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ABSTRACT

Over the years, Non-Intrusive Load Monitoring (NILM) research
has focused on improving performance and more recently, gener-
alizing over distinct datasets. However, the trustworthiness of the
NILM model itself has hardly been addressed. To this end, it be-
comes important to provide a reasoning or explanation behind the
predicted outcome for NILM models especially as machine learning
models for NILM are often treated as black-box models. With this
explanation, the models, not only can be improved, but also build
trust for wider adoption within various applications. This paper
demonstrates how some explainability tools can be used to explain
the outcomes of a decision tree multi-classification approach for
NILM and how model explainability informs feature selection and
eventually improves performance.
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1 INTRODUCTION

This paper is motivated by the potential of smart metering to pro-
vide real-time information on energy consumption in a household
at any point. Load disaggregation can then be performed on smart
meter data to help end users manage energy consumption and bills
and help utilities implement effective demand response and tariffs.
Since load disaggregation via Non-intrusive load monitoring (NILM)
was initially proposed 30 years, NILM researchers have been focus-
ing on improving disaggregation accuracy via ever more complex
machine learning models [1, 5]. However, the following challenges,
as summarised by [6] to enable trustworthiness of NILM, remain:
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generalisability across different load profiles, models enabling con-
tinuous learning and embedding user feedback, explaining NILM
outcomes, fair performance evaluation and developing models that
are privacy-preserving. The focus of this paper is on explaining the
outcomes of a NILM model as well as improved learning through
a better understanding of feature importance in the NILM multi-
classifier model. The importance of explainability of a NILM model
[9, 12], is: (a) to facilitate learning and satisfy curiosity as to why
certain decisions have been made by the model to build trust, (b)
for tuning purposes, as with explainability methods, one can learn
important features that contribute significantly to the outcome and
which do not, and (c) to debug the model in case of errors.

To date, there have been few attempts to explain NILM mod-
els, generally for neural networks. Heatmaps, a model agnostic
way to visually interpret time series results, are demonstrated in
[12] to explain NILM outputs, showing what the model considers
the most impactful on its decision making. However, heatmaps
may be difficult to explain to the end-user, who has little to no do-
main knowledge. Another attempt at explainability of NILM deep
learning-based autoencoders [11], observed that the outcome of the
network was improved by identifying which neurons and filters
were most critical.

In this paper, the focus is on explainability of Decision Tree based
NILM that acts as a multi-classifier taking as input features from
smart meter measurements. Partial-Dependence (PD) and Individ-
ual conditional expectation (ICE) plots, and feature importance are
explainability tools that are leveraged upon to explain the NILM
multi-classifier outputs. In turn, this explanation is used to inform
feature selection in order to improve the model.

Decision tree (DT) is a low-complexity supervised approach that
requires only a small dataset to train the model. It has shown good
performance for NILM [7, 8, 13] and can be used effectively as
a multi-classifier. The tree is a hierarchical structure comprising
nodes and branches that can be followed through (from the parent
node to the leaf node) to understand how the outcome came to be,
with Gini impurity measure used to determine the best splitting
decision [14]. That is, DT method is interpretable by design [9], in
the sense that it is possible to design a tree in way that decision
outcomes can be mathematically explained and predicted. However,
as the tree is becoming more complex with all the decision splits, the
dependence of a predicted outcome on the feature is not easily seen.
In other words, it is often very difficult for a human to infer how
the outcome was generated. Therefore, additional explainability
methods are needed to shed light on most important features that
steer the model towards particular decision. Feature importance
and PD plots are shown to provide user friendly global explanation
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[2] while ICE plots can generate intuitive local explanations for the
DT model.

2 METHODOLOGY

For low-rate event-based NILM algorithms, the features are tem-
poral and generally based on change in active power and duration
[7, 8]. Let P; be the aggregate power measurement, at sampling
instant ¢, comprising the sum of power consumption of known
individual appliances i, Pf, and measurement noise e;. That is,
P = Z?;I 1 P; + e;. To generate features, automatic edge detection
algorithm is used that isolates an edge if AP* = |P§ - Pti_1| > T,
where T' is an appliance-specific adaptive threshold. The event
detection algorithm will output the following features: (a) EDGE_P:
AP value when the appliance became ON (in Watts); (b) EDGE_N:
AP value when the appliance went OFF (in Watts), (c) DURATION:
time difference (in seconds) between time at EDGE_P and time at
EDGE_N. All other AP edges that do not belong to the appliances
of interest are labelled as "Other", representing unknown appli-
ances contributing to e;. Since DT requires labelled data during
training, the generated features will be used as input features with
output labels (appliances) during training. After training, the model
is exported for prediction on unseen data without labels.

2.1 DT-based Multiclassifier

During training of the supervised DT-based multi-classifier, input
features and their corresponding output (labels of appliances of
interest) need to be set. The labels used in this paper correspond
to the five popular appliances: Washing Machine, Dishwasher, Mi-
crowave, Toaster and Kettle. These appliances are present in most
households. Of particular interest, since they are the cause of mis-
classifications, are appliances which have similar EDGE_P and
EDGE_N such as microwave and toaster, as well as appliances with
similar DURATION such as washing machine and dishwasher. Fur-
thermore, these five appliances include a mixture of single state
ON/OFF appliances, such as kettle, to multi-state appliances such
as Washing Machine.

2.2 Explainability

In this paper, we leverage on model-agnostic interpretability tools,
namely: partial dependence (PD) plots and Individual conditional
expectation (ICE) plots, as well as feature importance. Feature im-
portance gives a score for each input feature based on how useful
it is for the prediction of an outcome for a given model as a whole.
Feature importance is calculated as the number of samples of a
feature that will reach the leaf node (predicted outcome) divided by
the total samples of that particular feature. A higher score means
that the specific feature will have a larger effect on the model that
is being used to predict a certain outcome. PD and ICE plots visu-
ally show the relationship between input features and predicted
outcome [3]. PD plots and feature importance provide global ex-
planation hence, do not explain individual instances of a feature
and PD plots assume that the features(s) are not correlated with
other features. ICE plots, on the other hand, focus on dependence
of individual instances of a feature on the predicted outcome. They
only display one feature at a time.
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Table 1: F-SCORE Performance Comparison of the DT-based
and Deep Learning Multi-classifiers.

Appliance KE WM DW MW TOA
DT (proposed) 1 0.61 0.71 0.93 0.73
DT [4] 058 0.73 036 0.95
Median filtering + 2-step DT [7] 0.52  0.77
LSTM [15] 0.57 053 031 0.80
S-CRNN [15] 0.64 0.65 0.65 0.80
SSML-TCN [15] 0.77 0.60 052 0.73

CRNN (strong labels) [15] 0.73 0.77 0.78 0.84

For example, in Figure 3(a), the PD plot (PDP) is the highlighted
thick red line, which shows, on average, the effect of feature EDGE_N
on the predicted outcome "Kettle". The flat PDP, with low score
(0.2), in Figure 3(a) indicates that feature EDGE_N is not important
for kettle classification. The set of black lines on the x-axis indicate
the distribution of all EDGE_N instances and the black dots are
the actual individual instance values of a EDGE_N feature. From
this figure, it is seen that, while the PD plot value is very small
on average, there are a few individual instances that have a very
high impact on the prediction "Kettle", as indicated by the dots that
appear at the 1 "score” of y-axis on the plot, and all focused in the
region between -3700W and -2000W.

3 RESULTS

In this section, a five-appliance classifier model is built using the
three features described in Section 2.1. We use House 2 of the
REFIT dataset [10], which contains all the appliances of interest
and can be benchmarked against other NILM results that have been
published in the literature. We train the classifier on 55 edge-pairs,
per appliance, taken randomly from the dataset (except for the test
month period) and test on the entire unseen months of October,
November and December 2014. Adaptive thresholds T? used are:(a)
2000W for Kettle, (b) 1900W for Dishwasher and Washing Machine,
(c) 1000W for Microwave and (d) 700W for Toaster. For performance
evaluation, the following standard classification metrics are used:
Precision (PR), Recall (RE) and F-Score.

Table 1 compares F-SCORE performance of our DT multiclas-
sifier with the following NILM multi-classifiers for Kettle (KE),
Toaster (TOA), Washing Machine (WM), Microwave (MW) and
Dishwasher (DW): (a) DT of [4] using EDGE_P and EDGE_N fea-
tures and tested with REFIT House 2 (October 2015), (b) DT of [7]
using EDGE_P, EDGE_N and active power as features, tested on
REFIT House 2 (October 2014), (c) deep learning multi-classifiers,
LSTM, Convolutional Recurrent Neural Networks (CRNN, S-CRNN)
and Semi-Supervised Multi-Label TCN (SSML-TCN) whose results
with 100% strong labels are reported in [15], trained on appliance
activations and tested on unseen REFIT Houses 4, 9 and 15. Best
accuracy score is indicated in bold for each appliance, showing that
the proposed approach has comparable performance w.r.t other
state-of-the-art multiclassifiers in the literature.
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Table 2: Five Classifier Performance Metrics.

APPLIANCE PR RE F-SCORE

Dishwasher 0.84 0.61 0.71
Washing Machine 0.51 0.77 0.61

Kettle 1 1 1
Microwave 0.98 0.89 0.93
Toaster 0.61 0.90 0.73

Table 3: Performance with explainability-informed feature
selection.

EDGE_N & DURATION EDGE_N

APPLIANCE PR RE F-SCORE PR RE F-SCORE
Dishwasher 0.87 0.81 0.84 0.71  0.60 0.65
Washing Machine 0.69  0.74 0.72 0.42 0.51 0.46
Kettle 0.98 0.99 0.98 0.94 0.95 0.94
Microwave 0.96 0.87 0.91 0.96 0.85 0.90
Toaster 0.61 0.90 0.73 0.57 0.90 0.70
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Figure 1: Feature Importance for 5-Appliance Classifier.

3.1 Explainability

Figure 1 shows the resulting feature importance scores for the
proposed five-appliance classifier model, and Figures 2-4 show the
ICE plots for each appliance. The y-axis of all figures shows the
score of the predicted outcome (between 0 and 1) w.r.t the feature,
and w.r.t instances of each feature in the ICE plots. Observing
individual instances of a feature can explain the performance of
each appliance. The instances that appear to have almost 1 "score"
in ICE plots have very high impact on the predicted outcome.
Figure 1 shows that EDGE_P is the least important feature in
our 5-appliance classifier model, on average across all 5 appliance
classes. This is also observed in the PD plots in Figure 2, where the
scores for most appliances, except kettle and microwave, are small.
It is observed from Figure 2(a) that the trained model considers
EDGE_P strongly for prediction "Kettle". Due to Kettle’s high and
distinct power signature, it is observed from the ICE plot of Fig-
ure 2(a) that the individual instance scores are very well clustered
and rarely mixed. Indeed, all EDGE_P below 1800W are with score
0 and all values above 2700W are with score 1 (highlighted in green).
That is why, the performance of kettle on unseen data is high as
shown in Table 2. The only issue appear with a single EDGE_P
instance of around 2400W that is mixed with the 0-score cluster of
instance points between 2000W and 2600W (highlighted in yellow),
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where Kettle is likely to be confused as either Washing Machine or
Dishwasher. This single instanced caused the Kettle’s PD plot of
Figure 2(a) to rise by only 60%.

Microwave and Toaster have the lowest and similar power con-
sumption. Therefore, they are confused with each other, as observed
by multiple instances in EDGE_P around the same wattage in Fig-
ure 2(b-c) (multiple overlapping score 0 and 1 clusters highlighted
in yellow). However, Microwave has high PD plot scores because
between 1240W and 1530W all scores are 1 and the cluster is well
separated (highlighted in green). With EDGE feature in Figure
3(b-c), however, Microwave and Toaster can be separated. EDGEN
instances lesser than -1180W are considered strongly for Microwave
and higher that -1180W are considered strongly for Toaster (high-
lighted in green). The performance of the Microwave and Toaster
is affected by the fact that the unseen data has EDGEy toaster
values that are below -1180W and Microwave values that are above
-1180W, hence false negatives for both Microwave and Toaster, as
shown in Figure 5(a).

Dishwasher and Washing Machine have similar power signa-
tures and therefore they are easily confused with each other, as ob-
served in their ICE plots. The model leans towards Dishwasher with
EDGEy instances between -2280W and -2567W, and -2215W and
-2038W. The model leans towards Washing Machine with EDGE N
instances between -2281W and -2216W, and -1937W. Though there
is a rise of their PD plots of Figure 3(d-e) at those wattages, the PD
plot scores are very low, indicating low confidence in prediction.
With DURATION feature, however, for prediction "Dishwasher",
most DURATION values between 570sec and 780sec have high
impact. For prediction "Washing Machine", values between 270 and
540sec, and higher than 780sec, have higher impact. Even their PD
plots of Figure 4(d-e) show a rise of about 50%. Hence, we conclude
that including DURATION as a feature, can improve model per-
formance for Washing Machine and Dishwasher as they can be
distinguished from each other.

3.2 TFeature Selection

Figure 1 shows that the model considers EDGE_N and DURATION
as the most important features overall. Thus, we attempt to improve
the model by training with the features it considers the most im-
portant. Table 2 summarizes the classification results for the five
classifier model with all 3 features, while Table 3 shows the results
from the model that is trained with only two important features (dis-
carding EDGE_P, as informed by explainability analysis). Improved
performance, due to explainability-informed feature selection, is
highlighted in bold.

As discussed previously, EDGEp is an important feature for Ket-
tle. With EDGExN and DURATION as features, it is observed that
there are a lot of mixed up instances seen in Kettle ICE plot of
Figure 3(a) and 4(a) (highlighted in yellow). Hence, Kettle dropped
its performance due to more false positives, as per Figure 5(b-c).
Microwave has dropped its performance because from Figure 2(b),
there are some instances between 1265W and 1532W that are not
mixed up with other instances, raising the PD plot for Microwave
up to about 70%. Hence, removing EDGEp affected Microwave as
well. In turn, more false positives in Toaster as shown Figure 5(b-
¢). Since Microwave, Toaster and Kettle have all short and similar
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duration of operation, DURATION as a feature brings confusion
within these three appliances. In other words, Kettle, Microwave
and Toaster prediction depends more on both EDGEp and EDGEN
features. Therefore, with EDGEp only, the performance for these
three appliances has not improved. With EDGEp feature, Dish-
washer and Washing Machine are very much confused with each
other as predicted by their low PD plots of Figure 2(d-e). Therefore,
removing EDGEp as a feature, improves their performance as seen
in Table 3. The model considers DURATION strongly for Wash-
ing Machine and Dishwasher, which can be seen by their drop in
performance in Table 3 when DURATION is removed due to more
false negatives as per Figure 5(c).

4 CONCLUSIONS

This paper proposes how explainability of a model yields a deeper
understanding of the relative importance of features overall and on
each instance of a prediction. This in turn can be used to improve
the model performance, in addition to improving the trustworthi-
ness of the model. A multiclassifier based on DT, with comparable
performance to state-of-the-art classifiers, is used to demonstrate
the value of explainability through evaluation using PD, ICE plots
and feature importance. Although the overall model considers spe-
cific features more important than others, local explainability is
critical to explain false positives. We also show that explainability-
informed feature selection improves performance of the classifier
in general.
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