sample, a sequence of spikes is collected and weighted depending
on the order they arrived. These are then summed and the label corresponding to the highest value is selected
as the classification outcome.

3.5. Hyper-parameter optimization
Defining a good set of parameters for a machine learning system is a non-trivial task. This often requires a
lot of expertise and hand tuning and is greatly error-prone. To reduce the possibility of selecting sub-optimal
parameters for neurons which would result in poor performance, we thus make use of an optimization system
to find reasonably good parameters for our experiments. To this extent, we employ the BOHB optimization
[88] using the HpBandSter library. This technique combines Bayesian optimization (BO) and hyperband
(HB), a resource allocation and early stopping strategy. To use BOHB, we adapted our implementation so
that it could be optimized using the HpBandSter library. More importantly, we defined the domains in which
every parameter was allowed to vary. For example, the time-constant τm could be drawn from the interval
[0.06, 0.26]. Moreover, because the optimization process could be task-specific, we performed separate opti-
mizations for each different task. We summarize the final parameters in table 2. As a result of this process, we
can draw more robust conclusions about the performance of the neurons.

4. Results

We train the SCNN outlined in section 3 using a subset of the N-MNIST and the DVS gestures datasets. We
randomly select four distinct couples of classes from each dataset and define, for each, a separate binary clas-
sification task. In this way, we aim to obtain more generalizable results and to reduce the dependency of the
results on a particular coupling. Furthermore, the order in which data is presented to the SCNN might be
influential in a system employing STDP as a learning rule. This is due to the fact that STDP rewards and builds
on the inputs that are presented earlier. Therefore, to ensure independence from this behaviour of STDP, we
repeat every experiment a total of 11 times per task.
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Table 3. Table of results on the N-MNIST dataset. In each cell, the mean accuracy ± the standard
deviation values are followed by the best accuracy found (after the comma). Values are rounded up to
the closest second decimal value.

Neuron model 0 vs 1 2 vs 9 3 vs 7 4 vs 8

LIF 0.77 ± 0.11, 0.93 0.74 ± 0.06, 0.79 0.73 ± 0.04, 0.78 0.57 ± 0.02, 0.59
EIF 0.80 ± 0.12, 0.94 0.64 ± 0.07, 0.71 0.65 ± 0.04, 0.71 0.55 ± 0.04, 0.61
QIF 0.57 ± 0.03, 0.61 0.54 ± 0.03, 0.58 0.51 ± 0.02, 0.55 0.52 ± 0.02, 0.55

Table 4. Table of results on the DVS gestures dataset. In each cell, the mean accuracy ± the standard
deviation values are followed by the best accuracy found (after the comma). Values are rounded up to
the closest second decimal value. In the table, HC stands for hand clapping, RHW for right hand
wave, RACW for right arm clockwise, AG for air guitar, RACCW for right arm counter clockwise, AR
for arm roll, LACW for left arm clockwise and AD for air drums.

Neuron model HC vs RHW RACW vs AG RHCW vs AR LACW vs AD

LIF 0.53 ± 0.06, 0.60 0.50 ± 0.05, 0.56 0.54 ± 0.13, 0.66 0.52 ± 0.09, 0.69
EIF 0.58 ± 0.12, 0.77 0.50 ± 0.04, 0.58 0.53 ± 0.11, 0.66 0.46 ± 0.05, 0.52
QIF 0.57 ± 0.10, 0.71 0.48 ± 0.04, 0.52 0.62 ± 0.06, 0.67 0.53 ± 0.09, 0.75

4.1. Same hyper-parameters training
We first conduct our experiments using hand-tuned hyper-parameters. These were found by a trial-and-error
practice and represent a set of parameters that enabled learning for the task at hand. This means that neurons
using these parameters were able to emit spikes and to have the weights adjusted in a way that enabled the
learning of representations of the inputs. Where possible, we adopt the same hyper-parameters for all the
neurons in all the experiments on each dataset. Since the QIF and the EIF models introduce two different
hyper-parameters each, each of them undergoes a further hand-tuning. Results of the training sessions are
shown in table 3 for the N-MNIST-based tasks and in table 4 for the DVS gesture-based tasks. Here, for every
task and neuron model, are reported the average and best test accuracies achieved, calculated according to
equation (7):

accuracy =
TP + TN

TP + TN + FT + FN
, (7)

where TP stands for true positive, TN for true negative, FT for false true and FN for false negative. On each
column (task), the best average score and the absolute best score are highlighted in bold.

By examining the results on the N-MNIST-based tasks in table 3, the LIF neuron model is found to perform
better than the other two on average. Indeed, the EIF has higher average accuracy only on the 0 vs 1 task,
whereas the QIF model fails to achieve accuracy levels high enough to match any of the other two counterparts.

Considering the results reported in table 4, the situation differs slightly. The performance of both the LIF
and the EIF neuron models, on average, decreases drastically, whereas the QIF maintains similar levels of
accuracy as in the N-MNIST case. Nevertheless, both the EIF and QIF demonstrate superior classification
abilities throughout and their top accuracy levels often surpass those of the LIF model. These trends in the
accuracy levels highlight two main aspects. Firstly, the complexity of the N-MNIST data is lower than that of
the DVS Gestures dataset. Indeed, in both cases, the same neural network architecture and neuron models were
employed, yet the accuracy in the DVS gestures is on average considerably lower, hence highlighting the greater
difficulty of the task. Data samples in the DVS gestures dataset arguably have richer visual and temporal fea-
tures which render the learning more difficult when compared to the N-MNIST. Secondly, the richer temporal
diversity of the features might be better represented by means of neurons with richer voltage dynamics, such
as the QIF and EIF. As reported by the experiments, in fact, these two are steadily better than the LIF models
and even though in some instances one performs more poorly, the other still attains higher accuracy, possibly
as a result of a better affinity to the temporal dynamics found in that particular task.

4.2. Optimized hyper-parameters training
As a second set of experiments, we employ the optimization system outlined in section 3.5 to obtain a set of
hyper-parameters that is heuristically optimal for a specific scenario. The optimization is carried out on the
‘0 vs 1’ and on the ‘HC vs RHW’ tasks for each neuron model individually. We allow a total of 24 optimiza-
tion iterations for each neuron and task, to not favor any experiment over the others. Results are reported in
table 5. Once again, after obtaining the optimized hyper-parameters, we train and evaluate each model a total
of 11 times to increase the robustness of the results.Since the optimization is task-specific, we only evaluate
our models on the two representative tasks they were optimized on. In the case of the ‘0 vs 1’ task based on
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Table 5. Table of results using optimized hyper-parameters. In each cell, the
mean accuracy ± the standard deviation values are followed by the best
accuracy found (after the comma). Values are rounded up to the closest
second decimal value. Optimization and evaluation is performed on one
representative task per dataset only.

Neuron model 0 vs 1 HC vs RHW

LIF 0.95 ± 0.02, 0.982 0.53 ± 0.05, 0.625
EIF 0.74 ± 0.15, 0.93 0.57 ± 0.11, 0.67
QIF 0.90 ± 0.05, 0.985 0.55 ± 0.05, 0.625

Table 6. Table of standard deviations on the N-MNIST dataset. Each cell
reports the standard deviation calculated across all the experiments per each
neuron and each task. Values are rounded to the closest third decimal. For
each task, we highlighted in bold the highest values.

Neuron model 0 vs 1 2 vs 9 3 vs 7 4 vs 8

LIF 0.092 0.063 0.068 0.061
EIF 0.054 0.074 0.056 0.024
QIF 0.076 0.069 0.065 0.021

the N-MNIST, overall, the accuracy levels drastically increase. The LIF model accuracy grows by nearly 20 per-
centage points on average; however, the most striking increase is the accuracy of the QIF model, which gains
33 percentage points on average and 37.5 in the best case. This not only highlights the sensitivity of neuron
models to their hyper-parameters, but also confirms that neurons with more complex dynamics can perform
just as well as simpler ones.

In the case of the ‘HC vs RHW’ task, instead, we see a slightly different trend. In the first place, the results are
surprisingly worse than those obtained through hand-picked parameters. We hypothesize that this is because
the optimization system required more iterations to find a good set of hyper-parameters. As stated above, we
allowed the same number of optimization iterations as in the case of the N-MNIST dataset. However, given the
higher complexity of the features present in the DVS Gestures dataset, it might have been necessary to allow
more. Secondly, although still struggling to achieve higher accuracy levels, the SNNs employing QIF and EIF
averagely outperform those with the LIF. This confirms the results obtained using the same hyper-parameters
and strengthen the hypothesis that richer dynamics can be beneficial when employed on data with a richer set
of temporal features.

Another point worth considering is the variability of the results obtained. Spanning from the N-MNIST-
based tasks to the gestures-based ones, the different neuron models demonstrate accuracy levels with a standard
deviation of up to 15 percentage points. We hypothesize that this effect is caused by the order in which data is
presented to the system in relation to the STDP learning rule which, as reported at the beginning of this section,
is sensitive to such order. We also observe that the EIF model has higher fluctuations on average, which could
possibly reflect a higher sensitivity to this effect.

4.3. Sensitivity to data presentation order
In the previous paragraph, we hinted at the possibility of EIF neuron model being particularly sensitive to the
presentation order of the data as a result of being trained through STDP. Driven by this, in this section we
perform a series of controlled experiments aimed at studying this possibility.

In order to assess whether any neuron is more sensitive to the order of the data, we must constrain some
parameters of the experiment to ensure the final results do not depend on these. Since we use a homogeneous
set of neurons (they all share the same parameterization), the only varying elements are the convolutional
weights (randomly initialized), and the order of the data itself. Hence, consistently with our previous method-
ology, we design a set of 11 experiments per task and neuron model in which the initialization of weights was
fixed using a seed for the random number generator. Further to this, we allow each neuron model to process
data presented in the same order. In other words, we evaluate each neuron model using the same order of data
before changing to an other order for a total of 11 times per task. By doing so, we rule out the possibility of
any neuron model displaying certain sensitivity levels as a result of fortunate/unfortunate randomization of
the data. As a measure of the network sensitivity to the presentation order of the data we utilize the standard
deviation of the accuracy across all the experiments per each neuron and task. These are reported in tables 6
and 7. We report the average sensitivity with 95% confidence intervals for each neuron model in figure 5.
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Table 7. Table of standard deviations on the DVS gestures dataset. Each cell
reports the standard deviation calculated across all the experiments per each
neuron and each task. Values are rounded to the closest third decimal. For each
task, we highlighted in bold the highest values.

Neuron model HC vs RHW RACW vs AG RHCW vs AR LACW vs AD

LIF 0.086 0.051 0.122 0.028
EIF 0.049 0.049 0.114 0.032
QIF 0.088 0.079 0.101 0.074

Figure 5. Plot of average standard deviations with 95% confidence intervals. The average was computed across all tasks per each
neuron.

We perform a one-way analysis of variance (ANOVA) to verify whether any neuron is significantly more
sensitive than others. The test assumptions were checked. Levene’s test was non-significant (p = 0.256), indi-
cating that the assumption of homogeneity of variance was not violated. Normality was checked with a Q–Q
plot. No deviations were noted. We found no significant difference among the three neuron models in sen-
sitivity to the order of the data, F(2, 21) = 0.514, p = 0.605, η2

p = 0.047. In the context of our experiments,
these findings indicate that using either neuron model does not increase nor decrease the sensitivity to the
presentation order of the data. Instead, such sensitivity is probably only due to the use of STDP as a learning
rule.

5. Discussion

5.1. Implications of using different neuron models
The usage of spiking neuron models has some inherent implications on the machine learning pipeline from
the implementation and the theoretical points of view.

Concerning the implementation, spiking neuron come with a whole set of hyper-parameters to tune. Con-
sidering the LIF, the simplest version requires a single parameter (the time constant or a leakage term), but
other implementations might include up to five different parameters, such as the refractory period or the
time-step size. If we switch to the QIF or the EIF, there are at least two new and non-optional parameters to
consider (see 2.1).

Determining a good set of hyper-parameters is a non-trivial task [75]. Although in the NM field a lot of
inspiration is taken from the human brain, it is not possible to simply assume that the same parameters that
work in such a complex system would still be applicable in a simplification such as an SNN. We hence need
to tweak parameters for our need or, alternatively, to define a parameter optimization strategy that does that
heuristically in an automated way. However, also the latter solution often requires to make guesses about the
domain in which parameters can vary and it requires a long time to compute. Furthermore, hyper-parameters
can be correlated in some way, thus making both the hand-tuning and the automated optimization process
more difficult. As a result, from an implementation point of view, using neuron models that require more
hyper-parameters can significantly increase the usage complexity.

From a theoretical point of view, using different neurons or varying the parameters means to open to dif-
ferent non-linear dynamics and excitability patterns. Figures 6 and 7 provide a visual understanding of these
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Figure 6. Example of membrane potential dynamics of the spiking neuron models. In both figures, the y-axis represents the
variation of the membrane potential du, while the x-axis represents the value of the membrane potential itself u. Figure 6(a)
compares the three spiking neurons, whereas figure 6(b) is an example of how varying the sharpness parameter ΔT can affect the
dynamics of the EIF.

differences. In the LIF, the membrane potential updates depend linearly on the previous state of the mem-
brane potential itself. The EIF manifests a similar relationship up to certain values of membrane potential
(Θrh), after which the relationship assumes a more non-linear (exponential) aspect. The QIF loses any linear
relationship in favor of a quadratic one. These dynamics play a role on the excitability (regions) of a neuron
[2]. For instance, an EIF with a smooth exponential term (blue line in figure 6(b)) will receive more mitigated
updates throughout (slow-forgetting neuron), whereas an EIF with a sharp exponential term (orange line) will
receive more negative updates up to the cutoff threshold Θrh and then highly positive (+∞) ones, thus imme-
diately reaching the firing threshold Vth. Hence, the second example would be a fast-forgetting neuron, but
the cut-off threshold will act as an early firing threshold, as any subsequent update would bring the membrane
potential up and above the actual firing threshold. A similar example is reported in figure 7, where a change
in the time-constant τm makes a LIF neuron forget faster or slower. This in turn has effects on the excitability
of the neuron and its firing pattern.

The different firing abilities discussed above need to be considered within the context where the neurons
are placed. If we consider the case of a homogeneous SCNN that is trained on a dataset in which the temporal
distribution of events is similar for every sample, it might be pointless to consider having a wide range of
excitability patters as more complex neurons have. Indeed, the increased amount of parameters would make it
more difficult to find the right excitability that works well with that data. At the same time, they would likely
come at a higher computational and power cost. Conversely, if the dataset is considerably diverse in terms of
temporal distribution of events, it would arguably prove useful to have a broad range of excitability patterns
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Figure 7. Example of changing hyper-parameters in a LIF neuron. The ‘fast forgetting’ neuron (smaller time constant τm)
(figure 7(b)) can only spike twice in response to the input (figure 7(a)). The ‘slow forgetting’ one (figure 7(c)) can fire three times
and maintains a higher membrane potential throughout. Note that the ‘slow forgetting’ neuron also fires earlier, i.e. it requires
less (close) spikes to reach the threshold. Both the neurons have a refractory period of 2 ms.

to choose from. Therefore, an heterogeneous network of spiking neurons would likely be able to learn better
or simply more features. In this context, employing more complex neurons with variable parameters can be
significantly beneficial.

5.2. Temporal features and neuron performance
In our experiments, we used a extremely simple homogeneous SCNN to perform a simple classification task
on a simple subset of the N-MNIST and DVS gesture datasets. The N-MNIST dataset, although natively event-
based, is not a naturally dynamic dataset. The original data, the MNIST handwritten digits, are static images
that do not contain temporal dynamical features. As such, the temporal features that are instead present in the
N-MNIST are crafted. Furthermore, these dynamics are obtained by moving a DVS camera using the same
sequence of movements with the same timing. Figure 2(c) shows that, as a result, the distribution of events
throughout each sample present in the dataset is roughly the same. This means that the temporal features
are not different from one another and are hence not discriminative of different classes of samples. Indeed,
as discussed in the previous paragraph, using a homogeneous SCNN was enough to achieve reasonably high
accuracy levels, despite the lack of diversity in the dynamics of the embedded neurons.

Concerning the performance in such a homogeneous settings, in our consideration of three single-variable
neuron models we found that all of them have the ability to perform well. The difference however is in the cost
of using one neuron rather than the other. From our experiments, we found that when hand-tuning parame-
ters, the LIF neuron achieved averagely high accuracy levels, with EIF neuron being better at times. Using a set
of optimized hyper-parameters, we observed a considerable improvement in the overall classification accuracy
with the QIF achieving a 98.5% accuracy in the best case, thus surpassing its counterparts. The same QIF model
performed rather poorly when using non-optimized parameters. As mentioned in section 4.2, this highlights
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the fact that, despite the data displaying simple spatio-temporal features, more complex neurons are still able
to perform well. The cost for achieving such results can, however, become rather high.

When employing gestures data, the situations is slightly different. In this case, as depicted in figure 3, there
is no recurring distribution of events across different classes. Instead, events are distributed throughout the
whole time domain. Each class of gestures has a distribution of events that varies with respect to the others,
even more because of the fact that different actions require a different time to be executed. Thus, the temporal
features in this dataset are more important and diverse. As a matter of fact, this is also shown by the results
obtained using the same network as in the previous case. Here, although the performance gain is still modest,
the EIF and QIF neurons steadily attain better classification accuracies than the LIF model. Since we used
the same setting for all the experiments, this is likely traceable to the aforementioned differences in temporal
features, which are now more diverse and complex than those in the N-MNIST dataset.

5.3. Temporal features and depth of the network
The matter of temporal variety in the features being better represented by more complex dynamics opens up
further questions as to their use in SNNs. Indeed, if we consider a hierarchical NN, the deepest layers normally
learn more abstract representations, whereas the early layers typically learn to distinguish simple patterns,
such as edges or corners [44]. This is easily conceivable when thinking about spatial features. For example,
when a set of lines is recognized in the early layers of a CNN, these could later be understood to be a square,
and further down the network as a house. Although it can be more difficult to imagine, when we include the
time dimension, similar scenarios can arise where features relate temporally other than spatially. It thus seems
straightforward that the temporal relationships might vary in complexity in different stages of the network
depending on the task at hand.

We showed that the use of more complex neuron models improves the performance on more complex tasks
at the level of one layer. When combining several of these layers in a hierarchical network more uses of their
non-linear dynamics could arise, as they would combine several spatio-temporal features built up in previous
stages to understand compound featural patterns.

6. Conclusion

In this work, we have considered a simple unsupervised SCNN and analyzed the effect on the overall perfor-
mance of changing the underlying neuron models. Because they were not previously present in the SpykeTorch
framework, we implement the spiking neurons and make the code available. We firstly draw a set of four binary
classification tasks using 4 couples of classes from the N-MNIST dataset on which we repeatedly train and eval-
uate our SCNN. Experimental results on these tasks show that all three neuron models can achieve top-level
accuracies, albeit the more complex ones require more fine-tuning. In a second instance, we consider the DVS
gestures dataset, which exposes a richer set of features from both the visual and temporal points of view. In
this case, the EIF and QIF steadily outperform the LIF on all four tasks drawn from this dataset. Further to
this, we analyzed the sensitivity of the SCNN using each neuron model to the order of presentation of the data.
Our analysis shows that none of them implies a statistically relevant difference in terms of sensitivity, and that
such sensitivity is probably only relatable to the use of STDP, in our experiments. Collectively, our results show
that accurately selecting the neuron model employed in an NM pipeline improves its performance, and that
this selection should be driven by considering the complexity of the spatio-temporal features that the layer in
the network will have to understand. Furthermore, it highlights that further research aimed at unveiling the
role of the dynamics of neuron models in deep hierarchical learning would be highly beneficial to close the
gap between conventional DL approaches and SNNs. Other future studies could consist of analysing further
relationships between the neuron models and other components of the learning pipeline, such as the neural
network architecture, and the learning rule. Furthermore, it would be interesting to investigate the result of
using different spiking neurons on the synaptic efficacies when using STDP as a learning rule.
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