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Abstract: Offshore wind turbines (OWTs), in comparison to onshore wind turbines, are gaining
popularity worldwide since they create a large amount of electrical power and have thus become
more financially viable in recent years. However, OWTs are costly as they are vulnerable to damage
from extremely high-speed winds and thereby affect operation and maintenance (O&M) operations
(e.g., vessel access, repair, and downtime). Therefore, accurate weather forecasting helps to optimise
wind farm O&M operations, improve safety, and reduce the risk for wind farm operators. Sequential
data-driven models recently found application in solving the wind turbines problem; however, their
application to improve offshore operation and maintenance through weather forecasting is still
limited and needs further investigation. This paper fills this gap by proposing three sequential
data-driven techniques, namely, long short-term memory (LSTM), bidirectional LSTM (BiLSTM) and
gated recurrent units (GRU) for long-term weather forecasting. The proposed techniques are then
compared to summarise the strength and weaknesses of these models concerning long-term weather
forecasting. Weather datasets (wind speed and wave height) are intermittent over different time
scales and reflect offshore weather conditions. These datasets (obtained from the FINO3 database)
will be used in this study for training and validation purposes. The study results suggest that the
proposed technique can generate more realistic and reliable weather forecasts in the long term. It can
also be stated that it responds better to seasonality and forecasted expected results. This is further
validated by the calculated values of statistical performance metrics and uncertainty quantification.

Keywords: wind turbine; offshore wind; weather forecasting; deep learning; machine learning

1. Introduction

Due to eco-friendly climate change policies and significant cost reductions over the
last decade, wind energy experienced remarkable growth across the globe, driven by
technological improvement and competition. For instance, according to IRENA, wind
energy (combined offshore and onshore) could create more than a third (35%) of total
electricity needs, becoming the prominent clean energy source by 2050 and is there is
forecasted to be an addition of nearly 51 GW of new offshore wind worldwide by 2024 [1].
Compared with all conventional fossil fuel, onshore wind turbines (WTs) levelised cost of
energy (LCOE) is already competitive now and expected to further decline in the coming
years within the range of USD 0.03 to 0.05/kWh by 2030 and USD 0.02 to 0.03/kWh by
2050 [1]. Offshore WTs, as the name suggests, are generally located in the high seas to
capture the abundant wind resources and witnessed a total installed capacity of 23 GW in
2018 [1]. According to the Wind Europe report on offshore wind in Europe: Key trends and
statistics 2019 [2], Europe installed a record 3.6 GW of new offshore WT capacity in 2019,
and the UK records the highest installed capacity (48.5%), followed by Germany (30.5%),
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Denmark (10%), and Belgium (10%). Compared to onshore wind farms, offshore across
Europe has great interest, notably in Denmark, Germany, and the UK. However, offshore
operations and reliability are becoming more challenging and costly for these countries [3].
According to current statistics [4–6], operation and maintenance (O&M) cost for offshore
WTs are about 25–30% (including all expenditures associated with planned and unplanned
repair tasks) of the total lifecycle costs, which can be increased further due to logistics,
access for routine maintenance and unplanned maintenance. Hence, many offshore WT
operators and manufacturers are looking for a way to optimise maintenance strategies and
reduce O&M costs under unexpected marine environments.

1.1. Factors Affecting Offshore O&M Activities

Offshore O&M activities are complex and involve a massive workforce and cost. Thus,
optimising O&M is key to determining the most effective and efficient maintenance plan
to reduce maintenance costs. However, designing an optimal maintenance strategy for
offshore wind farms is greatly affected by weather conditions that delay repair works and
cause high uncertainty in power production [7]. Thus, it is crucial to develop effective
models and efficient techniques to predict the weather condition to gain access to offshore
WTs for service and repairs, improve availability, and reduce O&M costs. Furthermore,
these offshore O&M activities depend highly on wave height and hub height wind speed;
therefore, they are often together, called weather datasets, and are widely used in many
kinds of literature [8]. For example, Rothkofp et al. [9] proposed a Markovian wave-height-
based model which can be used in any Monte Carlo simulation for offshore. Anastasiou
and Tsekos [10] suggested a technique for the existence of different marine environmental
conditions using Markov theory. They assumed the distribution of the environmental
condition as a stationary first-order Markov process. Their investigation suggests that the
Markov chain effectively models marine environmental parameters and achieves better
accuracy than the Kuwashima–Hogben algorithm [11]. Dinwoodie et al. [12] proposed a
novel technique based on autoregressive (AR) models to represent met ocean site conditions
where wave height and speed data sets are used for training and validation purposes. Their
result shows the influence of weather on component reliability and access thresholds at
various existing sites on availability. It offers new insights into offshore WTs’ O&M. Feucht-
wang et al. [13] use a closed-form probabilistic model to quantify the maintenance delays
due to the sea state. Access constraints and a Weibull distribution for the environment
are included in their model, intended to highlight a given location’s conditions. Offshore
repair works are delayed either because of a lack of technicians or are forced to have to
shut down due to significant faults. The harsh environmental condition restricts access
to the WT by service vehicles, where wave height is critical in determining if access can
be securely achieved. Dinwoodie et al. [14] present wave height limits for various vehicle
types such as helicopters and multiple vessels at sea. They specify that the wave height
restrictions apply to the service vehicle’s length at sea. All these literature examples outline
the importance of weather conditions and their impact on offshore O&M activities. Thus,
many researchers seek cost-effective technologies to detect weather conditions to optimise
offshore maintenance activities. These are briefly reviewed as follows.

1.2. Related Works

In recent years, data-driven techniques are finding applications in optimising offshore
O&M activities and analysing the impacts of weather conditions on turbine operations.
Reder et al. [15] proposed a framework capable of correlating and analysing failure data and
environmental conditions ahead of wind turbine component failures. They used supervised
and unsupervised data-driven techniques to filter the weather and failure data. The a priori
rule-mining algorithm is then applied to understand the logical interconnections between
the failure occurrences and the environmental data. Their result established the relationship
between the environmental parameters (e.g., relative humidity, ambient temperature, and
wind speed) and the failures of five major WT components: gearbox, generator, frequency
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converter, pitch and yaw system. Tautz-Weinert et al. [16] carried out a sensitivity analysis
of the maintenance decision at a Spanish wind farm where a wind blade’s replacement
was needed to avoid a catastrophic failure. While doing so, they considered the effect of
environmental conditions on power performance. Their finding highlights the importance
of weather seasonality and seasonality in the electricity market in the O&M decision-
making process. Juan et al. [17] developed an open-access O&M tool that estimates a
given offshore wind farm’s availability and helps optimise operational strategies. They
used a discrete Markov model to assess weather conditions in which wave height and
wind speed obtained from the FINO3 database are being used for training and validation
purposes. Hofmann et al. [18] simulated weather time series data using a Markov chain
method where they assumed a perfect weather prediction for the duration of the next shift.
In [19], the Metocean module used re-sampling of wind and wave data and, in addition to
the time series for wind speed and significant wave height, provided wind shear model
parameters and operating limits for each type of equipment. Dalgic et al. [20] used an
autoregressive multivariate model to produce the synthetic weather data. They used wind
speeds at sea level for access controls and hub height wind speeds for maintenance and
development with a jack-up vessel. Wave heights and wave cycles were used to signify
the wave environment. This model preserves site-specific weather stability, seasonality,
and the association between wind intensity, wave height, and wavelength. Seyr et al. [21]
presented a stochastic process for generating weather data and can be used as an alternative
to the traditional generation models based on simulation. More recently, probabilistic
ARMA-GARCH approaches have been applied to wave height forecasting, which could be
applied to future offshore decision making as an alternative to other existing forecasting
techniques [22].

1.3. Timeliness, Knowledge Gap and Novelty of the Proposed Work

As per the World Energy Council findings, better weather forecasting could reduce op-
erational costs by 3%, attracting the attention of numerous researchers and OWT operators
to create strong weather forecasting models to improve OWTs’ O&M operations, availabil-
ity, and dependability. Furthermore, a missed weather window can be extremely costly,
especially during construction when specialised vessels are involved. Accurate weather
forecasting can improve safety and reduce the risk for wind farm operators. Therefore,
these risks and costly circumstances can be avoided by using reliable weather forecasting
systems. Data-driven technologies such as machine learning and deep learning have started
finding applications in weather forecasting. For example, Pandit et al. [23] proposed LSTM
and Markov chain for long-term weather forecasting and found that Markov outperformed
LSTM. However, they did not incorporate different deep learning approaches for their
model performance validations. Furthermore, in [24], it is discussed that there is little liter-
ature about data-driven models for long-term wind forecasting and, in that study, several
tree-based algorithms are employed. This article attempts to fill this gap by proposing three
deep learning (LSTM, biLSTM and GRU) techniques for long-term weather forecasting to
optimise the OWTs’ operation with accurate weather forecasts. The rationale is to explore
the use of deep learning networks which have become widely used in different fields of
wind energy applications such as, for example, short-term forecast or sub-component fault
diagnosis. The data-driven models selected in this study are then compared to suggest
the most appropriate long-term weather forecasting in terms of accuracy and computa-
tional cost. This research also addresses the theoretical and practical limitations associated
with the implementation of these data-driven models to help the offshore wind O&M
decision-making process.

A framework for the proposed research is illustrated in Figure 1 and described as
follows. The weather datasets (wind speed and wave height) extracted from the FINO
database were first pre-processed together and were then split into training and validation
sets. The proposed data-driven models were then trained and their effectiveness was
then tested. A performance comparison is the final stage of the proposed methodology
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where proposed models are compared in terms of accuracy and uncertainty. Statistical
performance error metrics and uncertainty assessment were undertaken to answer the
following research question: which data-driven model is robust in estimating long-term
weather to improve O&M activities of turbines?
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Figure 1. Framework of the proposed data-driven weather forecasting models.

The rest of this paper is organised as follows. First, weather data and its pre-processing
are described; then, the data-driven model’s methodologies for long-term weather fore-
casting are proposed. Thereafter, performance comparison is conducted with existing
techniques to find out the most effective model and summarising strengths and weaknesses
of the models. Finally, the paperwork finishes by outlining conclusions and discussion
together with possible future directions.

2. Datasets Preparation and Pre-Processing

This study refers to wind speed and wave height as weather data since they are the
main weather factors that affect offshore maintenance scheduling [17,21]. These weather
datasets are being taken from FINO3, situated about 80 kilometres west of Sylt, in the midst
of German offshore wind farms [25]. The FINO3 datasets describe the 3-hourly data points
(wind speed at 106 m above sea level and wave height) for 10 years, starting with ‘1 January
2000 00:00 AM’ and ending at the timestamp ‘31 December 2010 21:00’. Before being fed
into the model, all the samples are divided into the training set and test set with the ratio of
70:30 which gives 22,493 and 9636, respectively, (as illustrated in Table 1) for model training
and testing purposes.

Table 1. FINO3 weather datasets’ descriptions.

Start Timestamp End Timestamp Total Measured Data Training Data Testing Data

1 January 2000 31 December 2010 32,145 22,493 9636

Raw data contain the univariate component of the metrics in time order which is then
converted into multivariate features. Datasets were normalized on a scale of 0 to 1 and,
using the feature engineering technique, features were created. The overall framework of
the proposed techniques is easily explained by a flow chart as shown in Figure 2, where raw
weather datasets are taken for the pre-processing stage (normalisation, conversion from
univariate to multivariate, and the data division) and then the resulting datasets are used
for the proposed model training and testing. FINO3 weather datasets are pre-processed
using ‘RobustScaler’ available in the scikit-learn Python machine learning library via the
‘RobustScaler’ class. It performs better in reducing the influence of outliers [26]. While
doing so, the scaling range is defined by the interquartile range (IQR) and is bound by
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their default values. Then, datasets are transformed using ‘scalar. fit’ of python and will be
used for LSTM model training and testing purposes in upcoming sections. Once models
were developed, then their performance was tested in terms of performance metrics and
uncertainty analysis.
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Figures 3 and 4 demonstrate the three-hourly time-series data points of wind speeds
and wave heights from 1992 to 2016 (10 years) representing high variability. For the sake of
simplicity, time series plotted for sample datasets are shown in Figures 5 and 6, respectively.
Furthermore, by looking at these two parameters closely, we found that they are closely
correlated to each other, which is expected. This is further confirmed by the wave height
and wind speed scatter plot as shown in Figure 5.
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Augmented Dickey–Fuller (ADF) tests were performed on both wind speed and
wave height datasets and both rejected the null hypothesis and, therefore, confirmed the
alternative hypothesis that both time-series datasets are stationary and have no unit root.
The formulation of the test is as follows: consider the model in Equation (1):

∆yt = α + βt + γyt−1 + δ1∆yt−1 + . . . + ∆yt−p+1 + εt (1)

The null hypothesis corresponds to γ = 0, which means that the lagged value yt−1
is irrelevant for predicting the change of the target at time t. If the null hypothesis can
be rejected, the process is stationary, has no unit root and exhibits reversion to the mean,
which means that the lagged value is relevant for predicting the change of the output.
After confirming that the time series are stationary, autocorrelation analysis is taken into
consideration to measure a set of present values against past values to check if they
correlate. Because wave heights are highly volatile, it is essential to determine the internal
correlation using a plot of the autocorrelation of a time series of wave height by lag
called the autocorrelation function (ACF). The autocorrelation and partial autocorrelation
functions with lag k are defined in Equations (2) and (3):

Rk = E[yt+kyt] (2)

ϕk = E[(yt+k − ŷt+k)(yt − ŷt), (3)

where E stands for expected value and ŷt+k and ŷt are linear combinations of yt+1, yt+2,
. . . , yt+k−1 which minimize the mean squared error of yt+k and yt, respectively. Figure 6
indicates that the wave height time series have substantial autocorrelation that persists
amid high volatility and similar trends can be seen in the case of wind speed as shown in
Figure 7.
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3. Methodology

In this section, the components and the architecture of the proposed sequential dense
LSTM are introduced in detail. Here, wind speed and wave height (weather datasets)
predictions are defined as predicting the future based on historical information.

3.1. Technical Challenges

Training recurrent neural networks comes with vanishing gradient and exploding
gradient problems, and they prevent connecting information from several previous steps
to the present stage. This problem is serious as it creates a significant barrier to training
large networks. This phenomenon was well researched by Hochreiter (1991) [27] and
Bengio, et al. (1994) [28]. Techniques such as reducing the number of layers, gradient
clipping and weight initialization are to address exploding and vanishing gradients; how-
ever, these techniques affect the accuracy of recurrent neural networks [29,30]. However,
LSTM by default can remember long-term dependencies using a ‘memory cell’, which
are used in this paper to develop robust techniques for OWTs’ weather prediction for an
extended period.

3.2. Software Design

The experiment and model training was conducted on the Python platform with
deep learning and code implementation on Keras (using Tensorflow as backend) where
networks are represented as a series of layers in Keras in the form of sequential class. The
sequential model is a linear stack of layers that allows the creation of models layer-by-layer
for most problems. It is considered flexible in defining models where layers connect to
more than just the previous and subsequent layers. The LSTM layer relies on the chosen
input; thus, not all input data points undergo the training process. To train this LSTM
algorithm, only selected and specified data points are used, which are valuable for the
model-tuning process, resulting in efficient data computation.

The dense layer is the standard and frequently used layer deeply connected to the
neural network layer, also known as the fully connected layer. In the dense layer, each
neuron is connected to the neurons from the next layer and ensures that the model is fully
connected [31]. After that, the LSTM model discovers the mapping and the correlation
among data and their prediction with these inputs. The dropout [32] layer is used to
construct generalisation in the model, next to the LSTM layer. Between matrix multiplica-
tions, the activation layer is used to give a neural network the ability to model non-linear
processes. As the internal activation functions, long short-term memory networks have
tanh and sigmoid. The activation layer is then applied to the model, identifying which
LSTM cells should be allowed and whether the information received by cell is significant,
making the activation role in a deep neural network extremely important. To generalise
the training carried out by the LSTM layer, a dropout layer of 0.75 was applied to it [33].
The optimiser selected was Adam (adaptive moment estimation), as it is computationally
efficient and requires significantly less memory space. In addition, in deep learning and
machine learning, ‘Adam’ is well suited to many non-convex optimisation problems. It
is necessary to minimise the cost function by identifying the optimised value for weights
and ensuring that the algorithm generalises well to achieve an accurate prediction based
on LSTM. The learning rate is 10−2 for model optimisation as it was found to be robust.
Epoch defines the number of times that the learning algorithm will work through the entire
training dataset and is kept at 20 for both weather datasets training. Batch size signifies
the number of sequences trained together and is fixed at 16. In addition, hidden units are
set at 150. These entire hyper-parameter configurations are shown in Table 2. As deep
learning models are computationally expensive, an early stopping methodology has been
adopted and datasets were fed to the model in a batch of 32. The entire model runs for
100 epochs and based on the early stopping model stop training if model performance does
not improve for 10 consecutive epochs. In the end, the model output was DE-normalized
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for analysing the results. Performance metrics such as RMSE and MAE were evaluated for
each model (results are shown in the upcoming section).

Table 2. Hyper-parameters configuration for weather datasets.

Models Learning Rate Batch-Size Epochs Dense Hidden Units

Weather training datasets 10−2 16 20 150

3.3. LSTM-Based Weather Forecasting Models

In this section, the components and the architecture of the proposed LSTM are in-
troduced, covering the training and validation process. A fully trained sequential dense
LSTM model was used to generate future weather datasets to support OWTs maintenance
activities. The LSTM is a special form of recurrent neural network (RNN), which works
well on sequence-based tasks with long-term dependencies, and has recently been applied
for several sequence modelling tasks, such as natural language processing [34], speech
recognition [35], and image generation [36], and has recently gained a lot of attention in re-
search on time series [37–39]. While there is a range of traditional LSTM variants proposed
in recent times, a large-scale LSTM variant study showed that none of the alternatives
could significantly enhance the standard LSTM architecture and have complexity [27,40].
Therefore, this study implements the standard LSTM architecture as part of the proposed
network structure for simplicity and incorporates it in this section.

The widely used LSTM network architecture was proposed by Sepp Hochreiter and
Jrgen Schmidhuber [27] to address the gradient disappearance problem in practice. The
hidden layer is the only separate component between standard LSTM and RNN, and they
are referred to as LSTM cells in the LSTM architecture, as shown in Figure 8 [41]. For a given
time t, the LSTM cell has the layer input and output, xt and ht, respectively, which is kind of
similar to RNNs. The LSTM, each computational unit is linked not only to a hidden state ht
but also to a cell input state, c̃t, as well as a cell output state, ct, together with the previous
cell output, ct−1, in order to train and update the parameters. By adjusting constant gain
transfer equal to 1, ct−1 changed to ct to spread errors without any disappearing gradient
phenomena in previous processes. Because of the gated layout, LSTM can manage long-
term dependencies to allow relevant information to pass along the LSTM network. In
an LSTM, there are three gates: an input gate, a forget gate and an output gate present.
The forget gate allows LSTM to be an efficient and scalable model for many sequential
data-related learning problems [42]. The cell’s status can be changed via a door that allows
or prevents updating through an input gate. Likewise, at the output gate of the LSTM unit,
a door regulates whether the state of the cell is transmitted. The most common version of
LSTMs also utilises a forgotten gate to reset the cell status. At time t, the input gate, the
forget gate, and the output gate are defined as it, ft, and ot, respectively. The input gate,
the forget gate, the output gate, and the input cell state are represented by colourful boxes,
while pink circles are arithmetic operators and the coloured rectangles are the gates in the
LSTM cell in Figure 8.
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The gates can be calculated using the following dynamic equations:

ft = σg(W f xt + U f ht−1 + b f ) (4)

it = σg(Wixt + Uiht−1 + bi) (5)

ot = σg(Woxt + Uoht−1 + bo) (6)

C̃t = tan h(WCxt + UCht−1 + bC) (7)

where W f , Wi, Wo and WC are the weight matrices mapping the hidden layer input to
the three gates and the input cell state, while U f , Ui, Uo and UC are the weight matrices
connecting the previous cell output state to the three gates and the input cell state. b f , bi,
bo and bC are four bias vectors. σg is the gate activation function, which normally is the
sigmoid function, and the tanh is the hyperbolic tangent function. Based on the results of
the four above equations, for a given time t, the cell output state, Ct, and the layer output,
ht, can be obtained by using the following equations:

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

ht = Ot ∗ (tanh(Ct)) (9)

A vector of all outputs, represented by YT = [hT−n, . . . , hT−1], is the final output of the
LSTM layer. Here, for example, while estimating weather datasets, we predict only the last
element of the output vector, i.e., hT−1. Thus, for example, the predicted wave height value
(x̂) for the next time iteration, T, is hT−1, namely x̂T = hT−1.

The above-outlined LSTM methodology is applied to the datasets and software design
described in Section 2 to, respectively, train and test the proposed weather forecasting
model using Python programming. In LSTM, each time step of the test dataset will be used
one at a time. The results of the LSTM weather forecasting models are shown in Figures 9 and 10
and found that LSTM-model-forecasted values are close to the tested values of the wave
height and wind speed and follow the expected pattern, despite having slight differences
noticed in the case of wind speed prediction which is due to the wind speed stochastic
behaviour. This is further confirmed by error analysis of LSTM-based weather forecasting
models as shown in Figures 11 and 12.
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3.4. BiLSTM-Based Weather Forecasting Models

A recurrent neural network used primarily for natural language processing is called
bidirectional LSTM (BiLSTM). Unlike standard LSTM, the input flows in both directions,
and it is capable of using information coming from both sides. In conclusion, BiLSTM
reverses the direction of information flow by adding one extra LSTM layer. It simply means
that in the additional LSTM layer, the input sequence flows backwards. The outputs from
the two LSTM layers are then combined in a variety of ways, including average, sum,
multiplication, and concatenation as illustrated in Figure 13. A theoretical description
of the BiLSTM technique can be found in [42]. Using pre-processing datasets, the BiLSTM
model for weather forecasting was constructed and the results are shown in Figures 14 and 15,
respectively, and suggest that the forecast follows the measured values and error analysis;
Figures 16 and 17 further confirm these analyses. It is worth noting that despite combining
LSTM layers from both directions (i.e., BiLSTM), the accuracy is close to LSTM results: the
details will be discussed in the upcoming section.
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3.5. GRU-Based Weather Forecasting Models

The gated recurrent unit, or GRU for short, uses the same workflow as an RNN, but
each GRU unit’s operation and associated gates are different. GRU uses the update gate
and reset gate operating techniques to address the issue with traditional RNN. Figure 18
illustrates GRU operations and is briefly described as follows. The amount of prior knowl-
edge that must be transmitted along with the next state is decided by the update gate.
This is incredibly powerful since the model can choose to copy all of the prior data and
completely remove the possibility of a vanishing gradient.

Energies 2022, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 17. BiLSTM-based wave height model error analysis. 

3.5. GRU-Based Weather Forecasting Models 
The gated recurrent unit, or GRU for short, uses the same workflow as an RNN, but 

each GRU unit’s operation and associated gates are different. GRU uses the update gate 
and reset gate operating techniques to address the issue with traditional RNN. Figure 18 
illustrates GRU operations and is briefly described as follows. The amount of prior 
knowledge that must be transmitted along with the next state is decided by the update 
gate. This is incredibly powerful since the model can choose to copy all of the prior data 
and completely remove the possibility of a vanishing gradient. 

The reset gate is utilised in the model to determine how much of the prior knowledge 
must be disregarded; in other words, it determines whether or not the previous cell state 
is significant. The reset gate first activates; it stores pertinent data from the previous time 
step in new memory content. The input vector and hidden state are then multiplied by 
their respective weights. After that, it multiplies the multiple of the previously hidden 
state and the reset gate element-by-element. The following sequence is formed by using 
the non-linear activation function after adding up the aforementioned stages. 

 
Figure 18. GRU structure overview, [43]. 

Detailed methodologies of the GRU can be found in [44] and used to develop weather 
forecasting models based on filtered datasets described in Section 2 and results are shown 
in Figures 19 and 20, respectively. Furthermore, model error analysis (as shown in Figures 
21 and 22) suggests that the GRU is able to forecast wind speed and wave height which 
follows the trends similar to measured datasets. 

Figure 18. GRU structure overview, [43].

The reset gate is utilised in the model to determine how much of the prior knowledge
must be disregarded; in other words, it determines whether or not the previous cell state
is significant. The reset gate first activates; it stores pertinent data from the previous time
step in new memory content. The input vector and hidden state are then multiplied by
their respective weights. After that, it multiplies the multiple of the previously hidden
state and the reset gate element-by-element. The following sequence is formed by using
the non-linear activation function after adding up the aforementioned stages.

Detailed methodologies of the GRU can be found in [44] and used to develop weather
forecasting models based on filtered datasets described in Section 2 and results are shown in
Figures 19 and 20, respectively. Furthermore, model error analysis (as shown in Figures 21 and 22)
suggests that the GRU is able to forecast wind speed and wave height which follows the
trends similar to measured datasets.
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accuracy. However, there are four main differences between these models as described as
follows [44]:

X The GRU has two gates, and LSTM has three gates.
X The output gate seen in LSTM is absent from the GRU, and neither device has internal

memory.
X While, in the GRU, the prior hidden state is directly affected by the reset gate, in

LSTM, the input gate and target gate are coupled by an update gate. The two gates,
input and target, in LSTM are in charge of resetting the gate.

X GRU needs fewer training parameters and, as a result, uses less memory and runs
faster than LSTM whereas LSTM is more accurate on big datasets.

4. Performance Comparisons

These proposed data-driven models for weather condition forecasting have been
shown to be successful based on the analysis mentioned above. In this section, the per-
formance comparison of these techniques is discussed. For the sake of simplicity and a
better understanding of the comparative analysis of the proposed methods, the sample
of 500 weather data points was used for comparing the performance of LSTM, BiLSTM
and GRU models and the results are shown in Figures 23 and 24, respectively. It has been
suggested that all models show a similar kind of accuracy while forecasting wind speed
and wave height; however, GRU is faster but less accurate compared to LSTM and BiLSTM
as they use fewer training parameters and hence consume less memory. Therefore, for
larger datasets, LSTM and BiLSTM were found to be suitable. This is further validated by
the performance metrics as described below.
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Model performance was deeply impacted by less exposure to training time. In this
study, to train models, it took only 25 min for each weather parameter of size 51 K, making
the total time equal to 50 min to tune it for better sequence capturing. It is worth noting
that, while training the model, the mini-batch gradient descent technique is used in order
to optimise the mean squared error (MSE) using RMSProp optimiser, and an early stopping
mechanism is used to minimise over-fitting. This is emphasised by the calculated values of
RMSE that indicate good forecasting. It is worth also noting that to perform effective long-
term forecasting (typically of several years), parameters such as lags, number of hidden
units, and number of training iterations need to be tuned depending upon the size of the
training datasets. Otherwise, it leads to overfitting, which ultimately affects the forecasting
accuracy of the LSTM model.

Using Performance Error Metrics

To measure the effectiveness of proposed LSTM algorithms for offshore weather
forecasting, popularly used performance error metrics (PEM), namely mean absolute errors
(MAE), root mean square error (RMSE), percentage of coverage (%) and average width are
taken into consideration. The following equations mathematically define these:

MAE =
1
n

n

∑
i=1
|xi − x̂i| (10)

RMSE =

√
∑n

i=1(xi − x̂i)
2

n
(11)

where n is the number of data points, xi is the measured weather datasets, and x̂i is the
predicted weather datasets.

Furthermore, to analyse the model, uncertainty analysis was carried out. For these two
metrics, the percentage of coverage, which is defined as the percentage of the dataset within
the prediction band, and the average width, which is the average width of the prediction
band, are reported in Table 3. Both metrics have a trade-off. So, the best model should have
a higher percentage of coverage and, at the same time, lower average width.

Table 3. Performance error metrics calculated values.

Method Metrics RMSE (m/s) MAE (m/s) Percentage of
Coverage (%) Average Width

LSTM
Wind speed 01.43 01.06 94.40 05.64

Wave height 00.18 00.12 94.82 00.73

BiLSTM
Wind speed 01.43 01.05 94.47 05.63

Wave height 00.19 00.13 94.71 00.75

GRU
Wind speed 01.43 01.06 94.41 05.64

Wave height 00.18 00.12 94.72 00.73

All the compared models in this section were trained and tested multiple times to
eliminate outliers, and the results of them presented were averaged to reduce random
errors. To remove outliers, the proposed weather forecasting models in this section were
trained and tested numerous times, and the results reported were summed to minimise
random errors. The results of performance error matrices for all models were calculated
and the results are tabulated in Table 3. The numerical results suggest that the proposed
model accuracy is similar and the only difference can be found in training the models.

5. Conclusions and Future Works

As more offshore assets are constructed in the coming years, the significance of weather
for enhancing the accessibility and maintenance of offshore wind farms will only grow. In
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order to maximise operating lifetime and enhance offshore turbine availability, maintenance
activities can be planned with the help of accurate weather forecasts. Long-term gains from
the consequent higher revenues will go to offshore operators.

Three models, namely, LSTM, BiLSTM and GRU, are proposed in this paper for
weather forecasting and are then compared against each other to suggest a robust weather
forecasting model in terms of accuracy and computational costs. To train and test the
models, weather datasets obtained from the FINO3 database were used. Experimental
results suggest that the performance of these models is relatively the same while predicting
both wind speed and wave height for the long term, as shown in Figures 23 and 24 and
tabulated in Table 3. Moreover, the proposed technique turns out to be more efficient to
learn features from the weather datasets; however, training time (which took approximately
40 min) is still an issue. Moreover, this training time is expected to increase further
depending upon data size and hyper-parameter (e.g., epoch and dense layers) optimisation
and complexity. Despite this, the proposed methods are still capable of making accurate
weather predictions for datasets spanning several years.

This experiment used datasets with a 3 h resolution; however, findings could differ
if tested against datasets with a higher resolution or 10 min resolution (mostly used by
wind industries), which would make the training process much slower. Future studies will,
therefore, involve putting the suggested solutions to the test with varying resolution data
points. Future studies will also examine the impact of incorporating more layer units and
speeding up the algorithm by adjusting hyper-parameters.
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