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Abstract

We study a variational model for ferronematics in two-dimensional domains, in
the “super-dilute” regime. The free energy functional consists of a reduced Landau-
de Gennes energy for the nematic order parameter, a Ginzburg–Landau type en-
ergy for the spontaneous magnetisation, and a coupling term that favours the co-
alignment of the nematic director and the magnetisation. In a suitable asymptotic
regime, we prove that the nematic order parameter converges to a canonical har-
monic map with non-orientable point defects, while the magnetisation converges
to a singular vector field, with line defects that connect the non-orientable point
defects in pairs, along a minimal connection.

1. Introduction

Nematic liquid crystals (NLCs) are classical examples of mesophases or liquid
crystalline phases that combinefluiditywith the directionality of solids [24]. The ne-
matic molecules are typically asymmetric in shape e.g. rod-shaped, wedge-shaped
etc., and these molecules tend to align along certain locally preferred directions in
space, referred to as directors. Consequently, NLCs have a direction-dependent
response to external stimuli such as electric fields, magnetic fields, temperature
and incident light. Notably, the directionality or anisotropy of NLC physical and
mechanical responses make them the working material of choice for a range of
electro-optic applications [36].

However, the magnetic susceptibility of NLCs is much weaker than their di-
electric anisotropy, typically by several orders of magnitude [19]. Hence, NLCs
exhibit a much stronger response to applied electric fields than their magnetic
counterparts and as a result, NLC devices are mainly driven by electric fields. This
naturally raises a question as to whether we can enhance the magneto-nematic
coupling and induce a spontaneous magnetisation by the introduction of magnetic
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nanoparticles (nanoparticles with magnetic moments) in nematic media, even with-
out external magnetic fields. If implemented successfully, these magneto-nematic
systems would have amuch stronger response to appliedmagnetic fields, compared
to conventional nematic systems, rendering the possibility of magnetic-field driven
NLC systems in the physical sciences and engineering.

This idea was first introduced in 1970 by Brochard and de Gennes in their
pioneering work on ferronematics [19] and these composite systems of magnetic
nanoparticle (MNP)-dispersed nematicmedia are referred to as ferronematics in the
literature [19–21]. The system has two order parameters—the Landau-de Gennes
(LdG) Q-tensor order parameter to describe the nematic orientational anisotropy
and the spontaneous magnetisation,M, induced by the suspendedMNPs. Brochard
and de Gennes suggested that the nematic directors, denoted by n, can be controlled
by the surface-induced mechanical coupling between NLCs and MNPs. Equally,
the spontaneousmagnetisation,M profiles can be tailored by the nematic anisotropy
through theMNP-NLC interactions, and this two-way coupling can stabilise exotic
morphologies and defect patterns.

We work with dilute ferronematic suspensions relevant for a uniform suspen-
sion of MNPs in a nematic medium, such that the distance between pairs of MNPs
is much larger than the individual MNP sizes and the volume fraction of the MNPs
is small, building on the models introduced in [20,21] and then in [14,15]. In these
dilute systems, the MNP-MNP interactions and the MNP-NLC interactions are ab-
sorbed by an empirical magneto-nematic coupling energy. These coupling energies
can also be rigorously derived from homogenisation principles, as elucidated in the
recent work [22]. We work with two-dimensional, simply-connected and smooth
domains �, in a reduced LdG framework for which the Q-tensor order parameter
is a symmetric, traceless 2 × 2 matrix and M is a two-dimensional vector field.
This reduced approach can be rigorously justified using �-Convergence techniques
(see [31] since in three dimensions, the LdG Q-tensor order parameter is a sym-
metric, traceless 3 × 3 matrix with five degrees of freedom). We use the effective
re-scaled free energy for ferronematics, inspired by the experiments and results in
[41] and proposed in [14,15]. This energy has three components—a reduced LdG
free energy for NLCs, a Ginzburg–Landau free energy for the magnetization and a
homogenised magneto-nematic coupling term

Fε(Q,M) :=
∫

�

(
1

2
|∇Q|2 + ξ

2
|∇M|2 + 1

ε2
f (Q,M)

)
dx . (1.1)

In two dimensions, we have

f (Q, M) := 1

4
(|Q|2 − 1)2 + ξ

4
(|M|2 − 1)2 − c0QM · M.

Weworkwith adimensionlessmodelwhere ε2 is interpreted as amaterial-dependent,
geometry-dependent and temperature-dependent positive elastic constant, ξ is a ra-
tio of the relative strength of the magnetic and NLC energies and c0 is a coupling
parameter. ξ is necessarily positive, positive c0 coerces co-alignment of n and M
whereas c0 < 0 coerces n to be perpendicular toM [14]. We only consider positive
c0 in this paper.
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For dilute suspensions, ε and ξ are necessarily small. In [14], the authors study
stable critical points of this effective ferronematic free energy on square domains,
with Dirichlet boundary conditions for both Q and M. Their work is entirely nu-
merical but does exhibit a plethora of exotic morphologies for different choices of
ε, ξ and c0. They demonstrate stable nematic point defects accompanied by both
line defects and point defects inM, and there is considerable freedom tomanipulate
the locations, multiplicity and dimensionality of defect profiles by simply tuning
the values of ξ and c0. In particular, the numerical results clearly show that line
defects or jump sets are observed in stable M-profiles for small ξ and c0, whereas
orientable point defects are stabilised inM for relatively large ξ and c0. Motivated
by these numerical results, we study a special limit of the effective free energy in
(1.1), for which both ξ and c0 are proportional to ε and we study the profile of the
corresponding energy minimizers in the ε → 0 limit, subject to Dirichlet boundary
conditions forQ andM. This can be interpreted as a “super-dilute” limit of the fer-
ronematic free energy for which the magnetic energy is substantially weaker than
the NLC energy, and the magneto-nematic coupling is weak. In the “super-dilute”
limit, “ε” is the only model parameter and ξ , c0 are defined by the constants of
proportionality which are fixed, and hence ε → 0 is the relevant asymptotic limit.
Our main result shows that in this distinguished limit, the minimizing Q-profiles
are essentially canonical harmonic maps with a set of non-orientable nematic point
defects, dictated by the topological degree of the Dirichlet boundary datum. This
is consistent with previous powerful work in [9] in the context of the LdG theory
is unsurprising, since the LdG energy is the dominant energy. The minimizingM-
profiles are governed by a Modica-Mortola type of problem, quite specific to this
super-dilute limit [29]. They exhibit short line defects connecting pairs of the non-
orientable nematic defects, consistent with the numerical results in [14]. These line
defects or jump sets in M are minimal connections between the nematic defects,
and the location of the defects is determined by a modified renormalisation energy,
which is the sum of a Ginzburg–Landau type renormalisation energy and a min-
imal connection energy. The modified renormalisation energy delicately captures
the coupled nature of our problem, which makes it distinct and technically more
complex than the usual LdG counterpart.

We complement our theoretical results with some numerical results for stable
critical points of the ferronematic free energy, on square domainswith topologically
non-trivial Dirichlet boundary conditions for Q and M. The converged numerical
solutions are locally stable, and we expect multiple stable critical points for given
choices of ε, ξ and c0. The numerical results are sensitive to the choices of ε

and c0, but there is evidence that the numerically computed stable solutions do
indeed converge to a canonical harmonic Q-map and a M-profile closely tailored
by the corresponding Q-profile. The Q-profile has a discrete set of non-orientable
nematic defects and the M-profile exhibits line defects connecting these nematic
defects, in the ε → 0 limit. Whilst the practical relevance of such studies remains
uncertain, it is clear that strong theoretical underpinnings are much needed for
systematic scientific progress in this field, and our work is a first powerful step in
an exhaustive study of ferronematic solution landscapes [47] (also see recent work
in [23], [40]).
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The next of this paper is organised as follow: in Sect. 2, we set up our problem
and state our main result, recalling the key notions of a canonical harmonic map
and a minimal connection. In Sect. 3, we state and prove some key technical pre-
liminary results. In Sect. 4, we prove the six parts of our main theorem, including
convergence results for the energy-minimizingQ andM-profiles in different func-
tion spaces, and the convergence of the jump set of the energy-minimizing M to a
minimal connection between pairs of non-orientable nematic defects, in the ε → 0
limit. The defect locations are captured in terms of minimizers of a modified renor-
malized energy, which is the sum of the Ginzburg–Landau renormalized energy and
a minimal connection energy. The modified renormalized energy is derived from
sharp lower and upper bounds for the energy minimizers in the ε → 0 limit, in
Sects. 4.4.1 and 4.4.2. In Sect. 5, we present some numerical results and conclude
with some perspectives in Sect. 6.

2. Statement of the Main Result

Let S2×2
0 be the set of 2×2, real, symmetric, trace-free matrices, equipped with the

scalar productQ ·P := tr (QP) = Qi j Pi j and the induced norm |Q|2 := tr (Q2) =
Qi j Qi j . Let � ⊆ R

2 be a bounded, Lipschitz, simply connected domain. The
“super-dilute” limit of the ferronematic free energy is defined by

ξ = ε; c0 = βε,

where β, ε are positive parameters. ForQ : � → S2×2
0 andM : � → R

2, we define
the functional

Fε(Q, M) :=
∫

�

(
1

2
|∇Q|2 + ε

2
|∇M|2 + 1

ε2
fε(Q, M)

)
dx, (2.1)

where the potential fε is given by

fε(Q, M) := 1

4
(|Q|2 − 1)2 + ε

4
(|M|2 − 1)2 − βεQM · M + κε (2.2)

and κε ∈ R is a constant, uniquely determined by imposing that inf fε = 0.
We consider minimisers of (2.1) subject to the Dirichlet boundary condition

Q = Qbd, M = Mbd on ∂�. (2.3)

We assume that Qbd ∈ C1(∂�, S2×2
0 ), Mbd ∈ C1(∂�, R2) are (ε-independent)

maps such that

|Mbd| = (
√
2β + 1)1/2, Qbd = √

2

(
Mbd ⊗ Mbd√

2β + 1
− I

2

)
(2.4)

at any point of ∂�. Here I is the 2×2 identity matrix. The assumption (2.4) implies
that the potential fε, evaluated on the boundary datum (Qbd, Mbd), takes nonzero
but small values—that is,wehave fε(Qbd, Mbd) > 0 for ε > 0but fε(Qbd, Mbd) →
0 as ε → 0. (For details of this computation, see Lemma B.3 in Appendix B.)
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Throughout this paper, we will denote by (Q∗
ε , M

∗
ε ) a minimiser of the func-

tional (2.1) subject to the boundary conditions (2.3). By routine arguments, min-
imisers exist and they satisfy the Euler-Lagrange system of equations

− 	Q∗
ε + 1

ε2
(
∣∣Q∗

ε

∣∣2 − 1)Q∗
ε − β

ε

(
M∗

ε ⊗ M∗
ε −

∣∣M∗
ε

∣∣2
2

I

)
= 0 (2.5)

− 	M∗
ε + 1

ε2
(
∣∣M∗

ε

∣∣2 − 1)M∗
ε − 2β

ε2
Q∗

εM
∗
ε = 0. (2.6)

We denote as N the unit circle in the space of Q-tensors, that is,

N :=
{
Q ∈ S2×2

0 : |Q| = 1
}

. (2.7)

Equivalently, N may be described as

N =
{√

2

(
n ⊗ n − I

2

)
: n ∈ S

1
}

. (2.8)

As S2×2
0 is a real vector space of dimension 2, the set N is a smooth manifold,

diffeomorphic to the unit circle S1 ⊆ C. A diffeomorphism is given explicitely by

N → S
1, Q 	→ q := √

2(Q11, Q12). (2.9)

By assumption, the domain � ⊆ R
2 is bounded and convex, so its boundary ∂� is

parametrised by a simple, closed, Lipschitz curve—in particular, ∂� is homeomor-
phic to the circleS1. Therefore, the boundary data (Qbd, Mbd) carries awell-defined
topological degree

d := deg(Qbd, ∂�) = deg(Mbd, ∂�) ∈ Z. (2.10)

In principle, for a continuous map Q : ∂� → N , the degree may be a half-integer,
that is deg(Q, ∂�) ∈ 1

2Z. However, the boundary datum Qbd is orientable, by
assumption (2.4)—in fact, it is oriented byMbd. This explains why d, in our case,
is an integer.

Remark 2.1. The results in this paper—in particular, our main result, Theorem 2.1
below—remain true for slightly different choices of the boundary conditions. For
instance, we could consider minimisers of the functional (2.1) in the class of
maps Q ∈ W 1,2(�, S2×2

0 ) that satisfy Q = Qbd on ∂�, where the boundary
datum Qbd takes the form

Qbd = √
2

(
nbd ⊗ nbd − I

2

)
for some nbd ∈ C1(∂�, R2) (2.11)

and deg(nbd, ∂�) = d, but we do not impose any relation between nbd and the
value of M at the boundary. In this case, minimisers of the functional will satisfy
the natural (Neumann) boundary condition ∂νMε = 0 on ∂� for theM-component,
where ∂ν is the outer normal derivative. The arguments carry over to this case, with
no essential change (see also Remark 4.2).
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The canonical harmonic map and the renormalised energy.
In order to state our main result, we recall some terminology introduced by Bethuel,
Brezis and Hélein [11]. Although the results in [11] are stated in terms of complex-
valued maps, as opposed to Q-tensors, they do extend to our setting, due to the
change of variable (2.9). Let a1, . . . , a2|d| be distinct points in � (with d given
by (2.10)). We say that a map Q∗ : � → N is a canonical harmonic map with
singularities at (a1, . . . , a2|d|) and boundary datumQbd if the following conditions
hold:

i. Q∗ is smooth in�\{a1, . . . , a2|d|}, continuous in�\{a1, . . . , a2|d|} andQ∗ =
Qbd on ∂�;

ii. for any σ > 0 small enough and any j ∈ {1, . . . , 2 |d|}, we have

deg(Q∗, ∂Bσ (a j )) = sign(d)

2
;

iii. Q∗ ∈ W 1,1(�, N ) and

∂ j
(
Q∗

11 ∂ j Q
∗
12 − Q∗

12 ∂ j Q
∗
11

) = 0,

in the sense of distributions in the whole of �. (Here and in what follows, we
adopt Einstein’s notation for the sum.)

If B ⊆ � \ {a1, . . . , a2|d|} is a ball that does not contain any singular point
of Q∗, then Q∗ can written in the form

Q∗ = 1√
2

(
cos θ∗ sin θ∗
sin θ∗ − cos θ∗

)
in B, (2.12)

where θ∗ : B → R is a smooth function. (Equation (2.12) follows from (2.7), by
classical lifting results in topology.) Then, the equation (iii) above can be written
in the form

−	θ∗ = 0 in B. (2.13)

In other words, a canonical harmonic map can be written locally, away from its
singularities, in terms of a harmonic function.

The canonical harmonicmapwith singularities at (a1, . . . , a2|d|) and boundary
datum Qbd exists and is unique, see [11, Theorem I.5, Remark I.1]. The canoni-
cal harmonic map satisfies Q∗ ∈ W 1,p(�, N ) for any p ∈ [1, 2), but Q∗ /∈
W 1,2(�, N ). Nevertheless, the limit

W(a1, . . . , a2|d|) := lim
σ→0

(
1

2

∫
�\⋃2|d|

j=1 Bσ (a j )

∣∣∇Q∗∣∣2 dx − 2π |d| |log σ |
)

(2.14)
exists and is finite (see [11, Theorem I.8]). Following the terminology in [11], the
function W is called the renormalised energy.

Minimal connections between singular points.
Givendistinct pointsa1,a2,…,a2|d| inR2,wedefine a connection for {a1, . . . , a2|d|}
as a finite collection of straight line segments {L1, . . . , L |d|} such that each a j is
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an endpoint of exactly one of the segments Lk . In other words, the line segments L j

connects the points ai in pairs. We define

L(a1, . . . , a2|d|)

:= min

⎧⎨
⎩

|d|∑
j=1

H1(L j ) : {L1, . . . , L |d|} is a connection for {a1, . . . , a2|d|}
⎫⎬
⎭ .

(2.15)

Here and throughout the paper, H1 denotes the 1-dimensional Hausdorff measure
(i.e., length). We say that a connection {L1, . . . , Ld} is minimal if it is a minimiser
for the right-hand side of (2.15). A notion of minimal connection, similar to (2.15),
was already introduced in [2,17]. However, the minimal connection was defined in
[17] by taking the orientation into account—that is, half of the points a1, . . . , a2|d|
were given positive multiplicity 1, the other half were given negative multiplic-
ity −1, and the segments L j were required to match points with opposite mul-
tiplicity. By constrast, here we do not distinguish between positive and negative
multiplicity for the points ai and any segment of endpoints ai , ak is allowed. (In
the language of Geometric Measure Theory, the minimal connection was defined
in [17] as the solution of a 1-dimensional Plateau problemwith integer multiplicity,
while (2.15) is a 1-dimensional Plateau problem modulo 2.)

The main result.
We prove a convergence result for minimisers (Q∗

ε , M
∗
ε ) of (2.1), subject to the

boundary conditions (2.3)–(2.4), in the limit as ε → 0. We denote by SBV(�, R2)

the space of maps M = (M1, M2) : � → R
2 whose components M1, M2 are

special functions of bounded variation, as defined by De Giorgi and Ambrosio [25].
The distributional derivative DM of a mapM ∈ SBV(�, R2) can be decomposed
as

DM = ∇ML 2(dx) + (M+ − M−) ⊗ νM (H1 SM),

where ∇M : � → R
2×2 is the absolutely continuous component of DM, L 2(dx)

is the Lebesgue measure on R
2,SM is the jump set of M, M+, M− are the traces

ofM on either side of the jump and νM is the unit normal to the jump set. (See, e.g.
[3] for more details).

Theorem 2.1. Let � ⊆ R
2 be a bounded, Lipschitz, simply connected domain.

Assume that the boundary data satisfy (2.4). Let (Q∗
ε , M

∗
ε ) be a minimiser of (2.1)

subject to the boundary condition (2.3). Then, there exists a (non-relabelled) sub-
sequence, maps Q∗ : � → N , M∗ : � → R

2 and distinct points a∗
1 , . . . , a∗

2|d|
in � such that the following holds:

i. Q∗
ε → Q∗ strongly in W 1,p(�) for any p < 2;

ii. Q∗ is the canonical harmonicmapwith singularities (a∗
1 , . . . , a∗

2|d|)andbound-
ary datum Qbd;

iii. M∗
ε → M∗ strongly in L p(�) for any p < +∞;
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iv. M∗ ∈ SBV(�, R2) and it satisfies

∣∣M∗∣∣ = (
√
2β + 1)1/2, Q∗ = √

2

(
M∗ ⊗ M∗
√
2β + 1

− I
2

)

at almost every point of �.

In addition, if the domain � is convex, then

v. there exists a minimal connection (L∗
1, . . . , L∗|d|) for (a∗

1 , . . . , a∗
2|d|) such that

the jump set of M∗ coincides with
⋃|d|

j=1 L
∗
j (up to sets of zero length);

vi. (a∗
1 , . . . , a∗

2|d|) minimises the function

Wβ(a1, . . . , a2|d|) := W(a1, . . . , a2|d|) + 2
√
2

3

(√
2β + 1

)3/2
L(a1, . . . , a2|d|)

among all the (2 |d|)-uples (a1, . . . , a2|d|) of distinct points in �.

Remark 2.2. Theorem 2.1 implies that M∗ is a locally harmonic map, away from
the closure of its jump set, into the circle of radius (

√
2β + 1)1/2. In other words,

if B is a ball that does not intersect the closure of the jump set ofM∗, thenM∗ can
locally be written in the formM∗ = (

√
2β + 1)1/2(cosφ∗, sin φ∗) for some scalar

function φ∗ : B → R that satisfies −	φ∗ = 0 in B. See Proposition 4.12 for the
details.

Remark 2.3. Let us discuss the extremal cases of the renormalized energyWβ(a1,
. . . , a2|d|). When β → +∞, the function Wβ would be minimized by choosing
(L∗

1, . . . , L∗|d|) to be zero, meaning that the singular points will move toward each
other. In the case where β = 0 instead, the coupling term in the potential would not
be present. Therefore, we would have two decoupled Ginzburg–Landau problems.

Remark 2.4. Point defects and line defects connecting point defects do appear
for energy minimizers in other variational models e.g. continuum models for a
complex-valued map in [30] or for discrete models in [5,6]. However, the math-
ematics is substantially different to our model problem for which we have two
order parameters Q and M, and a non-trivial coupling energy, which introduces
substantive technical challenges.

3. Preliminaries

First, we state a few properties of the potential fε, defined in (2.2). We define

κ∗ := β

2
√
2

(√
2β + 1

)
. (3.1)

Lemma 3.1. The potential fε satisfies the following properties:
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i. The constant κε in (2.2), uniquely defined by imposing the condition inf fε = 0,
satisfies

κε = 1

2

(
β2 + √

2β
)

ε + κ2∗ ε2 + o(ε2)

as ε → 0. In particular, κε ≥ 0 for ε small enough;
ii. If (Q, M) ∈ S2×2

0 × R
2 is such that

|M| = (
√
2β + 1)1/2, Q = √

2

(
M ⊗ M√
2β + 1

− I
2

)

then fε(Q, M) = κ∗ ε2 + o(ε2); as ε → 0.
iii. If ε is sufficiently small, then

1

ε2
fε(Q, M) ≥ 1

4ε2
(|Q|2 − 1)2 − β√

2ε
|M|2 ||Q| − 1|

and
1

ε2
fε(Q, M) ≥ 1

8ε2
(|Q|2 − 1)2 − β2 |M|4 (3.2)

for any (Q, M) ∈ S2×2
0 × R

2.

The proof of Lemma 3.1 is contained in Appendix B.
In the rest of this section, we describe an alternative expression for the func-

tional (2.1), which will be useful in our analysis. Let G ⊆ � be a smooth, simply
connected subdomain. Let (Qε, Mε)ε>0 be any sequence in W 1,2(G, S2×2

0 ) ×
W 1,2(G, R2) (not necessarily a sequence of minimisers) that satisfies∫

G

(
1

2
|∇Qε|2 + 1

4ε2
(|Qε|2 − 1)2

)
dx � |log ε| (3.3)

|Qε(x)| ≥ 1

2
, |Mε(x)| ≤ A for any x ∈ G, ε > 0, (3.4)

where A is some positive constant that does not depend on ε. As we have assumed
that G is simply connected and that |Qε| ≥ 1/2 in G, we can apply lifting results
[8,12,13] and write Qε in the form

Qε = |Qε|√
2

(nε ⊗ nε − mε ⊗ mε) in G. (3.5)

Here (nε, mε) is an orthonormal set of eigenvectors forQε with nε ∈ W 1,2(G, S1),
mε ∈ W 1,2(G, S1). We define the vector field uε ∈ W 1,2(G, R2) as

(uε)1 := Mε · nε, (uε)2 := Mε · mε, (3.6)

so that Mε = (uε)1 nε + (uε)2 mε. Our next result expresses the energy Fε(Qε,

Mε; G) in terms of the variables Qε and uε. We define the functions

gε(Q) := 1

4ε2
(|Q|2 − 1)2 − 2κ∗

ε
(|Q| − 1) + κ2∗ (3.7)

h(u) := 1

4
(|u|2 − 1)2 − β√

2
(u21 − u22) + β2 + √

2β

2
(3.8)
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for any Q ∈ S2×2
0 and any u = (u1, u2) ∈ R

2. We recall that κ∗ is the constant
defined by (3.1).

Remark 3.1. The vector fields nε, mε are determined by Qε only up to their sign
— Equation (3.5) still holds if we replace nε by −nε or mε by −mε. Therefore,
the unit vector uε is uniquely determined byQε,Mε only up to the sign of its com-
ponents (uε)1, (uε)2. However, the quantity h(uε) is is well-defined, irrespective
of the choice of the orientations for nε,mε, because h(−u1, u2) = h(u1, −u2) =
h(u1, u2).

Proposition 3.2. Let (Qε, Mε)ε>0 bea sequence inW 1,2(G, S2×2
0 )×W 1,2(G, R2)

that satisfies (3.3) and (3.4). Let uε be defined as in (3.6). Then, we have

Fε(Qε, Mε; G) =
∫
G

(
1

2
|∇Qε|2 + gε(Qε)

)
dx

+
∫
G

(
ε

2
|∇uε|2 + 1

ε
h(uε)

)
dx + Rε,

where the remainder term Rε satisfies

|Rε| � ε1/2 |log ε|1/2
(∫

G

(
ε

2
|∇uε|2 + 1

ε
h(uε)

)
dx

)1/2

+ o(1) (3.9)

as ε → 0.

In other words, the change of variables (3.6) transforms the functional into a
sum of two decoupled terms, which can be studied independently, and a remainder
term, which is small compared to the other ones. Before we proceed with the proof
of Proposition 3.2, we state some properties of the functions gε, h defined in (3.7),
(3.8) respectively. These properties are elementary, but will be useful later on.

Lemma 3.3. The function gε : S2×2
0 → R is non-negative and satisfies

gε(Q) =
(
1

ε
(|Q| − 1) − κ∗

)2

+ 1

ε2
(|Q| − 1)2

(
1

4
(|Q| + 1)2 − 1

)

for any Q ∈ S2×2
0 .

Proof. We have

gε(Q) = 1

ε2
(|Q| − 1)2 − 2κ∗

ε
(|Q| − 1) + κ2∗ + 1

4ε2
(|Q|2 − 1)2 − 1

ε
(|Q| − 1)2

=
(
1

ε
(|Q| − 1) − κ∗

)2

+ 1

ε2
(|Q| − 1)2

(
1

4
(|Q| + 1)2 − 1

)

If |Q| ≥ 1, then (|Q|+1)2 ≥ 4 and hence, gε(Q) ≥ 0.On the other hand, if |Q| ≤ 1,
then all the terms in (3.7) are non-negative. 
�
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Lemma 3.4. The function h : R2 → R is non-negative and its zero-set h−1(0)
consists exactly of two points, u± := (±(

√
2β + 1)1/2, 0). Moreover, the Hessian

matrix of h at both u+ and u− is strictly positive definite.

Proof. For any u ∈ R
2, we have h(u) ≥ h(|u| , 0) and the inequality is strict

if u2 �= 0. Therefore, it suffices to study h on the line u2 = 0. We have

h(u1, 0) = 1

4

(
u21 − 1 − √

2β
)2

,

so h(u) ≥ 0 for any u ∈ R
2 with equality if and only if u = (±(

√
2β + 1)1/2, 0).

Moreover,

∇2h(u+) = ∇2h(u−) =
(
2 + 2

√
2β 0

0 2
√
2β

)
,

so the lemma follows. 
�
Proof of Proposition 3.2. For simplicity of notation, we omit the subscript ε from
all the variables.
Step 1. Let k ∈ {1, 2}. We have M = u1n + u2m and hence,

∂kM = (∂ku1)n + u1∂kn + (∂ku2)m + u2∂km. (3.10)

We raise to the square both sides of (3.10). We apply the identities

n · ∂kn = m · ∂km = 0, n · ∂km + m · ∂kn = 0, ∂kn · ∂km = 0 (3.11)

which follow by differentiating the orthonormality conditions |n|2 = |m|2 = 1,
n ·m = 0. (In particular, the first identity in (3.10) implies that ∂kn is parallel tom
and ∂km is parallel to n, so ∂kn · ∂km = 0.) We obtain

|∂kM|2 = |∂ku|2 + 2(u1 ∂ku2 − u2 ∂ku1)m · ∂kn + |u|2 |∂kn|2 . (3.12)

We consider the potential term fε(Q, M). Since (n, m) is an orthonormal basis
of R2, we have

|u| = |M| , Q
|Q|M · M = 1√

2

(
u21 − u22

)
. (3.13)

By substituting (3.13) into the definition (2.2) of fε, and recalling (3.7), (3.8), we
obtain

1

ε2
fε(Q, M) = 1

4ε2
(|Q|2 − 1)2 + 1

ε
h(u) + β√

2 ε
(1 − |Q|) (u21 − u22)

+ κε

ε2
− 1

2ε
(β2 + √

2β)

= gε(Q) + 1

ε
h(u) + |Q| − 1

ε

(
2κ∗ − β√

2
(u21 − u22)

)

+ κε

ε2
− 1

2ε
(β2 + √

2β) − κ2∗ .

(3.14)
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Combining (3.12) with (3.14), we obtain

Fε(Q, M; G) =
∫
G

(
1

2
|∇Q|2 + gε(Q)

)
dx +

∫
G

(
ε

2
|∇u|2 + 1

ε
h(u)

)
dx

+ ε

2∑
k=1

∫
G

(u1 ∂ku2 − u2 ∂ku1)m · ∂kn dx + ε

2

∫
G

|u|2 |∇n|2 dx

+
∫
G

|Q| − 1

ε

(
2κ∗ − β√

2
(u21 − u22)

)
dx

+
(

κε

ε2
− 1

2ε
(β2 + √

2β) − κ2∗
)

|G| ,
(3.15)

where |G| denotes the area ofG. We estimate separately the terms in the right-hand
side of (3.15).
Step 2. In view of the identity n ⊗ n + m ⊗ m = I, Equation (3.5) can be written
as

Q
|Q| = √

2

(
n ⊗ n − I

2

)
. (3.16)

Wedifferentiate both sides of (3.16) and compute the squared normof the derivative.
Recalling the assumption (3.4), after routine computations we obtain

|∂kn| = 1

2

∣∣∣∣∂k
(

Q
|Q|

)∣∣∣∣ � |∂kQ|
|Q| � |∂kQ| (3.17)

Thanks to (3.17), we can estimate

ε

∣∣∣∣∣
2∑

k=1

∫
G

(u1 ∂ku2 − u2 ∂ku1)m · ∂kn dx

∣∣∣∣∣ � ε ‖u‖L∞(G) ‖∇u‖L2(G) ‖∇Q‖L2(G) .

By our assumptions (3.3), (3.4), the L∞-norm of u is bounded and the L2-norm
of ∇Q is of order |log ε|1/2 at most. Therefore, we obtain

ε

∣∣∣∣∣
2∑

k=1

∫
G

(u1 ∂ku2 − u2 ∂ku1)m · ∂kn dx

∣∣∣∣∣ � ε1/2 |log ε|1/2
(

ε

∫
G

|∇u|2
)1/2

.

(3.18)
Equations (3.3), (3.4) and (3.17) imply

ε

2

∫
G

|u|2 |∇n|2 dx � ε |log ε| → 0 as ε → 0. (3.19)

Moreover, Lemma 3.1 gives

(
κε

ε2
− 1

2ε
(β2 + √

2β) − κ2∗
)

|G| → 0 as ε → 0. (3.20)
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Step 3. By Lemma 3.4, the function h has two strict, non-degenerate minima at
the points u± := (±(

√
2β + 1)1/2, 0). As a consequence, for any u ∈ R

2 such
that |u| ≤ A (where A > 0 is the constant from (3.4)), we must have

h(u) ≥ CA min
{
(u − u+)2, (u − u−)2

}
= CA

(
|u1| − (

√
2β + 1)1/2

)2 + CAu
2
2

= CA

(
u21 − √

2β − 1
)2

(
|u1| + (

√
2β + 1)1/2

)2 + CAu
2
2

≥ CA

(
u21 − √

2β − 1
)2 + CAu

2
2

for some constantCA that depends only on A andβ. Then, for anyu ∈ R
2 with |u| ≤

A we have∣∣∣∣2κ∗ − β√
2
(u21 − u22)

∣∣∣∣
2

≤ C ′
A

∣∣∣∣2κ∗ − β√
2
(u21 − u22)

∣∣∣∣
≤ C ′

A

(
β√
2

∣∣∣√2β + 1 − u21

∣∣∣+ β√
2
u22

)
≤ C ′

A β√
2CA

h(u)

(3.21)
for some (possibly) different constant C ′

A, still depending on A and β only. The
assumption (3.4) and the property (3.13) guarantee that u satisfies |u| ≤ A almost
everywhere in G. Therefore, we can apply (3.21) to estimate∫

G

|Q| − 1

ε

(
2κ∗ − β√

2
(u21 − u22)

)
dx

�
(

1

ε2

∫
G
(|Q| − 1)2 dx

)1/2 (∫
G
h(u) dx

)1/2

.

The elementary inequality (x − 1)2 ≤ (x2 − 1)2, which applies to any x ≥ 0,
implies ∫

G

|Q| − 1

ε

(
2κ∗ − β√

2
(u21 − u22)

)
dx

�
(

1

ε2

∫
G
(|Q|2 − 1)2 dx

)1/2 (∫
G
h(u) dx

)1/2

(3.3)

� ε1/2 |log ε|1/2
(
1

ε

∫
G
h(u) dx

)1/2

.

(3.22)

The proposition follows by (3.15), (3.18), (3.19), (3.20) and (3.22). 
�

4. Proof of Theorem 2.1

4.1. Proof of Statement (i): Compactness for Q∗
ε

In this section, we prove that theQ∗
ε -component of the minimisers converges to

a limit, up to extraction of subsequences. The results in this section are largely based
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on the analysis in [11]. Throughout the paper, we denote by (Q∗
ε , M

∗
ε ) a minimiser

of the functional (2.1), subject to the boundary condition (2.3). We recall that the
boundary data are of class C1 and satisfy the assumption (2.4). Routine arguments
show thatminimisers exist and that they satisfy the Euler-Lagrange equations (2.5)–
(2.6).

Lemma 4.1. The mapsQ∗
ε ,M

∗
ε are smooth inside� and Lipschitz up to the bound-

ary of �. Moreover, there exists an ε-independent constant C such that

∥∥Q∗
ε

∥∥
L∞(�)

+ ∥∥M∗
ε

∥∥
L∞(�)

≤ C (4.1)

∥∥∇Q∗
ε

∥∥
L∞(�)

+ ∥∥∇M∗
ε

∥∥
L∞(�)

≤ C

ε
. (4.2)

Proof. Elliptic regularity theory implies, via a bootstrap argument, that (Q∗
ε , M

∗
ε ) is

smooth in the interior of� and continuous up to the boundary. Nowwe prove (4.1).
We take the scalar product of both sides of (2.5) with Q∗

ε :

−	

(∣∣Q∗
ε

∣∣2
2

)
+ ∣∣∇Q∗

ε

∣∣2 + 1

ε2
(
∣∣Q∗

ε

∣∣2 − 1)
∣∣Q∗

ε

∣∣2 − β

ε
Q∗

εM
∗
ε · M∗

ε = 0. (4.3)

In a similar way, by taking the scalar product of (2.6) withM∗
ε , we obtain

−	

(∣∣M∗
ε

∣∣2
2

)
+ ∣∣∇M∗

ε

∣∣2 + 1

ε2
(
∣∣M∗

ε

∣∣2 − 1)
∣∣M∗

ε

∣∣2 − 2β

ε2
Q∗

εM
∗
ε · M∗

ε = 0. (4.4)

By adding (4.3) and (4.4), and rearranging terms, we deduce that

ε2	

(∣∣Q∗
ε

∣∣2 + ∣∣M∗
ε

∣∣2
2

)
≥ (

∣∣Q∗
ε

∣∣2 − 1)
∣∣Q∗

ε

∣∣2

+ (
∣∣M∗

ε

∣∣2 − 1)
∣∣M∗

ε

∣∣2 − β(ε + 2)Q∗
εM

∗
ε · M∗

ε .

(4.5)

The right-hand side of (4.5) is strictly positive if
∣∣Q∗

ε

∣∣2+∣∣M∗
ε

∣∣2 ≥ C , for some (suf-
ficiently large) constant C that depends on β but not on ε. Therefore, (4.1) follows
from the maximum principle. The inequality (4.2) follows by [10, Lemma A.1 and
Lemma A.2]. 
�

Proposition 4.2. Minimisers (Q∗
ε , M

∗
ε )ofFε subject to theboundary conditionsQ =

Qbd,M = Mbd on ∂� satisfy

Fε(Q∗
ε , M

∗
ε ) ≤ 2π |d| |log ε| + C,

where d ∈ Z is the degree ofM∗
ε and C is a constant that depends only on �,Qbd,

Mbd (not on ε).



Arch. Rational Mech. Anal. (2023) 247:110 Page 15 of 61 110

Proof. We first consider the case d = 1. Consider balls B1 := B(a1, R), B2 :=
B(a2, R), of centres a1, a2 and radius R > 0, that are mutually disjoint. Since we
have assumed that the degree of the boundary datum Qbd is d = 1, there exists
a map Q̃ : �\(B1 ∪ B2) → N that is smooth (up to the boundary of � \ (B1 ∪
B2)), satisfies Q̃ = Qbd on ∂� and has degree 1/2 on ∂B1 and ∂B2. We define a
comparison map Qε as

Q(x) :=

⎧⎪⎨
⎪⎩
Q̃(x) if x ∈ � \ (B1 ∪ B2)

Q1
ε(x) if x = a1 + ρeiθ ∈ B1 = B(a1, R)

Q2
ε(x) if x = a2 + ρeiθ ∈ B2 = B(a2, R),

where Q1
ε , Q

2
ε are given as

Q1
ε(a1 + ρeiθ ) := √

2sε(ρ)

(
n1(θ) ⊗ n1(θ) − I

2

)
, n1(θ) = eiθ/2

Q2
ε(a2 + ρeiθ ) := √

2sε(ρ)

(
n2(θ) ⊗ n2(θ) − I

2

)
, n2(θ) = eiθ/2,

and sε(ρ) is the truncation at 1, sε(ρ) := min{ρ
ε
, 1}. A direct computation yields

1

2

∫
�

|∇Qε|2dx ≤ 2π log

(
R

ε

)
+ C (4.6)

for some constantC that does not depend on ε. Indeed, since Q̃ is regular on�\(B1∪
B2) and takes values in the manifold N , the energy of Qε on � \ (B1 ∪ B2) is an
ε-independent constant, whereas the contribution of Q1

ε , Q
2
ε is reminiscent of the

Ginzburg–Landau functional and can be computed explicitely.
Next, we construct the component Mε. Let � be the straight line segment

of endpoints a1, a2. Thanks to Lemma A.3 in Appendix A, there exists a vector
field M̃ε ∈ SBV(�, R2) such that

|M̃ε| = (
√
2β + 1)

1
2 , Qε = √

2

(
M̃ε ⊗ M̃ε√
2β + 1

− I
2

)
(4.7)

a.e. in � and, moreover, satisfies SM̃ε
= �, up to negligible sets. In particular, M̃ε

is smooth in a neighbourhood of ∂�. By comparing (2.4) with (4.7), it follows that
either M̃ε = Mbd on ∂� or M̃ε = −Mbd on ∂�. Up to a change of sign, we will
assume without loss of generality that M̃ε = Mbd on ∂�. In order to define our
competitor Mε, we need to regularise M̃ε near its jump set. We define

Mε(x) := min

{
dist(x,�)

ε
, 1

}
M̃ε(x) for any x ∈ �.

For ε small enough, we haveMε = M̃ε = Mbd on ∂�. The absolutely continuous
part of gradient ∇M̃ε can be estimated by differentiating both sides of (4.7), by
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the BV-chain rule; it turns out that |∇M̃ε| = c |∇Qε|, up to an (explicit) constant
factor c that does not depend on ε. By explicit computation, we have

ε |∇Mε(x)|2 � 1

ε
χε(x) + ε |∇Qε(x)|2 for any x ∈ �,

where χε : � → R is defined as χε(x) := 1 if dist(x, �) ≤ ε and χε(x) := 0
otherwise. Then, due to (4.6), we have

ε

∫
�

|∇Mε|2 dx ≤ C (1 + ε |log ε|) ≤ C. (4.8)

Finally, we compute the potential. We need to consider three different contribu-
tions. At a point x ∈ �\(B(a1, ε) ∪ B(a2, ε)) such that dist(x, �) > ε, we
have fε(Qε(x), Mε(x)) = O(ε2) due to (4.7) and Lemma 3.1. At a point x ∈
�\(B(a1, ε) ∪ B(a2, ε)) such that dist(x, �) < ε, we have |Qε(x)| = 1 and
hence, fε(Qε(x), Mε(x)) = O(ε). At a point x ∈ B(a1, ε) ∪ B(a2, ε), the po-
tential fε(Qε(x), Mε(x)) is bounded by a constant that does not depend on ε.
Therefore, we have ∫

�

fε(Qε, Mε) dx � ε2. (4.9)

Together, (4.6), (4.8) and (4.9) imply

Fε(Q∗
ε , M

∗
ε ) ≤ Fε(Qε, Mε) ≤ 2π |log ε| + C

for some constant C that does not depend on ε. The proof in case d �= 1 is simi-
lar, except that in the definition of Q̃, we need to consider 2 |d| pairwise disjoint
balls B1, B2, . . . B2|d|, each of them carrying a topological degree of sign(d)/2.
The set � is defined as a union of segments that connects the centres of the
balls B1, B2, . . . B2|d| (for instance, a minimal connection—see Appendix A).

�

The following estimate is well-known estimate in the Ginzburg–Landau litera-
ture [26]:

Lemma 4.3. There exists an ε-independent constant C such that

1

4ε2

∫
�

(
∣∣Q∗

ε

∣∣2 − 1)2 dx ≤ C

for any ε.

Lemma 4.3 is a direct consequence of Theorem 1.1 in [26]. A compactness
result for the Q∗

ε -component of minimisers can also be obtained by appealing to
results in the Ginzburg–Landau theory. Given a (closed) ball B̄ρ(a) ⊆ � such that∣∣Q∗

ε

∣∣ ≥ 1/2 on ∂Bρ(a), the map

Q∗
ε∣∣Q∗
ε

∣∣ : ∂Bρ(a) � S
1 → N � RP1

is well-defined and continuous and hence, its topological degree is well-defined
as an element of 1

2Z. We denote the topological degree of Q∗
ε/|Q∗

ε | on ∂Bρ(a)

by deg(Q∗
ε , ∂Bρ(a j )). We recall that d is the degree of the boundary datum, as

given in (2.10).
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Lemma 4.4. There exist distinct points a∗
1 , …, a∗

2|d| in �, distinct points b∗
1 , …, b∗

K

in � and a (non-relabelled) subsequence such that the following statement holds.
For any σ > 0 sufficiently small there exists ε0(σ ) > 0 such that, if 0 < ε ≤ ε0(σ ),
then

1

2
≤ ∣∣Q∗

ε(x)
∣∣ ≤ 3

2
for any x /∈

2|d|⋃
j=1

Bσ (a∗
j ) ∪

K⋃
k=1

Bσ (b∗
k ) (4.10)

deg(Q∗
ε , ∂Bσ (a∗

j )) = 1

2
sign(d), deg(Q∗

ε , ∂(Bσ (b∗
k ) ∩ �)) = 0 (4.11)

for any j ∈ {1, . . . , 2 |d|}, any k ∈ {1, . . . , K }. Moreover, for any σ sufficiently
small and any 0 < ε ≤ ε0(σ ), it holds that

Fε

(
Qε, Mε; � \ ∪2|d|

j=1Bσ (a∗
j )
)

≤ 2π |d| |log σ | + C, (4.12)

where C is a positive constant C that does not depend on ε, σ . Finally, there exists
a limit map Q∗ : � → N such that

Q∗
ε ⇀ Q∗ weakly in W 1,p(�) for any p < 2 and in W 1,2

loc (�\{a∗
1 , . . . , a∗

2|d|}).
(4.13)

Proof. The analysis of the Q∗
ε -component can be recast in the classical Ginzburg–

Landau setting, by means of a change of variables. We define q∗
ε : � → R

2 as

q∗
ε := √

2((Q∗
ε)11, (Q∗

ε)12). (4.14)

Since Q∗
ε is symmetric and trace-free, we have

∣∣q∗
ε

∣∣ = ∣∣Q∗
ε

∣∣ and ∣∣∇q∗
ε

∣∣ = ∣∣∇Q∗
ε

∣∣.
With the help of Lemma 3.1, we deduce

Eε(q∗
ε ) :=

∫
�

(
1

2

∣∣∇q∗
ε

∣∣2 + 1

8ε2
(
∣∣q∗

ε

∣∣2 − 1)2
)
dx

(3.2)≤ Fε(Q∗
ε , M

∗
ε ) + β2

∫
�

∣∣M∗
ε

∣∣4 dx .

The terms at the right-hand side can be bounded by Proposition 4.2 and Lemma 4.1,
respectively. We obtain

Eε(q∗
ε ) ≤ 2π |d| |log ε| + C, (4.15)

where C is an ε-independent constant. Moreover, due to the boundary condi-
tion (2.3) and (2.4),q∗

ε restricted to theboundary ∂� coincideswith an ε-independent
map of classC1.More precisely, if we identify vectors inR2 with complex numbers
so that Mbd is identified with Mbd = Mbd1 + iMbd2, then a routine computation
shows that

q∗
ε = M2

bd√
2β + 1

on ∂�
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(the square is taken in the sense of complex numbers). In particular,
∣∣q∗

ε

∣∣ = 1 on ∂�

and

deg(q∗
ε , ∂�) = 2 deg(Mbd, ∂�)

(2.10)= 2d. (4.16)

Now, (4.10), (4.11), (4.12) follow from classical results in the Ginzburg–Landau
literature (see e.g [37, Theorem 2.4], [38, Proposition 1.1], [34, Theorems 1.2
and 1.3], [43, Theorem 1]). Moreover, the arguments in [46, Theorem 1.1] prove
that, for any p ∈ (1, 2), there exists a constant Cp such that

∫
�

∣∣∇Q∗
ε

∣∣p dx ≤ Cp. (4.17)

for any ε sufficiently small. Then, (4.13) follows from (4.12) and (4.17), by means
of a compactness argument. 
�

In order to complete the proof of Statement (i) in Theorem 2.1, it only re-
mains to show that the convergence Q∗

ε → Q∗ is not only weak, but also strong
in W 1,p(�). The proof of this fact relies on an auxiliary lemma. We consider the
function gε : S2×2

0 → R defined in (3.7).

Lemma 4.5. Let B = Br (x0) ⊆ � be an open ball. Suppose thatQ∗
ε ⇀ Q∗ weakly

in W 1,2(∂B) and that

∫
∂B

(
1

2

∣∣∇Q∗
ε

∣∣2 + gε(Q∗
ε)

)
dH1 ≤ C (4.18)

for some constant C that may depend on the radius r , but not on ε. Then, there
exists a map Qε ∈ W 1,2(B, S2×2

0 ) such that

Qε = Q∗
ε on ∂B, |Qε| ≥ 1

2
in B (4.19)

∫
B

(
1

2
|∇Qε|2 + gε(Qε)

)
dx → 1

2

∫
B

∣∣∇Q∗∣∣2 dx (4.20)

The proof of Lemma 4.5 is given in Appendix C.

Proposition 4.6. As ε → 0, we have

Q∗
ε → Q∗ strongly in W 1,2

loc (� \ {a∗
1 , . . . , a∗

2|d|, b1, . . . , bK }) (4.21)

Q∗
ε → Q∗ strongly in W 1,p(�) for any p ∈ [1, 2). (4.22)

Proof. Let B := BR(x0) ⊂⊂ �\{a∗
1 , . . . , a∗

2|d|, b1, . . . , bK } be an open ball. We

have
∣∣Q∗

ε

∣∣ ≥ 1/2 in B, so we can apply the change of variables described in Sect. 3.
We consider the vector field u∗

ε : B → R
2 defined as in (3.6)—that is, we write

Q∗
ε =

∣∣Q∗
ε

∣∣
√
2

(
n∗

ε ⊗ n∗
ε − m∗

ε ⊗ m∗
ε

)
in B,
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where (n∗
ε , m

∗
ε ) is anorthonormal basis of eigenvectors forQε , andwedefine (u∗

ε)1 :=
M∗

ε · n∗
ε , (u

∗
ε)2 := M∗

ε · m∗
ε . By Proposition 3.2, we have

Fε(Q∗
ε , M

∗
ε ; B) =

∫
B

(
1

2

∣∣∇Q∗
ε

∣∣2 + gε(Q∗
ε)

)
dx

+
∫
B

(
ε

2

∣∣∇u∗
ε

∣∣2 + 1

ε
h(u∗

ε )

)
dx + oε→0(1),

(4.23)

where the functions gε and h are defined in (3.7) and (3.8), respectively. (The
remainder term Rε, given by Proposition 3.2, tends to zero as ε → 0, due to (3.9)
and the energy bound (4.12)). By Lemma 4.4, we know that Fε(Q∗

ε , M
∗
ε ; B) ≤ C

for some constant C that depends on the ball B, but not on ε. By Fubini’s theorem,
and possibly up to extraction of a subsequence, we find a radius r ∈ (R/2, R) such
that
∫

∂Br (x0)

(
1

2

∣∣∇Q∗
ε

∣∣2 + gε(Q∗
ε)

)
dH1 + 1

2

∫
∂Br (x0)

∣∣∇Q∗∣∣2 dH1 ≤ C

R
, (4.24)

with a C that does not depend on ε. Moreover, without loss of generality we can
assume thatQ∗

ε ⇀ Q∗ weakly inW 1,2(∂Br (x0)). Let B ′ := Br (x0). ByLemma4.5,
there exists a map Qε ∈ W 1,2(B ′, S2×2

0 ) such that

Qε = Q∗
ε on ∂B ′, |Qε| ≥ 1

2
in B ′ (4.25)

∫
B′

(
1

2
|∇Qε|2 + gε(Qε)

)
dx → 1

2

∫
B′

∣∣∇Q∗∣∣2 dx . (4.26)

Thanks to (4.25), we can write

Qε = |Qε|√
2

(nε ⊗ nε − mε ⊗ mε) in B ′,

where (nε, mε) is an orthonormal basis of eigenvectors for Qε. We define

Mε := (u∗
ε)1 nε + (u∗

ε)2 mε in B ′.

The pair (Qε, Mε) is an admissible competitor for (Q∗
ε , M

∗
ε ):Qε = Q∗

ε on ∂B ′ by
construction and, if the orientation of nε andmε is chosen suitably, thenMε = M∗

ε

on ∂B ′. Byminimality of (Q∗
ε , M

∗
ε ), we haveFε(Q∗, M∗

ε ; B ′) ≤ Fε(Qε, Mε; B ′)
By applying Proposition 3.2, we deduce that
∫
B′

(
1

2

∣∣∇Q∗
ε

∣∣2 + gε(Q∗
ε)

)
dx ≤

∫
B′

(
1

2
|∇Qε|2 + gε(Qε)

)
dx + oε→0(1)

(4.26)= 1

2

∫
B′

∣∣∇Q∗∣∣2 dx + oε→0(1).

(4.27)
Asweknowalready thatQ∗

ε ⇀ Q∗ weakly inW 1,2(B ′) (byLemma4.4), from (4.27)
we deduce that Q∗

ε → Q∗ strongly in W 1,2(B ′) and (4.21) follows.
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We turn to the proof of (4.22). Let p, q be such that 1 ≤ p < q < 2. Let σ > 0
be a small parameter, and let

Uσ :=
2|d|⋃
j=1

Bσ (a∗
j ) ∪

K⋃
k=1

Bσ (bk).

By Hölder’s inequality, we obtain
∥∥∇Q∗

ε − ∇Q∗∥∥
L p(�)

� |Uσ |1/p−1/q
(∥∥∇Q∗

ε

∥∥
Lq (Uσ )

+ ∥∥∇Q∗∥∥
Lq (Uσ )

)

+ ∥∥∇Q∗
ε − ∇Q∗∥∥

L2(�\Uσ )
.

Thanks to Lemma 4.4 and (4.21), we deduce that

lim sup
ε→0

∥∥∇Q∗
ε − ∇Q∗∥∥

L p(�)
� σ 2/p−2/q ,

and, as σ may be taken arbitrarily small, (4.22) follows. 
�
Remark 4.1. As a byproduct of the estimate (4.27), we deduce that gε(Q∗

ε) → 0
strongly in L1

loc(�\{a1, . . . , a2|d|, b1, . . . , bK }).
We state an additional convergence property for Q∗

ε , which will be useful later
on.We recall that the vector product of two vectors u ∈ R

2, v ∈ R
2 can be identified

with a scalar, u× v := u1v2 − u2v1. In a similar way, we define the vector product
of two matrices Q ∈ S2×2

0 , P ∈ S2×2
0 as

Q×P := Q11P12−Q12P11+Q21P22−Q22P21 = 2 (Q11P12 − Q12P11) . (4.28)

If q1, q2 (respectively, p1, p2) are the columns of Q (respectively, P), then

Q × P = q1 × p1 + q2 × p2.

Alternatively, the vector productQ×P can be expressed in terms of the commutator
[Q, P] := QP − PQ, as

[Q, P] = (Q × P)

(
0 −1
1 0

)
.

Now, for anyQ ∈ (L∞ ∩W 1,1)(�, S2×2
0 ), we define the vector field j (Q) : � →

R
2 as

j (Q) := 1

2
(Q × ∂1Q, Q × ∂2Q) . (4.29)

For anyQ ∈ (L∞∩W 1,1)(�, S2×2
0 ), the vector field j (Q) is integrable. Therefore,

it makes sense to define

J (Q) := ∂1( j (Q))2 − ∂2( j (Q))1, (4.30)
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if we take the derivatives in the sense of distributions. IfQ is smooth, then J (Q) is
the Jacobian determinant of q := (

√
2Q11,

√
2Q12):

J (Q) = 2 ∂1Q11 ∂2Q12 − 2 ∂2Q11 ∂1Q12 = det∇q. (4.31)

More generally, for any Q ∈ (L∞ ∩ W 1,1)(�, R2), J (Q) coincides with the
distributional Jacobian of q (see e.g. [35] and the references therein).

Lemma 4.7. We have

J (Q∗
ε) → J (Q∗) = π sign(d)

2|d|∑
j=1

δa∗
j

in W−1,1(�)

as ε → 0.

Proof. Let q∗ := (
√
2Q∗

11,
√
2Q∗

12). By Lemma 4.4, the vector field q∗ belongs to
W 1,1(�, S1) (globally in�) and toW 1,2

loc (�\{a∗
1 , . . . , a∗

2|d|}, S1).At eachpointa∗
j ,

q∗ has a singularity of degree 2 deg(Q∗, ∂Bσ (a∗
j )) = sign(d), due to (4.11). By

reasoning e.g. as in [35, Example 3.1], we obtain

J (Q∗) = π sign(d)

2|d|∑
j=1

δa∗
j
. (4.32)

It remains to show that J (Q∗
ε) → J (Q∗) in W−1,1(�). Let p ∈ [1, 2) and q ∈

(2, +∞] be such that 1/p + 1/q = 1. By, e.g., [18, Theorem 1], we have

∥∥J (Q∗
ε) − J (Q∗)

∥∥
W−1,1(�)

≤ C
∥∥Q∗

ε − Q∗∥∥
Lq (�)

(∥∥∇Q∗
ε

∥∥
L p(�)

+ ∥∥∇Q∗∥∥
L p(�)

)
(4.33)

for someconstantC that dependsonlyon�. The sequenceQ∗
ε is bounded inW

1,p(�),
by Lemma 4.4. By compact Sobolev embedding, we haveQ∗

ε → Q∗ pointwise a.e.,
up to extraction of a subsequence. AsQ∗

ε is also bounded in L
∞(�), by Lemma 4.1,

we deduce that Q∗
ε → Q∗ strongly in Lq(�) (via Lebesgue’s dominated conver-

gence theorem). Then, (4.33) implies that J (Q∗
ε) → J (Q∗) in W−1,1(�) and the

lemma follows. 
�

4.2. Proof of Statement (ii): Q∗ is a Canonical Harmonic Map

Next, we show thatQ∗ is the canonical harmonic map with singularities at (a∗
1 ,

. . . , a∗
2|d|) and boundary datum Qbd, as defined in Sect. 2. The proof relies on an

auxiliary lemma.

Lemma 4.8. The minimisers (Q∗
ε , M

∗
ε ) satisfy

−∂ j
(
Q∗

ε × ∂ jQ∗
ε

) = ε

2
∂ j
(
M∗

ε × ∂ jM∗
ε

)
in �.
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Proof. For ease of notation, we drop the subscript ε and the superscript ∗ from all
the variables. We consider the Euler-Lagrange equation for Q, Equation (2.5), and
take the vector product with Q:

−Q × 	Q − β

ε
Q ×

(
M ⊗ M − |M|2

2
I

)
= 0. (4.34)

We have

Q × 	Q = ∂ j
(
Q × ∂ jQ

)− ∂ jQ × ∂ jQ = ∂ j
(
Q × ∂ jQ

)
(4.35)

and

Q ×
(
M ⊗ M − |M|2

2
I

)
= 2Q11M1M2 − Q12M

2
1 + Q12M

2
2 = QM × M,

so Equation (4.34) can be rewritten as

−∂ j
(
Q × ∂ jQ

) = β

ε
QM × M. (4.36)

Now, we consider the Euler-Lagrange equation forM, Equation (2.5), and take the
vector product withM:

−M × 	M − 2β

ε2
M × QM = 0. (4.37)

Similarly to (4.35), we have M × 	M = ∂ j (M × ∂ jM), so (4.37) can be written
as

∂ j (M × ∂ jM) = 2β

ε2
QM × M. (4.38)

The lemma follows from (4.36) and (4.38). 
�
Proposition 4.9. Q∗ is the canonical harmonic map with singularities at (a∗

1 , . . . ,

a∗
2|d|) and boundary datum Qbd.

Proof. First, we show that Q∗ satisfies

∂ j
(
Q∗ × ∂ jQ∗) = 0 (4.39)

in the sense of distributions in �. To this end, we pass to the limit in both sides of
Lemma 4.8. Let p ∈ (1, 2). By Lemma 4.4, we haveQ∗

ε ⇀ Q∗ weakly inW 1,p(�)

and, up to extraction of subsequences, pointwise a.e. As Q∗
ε is bounded in L∞(�)

by Lemma 4.1, Lebesgue’s dominated convergence theorem implies thatQ∗
ε → Q∗

strongly in Lq(�) for any q < +∞. As a consequence, we have

∂ j
(
Q∗

ε × ∂ jQ∗
ε

)
⇀∗ ∂ j

(
Q∗ × ∂ jQ∗) as distributions in � as ε → 0. (4.40)

On the other hand, Proposition 4.2 implies

∥∥∇M∗
ε

∥∥2
L2(�)

≤ 1

ε
Fε(Q∗

ε , M
∗
ε ) � |log ε|

ε
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As M∗
ε is bounded in L∞(�) by Lemma 4.1, we deduce that

ε
∥∥M∗

ε × ∇M∗
ε

∥∥
L2(�)

≤ ε
∥∥M∗

ε

∥∥
L∞(�)

∥∥∇M∗
ε

∥∥
L2(�)

� ε1/2 |log ε|1/2 → 0

as ε → 0. Therefore,

ε ∂ j
(
M∗

ε × ∂ jM∗
ε

) → 0 in W−1,2(�) as ε → 0. (4.41)

Combining (4.40) and (4.41) with Lemma 4.8, we obtain (4.39).
To prove that Q∗ is canonical harmonic, it only remains to check that Q∗ is

smooth in �\{a∗
1 , . . . , a∗

2|d|} and continuous in �\{a∗
1 , . . . , a∗

2|d|}. Both these

properties follow from (4.39). Indeed, let G ⊆ �\{a∗
1 , . . . , a∗

2|d|} be a simply

connected domain. As Q∗ ∈ W 1,2(G, N ), we can apply lifting results (see e.g.
[12, Theorem 1]) and write

Q∗ = 1√
2

(
cos θ∗ sin θ∗
sin θ∗ − cos θ∗

)
(4.42)

for some scalar function θ∗ ∈ W 1,2(G). Equation (4.39) may be written in terms
of θ∗ as

	θ∗ = 0 as distributions in G. (4.43)

Therefore, θ∗ is smooth in G and so is Q∗. In case G touches the boundary of �,
θ∗ is continuous up to ∂� and hence Q∗ is. 
�

4.3. Proof of Statements (iii) and (iv): Compactness for M∗
ε

In this section, we prove a compactness result for the component M∗
ε of a

sequence of minimisers. The proof relies on the change of variables we introduced
in Sect. 3.

We recall that in Lemma 4.4, we found a finite number of points a∗
1 , …, a∗

2|d|,
b∗
1, …, b∗

K such that
∣∣Q∗

ε

∣∣ is uniformly bounded away from zero, except for some
small balls of radius σ around these points. Let

G ⊂⊂ � \ {a∗
1 , . . . , a∗

2|d|, b∗
1, . . . , b∗

K }
be a smooth, simply connected domain. The sequence of minimisers (Q∗

ε , M
∗
ε )

satisfies the assumptions (3.3)–(3.4), thanks to Lemma 4.1, Proposition 4.2 and
Lemma 4.4. Therefore, we are in position to apply the results from Sect. 3. We
define the vector field u∗

ε : G → R
2 as in (3.6)—that is, we write

Q∗
ε =

∣∣Q∗
ε

∣∣
√
2

(
n∗

ε ⊗ n∗
ε − m∗

ε ⊗ m∗
ε

)
in G, (4.44)

where (n∗
ε , m

∗
ε ) is anorthonormal set of eigenvectors forQ∗ withn∗

ε ∈ W 1,2(G, S1),
m∗

ε ∈ W 1,2(G, S1), and we define

(u∗
ε)1 := M∗

ε · n∗
ε , (u∗

ε)2 := M∗
ε · m∗

ε (4.45)

The next lemma is key to prove compactness of the sequence u∗
ε and, hence, ofM

∗
ε .
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Lemma 4.10. Let h be the function defined by (3.8). For any simply connected
domain G ⊂⊂ �\{a∗

1 , . . . , a∗
2|d|, b∗

1, . . . , b∗
K }, there holds

∫
G

(
ε

2

∣∣∇u∗
ε

∣∣2 + 1

ε
h(u∗

ε )

)
dx ≤ C,

where C is a positive constant that depends only on �, β and the boundary datum
(in particular, it is independent of ε, G).

Proof. By classical lower bounds in the Ginzburg–Landau theory, such as [34,
Theorem 1.1] or [43, Theorem 2], we have

∫
�

(
1

2

∣∣∇Q∗
ε

∣∣2 + 1

4ε2
(
∣∣Q∗

ε

∣∣2 − 1)2
)
dx ≥ 2π |d| |log ε| − C, (4.46)

for some constant C that depends only on � and the boundary datum Qbd. The
results in [34,43] extend to our setting due to change of variables Q∗

ε 	→ q∗
ε , given

by (4.14). The coefficient 2π |d| in the right-hand side of (4.46) depends on this
change of variables, which transforms the boundary condition of degree d for Q∗

ε

into a boundary condition of degree 2d for q∗
ε—see (4.16).

From (4.46) and Lemma 4.3, we deduce that

1

2

∫
�

∣∣∇Q∗
ε

∣∣2 dx ≥ 2π |d| |log ε| − C, (4.47)

and then, by Proposition 4.2,

∫
�

(
ε

2

∣∣∇M∗
ε

∣∣2 + 1

ε2
fε(Q∗

ε , M
∗
ε )

)
dx ≤ C (4.48)

for some constant C that depends only on the domain and the boundary data.
Now, we apply Proposition 3.2:

Fε(Q∗
ε , M

∗
ε ; G) ≥

∫
G

(
1

2

∣∣∇Q∗
ε

∣∣2 + gε(Q∗
ε)

)
dx

+ 1

2

∫
G

(
ε

2

∣∣∇u∗
ε

∣∣2 + 1

ε
h(u∗

ε )

)
dx + o(1).

(4.49)

We have used (3.9) and the elementary inequality ab ≤ a2/2 + b2/2 to estimate
the remainder term Rε. From (4.49), we obtain

∫
G

(
ε

2

∣∣∇u∗
ε

∣∣2 + 1

ε
h(u∗

ε )

)
dx + 2

∫
G
gε(Q∗

ε) dx

≤ 2
∫
G

(
ε

2

∣∣∇M∗
ε

∣∣2 + 1

ε2
fε(Q∗

ε , M
∗
ε )

)
dx + o(1)

(4.48)≤ C.

(4.50)

Lemma 3.3 gives gε ≥ 0, so the lemma follows. 
�
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Proposition 4.11. There exist a map M∗ ∈ SBV(�, R2) and a (non-relabelled)
subsequence such thatM∗

ε → M∗ a.e. and strongly in L p(�, R2) for any p < +∞,
as ε → 0. Moreover, H1(SM∗) < +∞ and M∗ satisfies

∣∣M∗∣∣ = (
√
2β + 1)1/2, (4.51)

Q∗ = √
2

(
M∗ ⊗ M∗
√
2β + 1

− I
2

)
(4.52)

a.e. on �.

Proof. Let G ⊂⊂ �\{a∗
1 , . . . , a∗

2|d|, b∗
1, . . . , b∗

K }. By Proposition 4.6, we have

Q∗
ε → Q∗ strongly in W 1,2(G) and, up to extraction of a subsequence, pointwise

a.e. in G. By differentiating the identity (4.44), we obtain that

∣∣∇n∗
ε

∣∣2 = ∣∣∇m∗
ε

∣∣2 �
∣∣∣∣∣∇
(

Q∗
ε∣∣Q∗
ε

∣∣
)∣∣∣∣∣

2

�
∣∣∇Q∗

ε

∣∣2

(the last inequality follows because
∣∣Q∗

ε

∣∣ ≥ 1/2 in G, by Lemma 4.4). In partic-
ular, n∗

ε , m
∗
ε are bounded in W 1,2(G). Therefore, there exists vector fields n∗ ∈

W 1,2(G, S1), m∗ ∈ W 1,2(G, S1) such that, up to extraction of a subsequence, if
holds that

n∗
ε ⇀ n∗, m∗

ε ⇀ m∗ weakly in W 1,2(G) and pointwise a.e. in G. (4.53)

By passing to the limit pointwise a.e. in (4.44), we obtain

Q∗ = 1√
2

(
n∗ ⊗ n∗ − m∗ ⊗ m∗) in G, (4.54)

and hence (n∗, m∗) is an orthonormal set of eigenvectors for Q∗. In fact, n∗, m∗
must be smooth, because Q∗ is smooth (by Proposition 4.9).

Lemma 4.10, combined with compactness results for the vectorial Modica-
Mortola functional (see e.g. [7] or [28, Theorems 3.1 and 4.1]), implies that there
exists a (non-relabelled) subsequence and a map u∗ ∈ BV(G, R2) such that

u∗
ε → u∗ strongly in L1(G) and a.e. in G, h(u∗) = 0 a.e. in G (4.55)

and

H1(Su∗ ∩ G) � lim inf
ε→0

∫
G

(
ε

2

∣∣∇u∗
ε

∣∣2 + 1

ε
h(u∗

ε )

)
dx ≤ C (4.56)

for some constant C that does not depend on G. As h(u∗) = 0 a.e., necessarily u∗
must take the form

u∗(x) =
(
τ(x) (

√
2β + 1)1/2, 0

)
for a.e. x ∈ G,

where τ(x) ∈ {1, −1} is a sign (see Lemma 3.4). Since u∗ takes values in a
finite set, the distributional derivative Du∗ must be concentrated on Su∗ , so u∗ ∈
SBV(G, R2).
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We define

M∗ := (u∗)1 n∗ + (u∗)2m∗ = τ (
√
2β + 1)1/2 n∗ in G. (4.57)

The vector field M∗ is well-defined and does not depend on the choice of the
orientation for n∗

ε ,m
∗
ε (so long as the orientation is chosen consistently as ε → 0, in

such a way that (4.53) is satisfied). Indeed, if we replace n∗
ε by−n∗

ε , then also (u∗
ε )1

will change its sign and the product at the right-hand side of (4.57) will remain
unaffected. Therefore, by letting G vary in �\{a∗

1 , . . . , a∗
2|d|, b∗

1, . . . , b∗
K }, we

can define M∗ almost everywhere in �. An explicit computation, based on (4.54)
and (4.57), shows that M∗ satisfies (4.51) and (4.52). Moreover, due to (4.53)
and (4.55), we have M∗

ε → M∗ a.e. in G. As the sequence Mε is uniformly
bounded in L∞(�) (by Lemma 4.1), Lebesgue’s dominated convergence theorem
implies that M∗

ε → M∗ in L p(�) for any p < +∞.
Aswe have seen, u∗ ∈ SBV(G, R2) for anyG ⊂⊂ �\{a∗

1 , . . . , a∗
2|d|, b∗

1, . . . ,

b∗
K }. Therefore, by applying theBV-chain rule (see e.g. [3, Theorem3.96]) to (4.59),

and letting G vary, we obtain

M∗ ∈ SBVloc(� \ {a∗
1 , . . . , a∗

2|d|, b∗
1, . . . , b∗

K }; R2) (4.58)

Moreover, we claim that

M∗ ∈ SBV(� \ {a∗
1 , . . . , a∗

2|d|, b∗
1, . . . , b∗

K }; R2), H1(SM∗) < +∞ (4.59)

Indeed, the absolutely continuous part ∇M∗ of the distributional derivative DM∗
can be bounded by differentiating (4.52): the BV-chain rule implies

∣∣∇M∗∣∣ =
√
2β + 1

2

∣∣∇Q∗∣∣ , (4.60)

and hence, ∥∥∇M∗∥∥
L1(�)

≤
√
2β + 1

2

∥∥∇Q∗∥∥
L1(�)

< +∞,

due to Lemma 4.4. The total variation of the jump part of DM∗ is uniformly
bounded, too, because of (4.56) (the constant at the right-hand side of (4.56) does
not depend on G, so we may take the limit as G ↘ �). Then, (4.59) follows.

In order to complete the proof, it only remains to show thatM ∈ SBV(�, R2).
Let ϕ ∈ C∞

c (�) be a test function, and let σ > 0 be fixed. We define

Uσ :=
2|d|⋃
i=1

Bσ (ai ) ∪
K⋃

k=1

Bσ (bk).

We choose a smooth cut-off function ψσ such that 0 ≤ ψσ ≤ 1 in �, ψσ = 0
in �\Uσ , ψσ = 1 in a neighbourhood of each point a1, . . . , a2|d|, b1, . . . , bK ,
and ‖∇ψσ ‖L∞(�) ≤ Cσ for some constant C that does not depend on σ . Then,
for j ∈ {1, 2}, we have

∫
�

M∗ ∂ jϕ =
∫

�

M∗ ∂ j (ϕ(1 − ψσ )) +
∫

�

M∗ (ψσ ∂ jϕ + ϕ ∂ jψσ

)
.
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We bound the first term in the right-hand side by applying (4.59). To estimate
the second term, we observe that the integrand is bounded and supported in Uσ .
Therefore, we obtain∫

�

M∗ ∂ jϕ � ‖ϕ‖L∞(�) + ∥∥M∗∥∥
L∞(�)

‖∇ϕ‖L∞(�) |Uσ |
+ ∥∥M∗∥∥

L∞(�)
‖ϕ‖L∞(�) ‖∇ψσ ‖L∞(�) |Uσ |

� ‖ϕ‖L∞(�) + ∥∥M∗∥∥
L∞(�)

(
σ 2 ‖∇ϕ‖L∞(�) + σ ‖ϕ‖L∞(�)

)
.

(4.61)
By taking the limit as σ → 0, we deduce thatM∗ ∈ BV(�, R2). In fact, we must
haveM∗ ∈ SBV(�, R2), because the Cantor part of DM∗ cannot be supported on
a finite number of points, a1, . . . , a2|d|, b1, . . . , bK . This completes the proof. 
�

We conclude this section by stating a regularity property ofM∗. We recall that
a harmonic mapM on a domain U ⊆ R

2 with values in a circle of radius R > 0 is
a map that can be written in the form M = (R cosφ, R sin φ) for some harmonic
function φ : U → R. Let SM∗ be the closure of the jump set of M∗.
Proposition 4.12. The mapM∗ is locally harmonic on � \ SM∗ , with values in the
circle of radius (

√
2β + 1)1/2. In particular, M∗ is smooth in � \ SM∗ .

Proof. Let B ⊆ � be an open ball that does not intersect SM∗ nor {a∗
1 , . . . , a∗

2|d|,
b∗
1, . . . , b∗

K }. Then, we have M∗ ∈ W 1,2(B, R2), by construction (see, in partic-
ular, (4.53) and (4.57)). By lifting results (see e.g. [8,12,13]), M∗ can be written
in the form M∗ = (

√
2β + 1)1/2(cosφ∗, sin φ∗), for some scalar function φ∗ ∈

W 1,2(B, R). On the other hand, the condition (4.52) shows that φ∗ is uniquely
determined byQ∗, up to constant multiples of π . In particular, we must have φ∗ =
θ∗/2 + kπ , where θ∗ is the function given by (4.42) and k is a constant. Then,
Equation (4.43) implies that −	φ∗ = 0 in B and hence, M∗ is a harmonic map
on B with values in the circle of radius (2

√
β + 1)1/2.

Now, let B be an open ball that does not intersect SM∗ nor {a∗
1 , . . . , a∗

2|d|},
although it may contain one of the points bk . Say, for simplicity, that B contains
exactly one of the points bk . We claim that M∗ is harmonic in B, too. Indeed,
since bk is a singularity of degree zero (see (4.11)), we can repeat the arguments
above andwriteM∗ = (

√
2β+1)1/2(cosφ∗, sin φ∗) in B\{bk}, for some harmonic

function φ∗ : B \ {bk} → R. By the chain rule, |∇φ∗| coincides with |∇Q∗| up to
a constant factor (see (4.60)). The map Q∗ is smooth in a neighbourhood of bk ,
because it is canonical harmonic with singularities at {a1, . . . , a2|d|}. Therefore,
∇φ∗ is bounded in B \ {bk}. As a consequence, bk is a removable singularity for φ∗
and, by possibly modifying the value of M∗ at bk ,M∗ is harmonic in B.

To conclude the proof, it only remains to show that the points {a∗
1 , . . . , a∗

2|d|}
are contained in SM∗ . If any of the points a j did not belong to SM∗ , thenM∗ would
be locally harmonic (and hence, smooth) in a sufficiently small neighbourhood
of a j , except at the point a j . This is impossible, because a j is a non-orientable
singularity of Q∗ (see (4.11)) and there cannot be a map M∗ that satisfies (4.51),
(4.52) and is continuous in a punctured neighbourhood of a j . Therefore, a j ∈ SM∗ .


�
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4.4. Proof of Statements (v) and (vi): Sharp Energy Estimates

In this section, we complete the proof of Theorem 2.1, by describing the struc-
ture of the jump set of M∗ and characterising the optimal position of the defects
of Q∗ (in case the domain � is convex). As a byproduct of our arguments, we
will also show a refined energy estimate for the minimisers (Q∗

ε , M
∗
ε ), i.e. Propo-

sition 4.13 below.
First, we set some notations. We let

cβ := 2
√
2

3

(√
2β + 1

)3/2
. (4.62)

For any (2 |d|)-uple of distinct points a1, …, a2|d| in �, we define

Wβ(a1, . . . , a2|d|) := W(a1, . . . , a2|d|) + cβ L(a1, . . . , a2|d|), (4.63)

whereW, L are, respectively, the Ginzburg–Landau renormalised energy (defined
in (2.14)) and the length of a minimal connection (defined in (2.15)). We also recall
the definition of the Ginzburg–Landau core energy, which was introduced in [11].
Let B1 ⊆ R

2 be the unit disk. For any ε > 0, let

γ (ε) := inf

{∫
B1

(
1

2
|∇u|2 + 1

4ε2
(|u|2 − 1)2

)
dx :

u ∈ W 1,2(B1, C), u(x) = x for x ∈ ∂B1

}
.

It can be proven (see [11, Lemma III.3]) that the function ε 	→ γ (ε) − π |log ε| is
finite in (0, 1) and non-decreasing. Therefore, the limit

γ∗ := lim
ε→0

(γ (ε) − π |log ε|) > 0 (4.64)

exists and is finite. The number γ∗ is the so-called core energy. In this section, we
will prove the following result:

Proposition 4.13. If the domain � ⊆ R
2 is convex, then

Fε(Q∗
ε , M

∗
ε ) = 2π |d| |log ε| + Wβ(a∗

1 , . . . , a∗
2|d|) + 2 |d| γ∗ + o(1) (4.65)

as ε → 0.

We will prove the lower and upper inequality in (4.65) separately. From now
on, we alwasy assume that the domain � is convex.
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4.4.1. Sharp Lower Bounds for the Energy of Minimisers The aim of this
section is to prove a sharp lower bound forFε(Q∗

ε , M
∗
ε ). We know from previous

results (Lemma 4.4, Proposition 4.11), that, up to extraction of a subsequence, we
have Q∗

ε → Q∗, M∗
ε → M∗ a.e., where

Q∗ ∈ W 1,2
loc (� \ {a∗

1 , . . . , a∗
2|d|}, N ), M∗ ∈ SBV(�, R2).

Due to Lemma 4.3, we may further assume that
∣∣Q∗

ε

∣∣− 1

ε
⇀ ξ∗ weakly in L2(�). (4.66)

Proposition 4.14. If holds that

lim inf
ε→0

(
Fε(Q∗

ε , M
∗
ε ) − 2π |d| |log ε| )

≥ W(a∗
1 , . . . , a∗

2|d|) + cβ H1(SM∗) +
∫

�

(ξ∗ − κ∗)2 dx + 2 |d| γ∗,

where the constants cβ , κ∗ are given, respectively, by (4.62) and (3.1).

The length of the jump set SM∗ can be further bounded from below, in terms
of the singular points a∗

1 , . . . , a∗
2|d|. We recall from Sect. 2 that a connection

for a∗
1 , . . . , a∗

2|d| is a finite collection of straight line segments L1, . . . , L |d| that
connects the points a∗

j in pairs, and thatL(a∗
1 , . . . , a∗

2|d|) is the minimal length of a
connection for the points a∗

j (see (2.15)). Given two sets A, B, we denote by A	B
their symmetric difference, i.e. A	B := (A\B) ∪ (B\A).

Proposition 4.15. We have

H1(SM∗) ≥ L(a∗
1 , . . . , a∗

2d). (4.67)

The equality in (4.67) holds if and only if there exists aminimal connection {L∗
1, . . . ,

L∗|d|} for {a∗
1 , . . . , a∗

2|d|} such that

H1

⎛
⎝SM∗ 	

d⋃
j=1

L∗
j

⎞
⎠ = 0.

We will give the proof of Proposition 4.15 in Appendix A. Here, instead, we
focus on the proof of Proposition 4.14.

Lemma 4.16. Let h : R2 → R be the function defined in (3.8), and let u± :=
(±(

√
2β + 1)1/2, 0). Then, there holds

inf

{∫ 1

0

√
2h(u(t))

∣∣u′(t)
∣∣ dt : u ∈ W 1,1([0, 1], R2), u(0) = u−, u(1) = u+

}
= cβ,

(4.68)
with cβ given by (4.62).
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Proof. Let u ∈ W 1,1([0, 1], R2) be such that u(0) = u−, u(1) = u+. We de-
fine ũ : [0, 1] → R

2 as ũ(t) := (|u(t)| , 0). We have h(ũ(t)) ≤ h(u(t)) for any t
and

∣∣ũ′(t)
∣∣ =

∣∣∣∣u′(t) · u(t)

|u(t)|
∣∣∣∣ ≤ ∣∣u′(t)

∣∣

for a.e. t ∈ [0, 1] such that u(t) �= 0. On the other hand, Stampacchia’s lemma
implies that u′ = 0 a.e. on the set u−1(0) and similarly, ũ′ = 0 a.e. on ũ−1(0).
Therefore, we have

∫ 1

0

√
h(ũ(t))

∣∣ũ′(t)
∣∣ dt ≤

∫ 1

0

√
h(u(t))

∣∣u′(t)
∣∣ dt.

As a consequence, in the left-hand side of (4.68) we can minimise under the addi-
tional constraint that u2 ≡ 0, without loss of generality. In other words, we have
shown that

I := inf

{∫ 1

0

√
2h(u(t))

∣∣u′(t)
∣∣ dt : u ∈ W 1,1([0, 1], R2), u(0) = u−, u(1) = u+

}

= inf

{∫ 1

0

√
2h(u1(t), 0)

∣∣u′
1(t)

∣∣ dt : u1 ∈ W 1,1(0, 1), u1(0) = −λ, u1(1) = λ

}
,

where λ := (
√
2β + 1)1/2. Equation (3.8) implies, by an explicit computation,

√
2h(u1, 0) = 1√

2

∣∣∣λ2 − u21

∣∣∣ .

By making the change of variable y = u1(t), we deduce that

I ≥ inf

{∫ 1

0

√
2h(u1(t), 0) u

′
1(t) dt : u1 ∈ W 1,1(0, 1), u1(0) = −λ, u1(1) = λ

}

=
∫ λ

−λ

√
2h(y, 0) dy = 1√

2

∫ λ

−λ

(
λ2 − y2

)
dy = 2

√
2

3
λ3.

(4.69)
We take as a competitor in (4.68) the map v(t) := (−λ + 2tλ, 0). By similar
computations, we obtain

I ≤
∫ 1

0

√
2h(v(t))

∣∣v′(t)
∣∣ dt = 2

√
2

3
λ3, (4.70)

and the lemma follows. 
�
Lemma 4.17. Let G ⊂⊂ �\{a∗

1 , . . . , a∗
2|d|, b∗

1, . . . , b∗
K } be a simply connected

domain. Then,

lim inf
ε→0

Fε(Q∗
ε , M

∗
ε ; G) ≥ 1

2

∫
G

∣∣∇Q∗∣∣2 dx +
∫
G
(ξ∗ − κ∗)2 dx + cβ H1(SM∗ ∩ G)
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Proof. We make a change of variable, as introduced in Sect. 3. This is possible,
because we have assumed that � is simply connected. Let u∗

ε be the vector field
defined in (3.6). By Proposition 3.2, we have

Fε(Q∗
ε , M

∗
ε ; G) =

∫
G

(
1

2

∣∣∇Q∗
ε

∣∣2 + gε(Q∗
ε)

)
dx

+
∫
G

(
ε

2

∣∣∇u∗
ε

∣∣2 + 1

ε
h(u∗

ε )

)
dx + Rε,

(4.71)

and the remainder term Rε satisfies

|Rε| � ε1/2 |log ε|1/2
(∫

G

(
ε

2

∣∣∇u∗
ε

∣∣2 + 1

ε
h(u∗

ε )

)
dx

)1/2

+o(1) as ε → 0. (4.72)

Lemma 4.10 implies that Rε → 0 as ε → 0. We estimate separately the other
terms in the right-hand side of (4.71). The weak convergenceQ∗

ε ⇀ Q∗ inW 1,2(G)

implies

lim inf
ε→0

1

2

∫
G

∣∣∇Q∗
ε

∣∣2 dx ≥ 1

2

∫
G

∣∣∇Q∗∣∣2 dx . (4.73)

We claim that

lim inf
ε→0

∫
G
gε(Q∗

ε) dx ≥
∫
G
(ξ∗ − κ∗)2 dx . (4.74)

Indeed, Lemma 3.3 gives

gε(Q∗
ε) = (ξε − κ∗)2 + ξ2ε ζε, (4.75)

where

ξε := 1

ε
(
∣∣Q∗

ε

∣∣− 1), ζε := 1

4
(
∣∣Q∗

ε

∣∣+ 1)2 − 1 ≥ −1.

Let δ > 0 be a small parameter. By Lemma 4.4, we have
∣∣Q∗

ε

∣∣ → |Q∗| = 1
a.e. in � and hence, ζε → 0 a.e. in G. Therefore, by the Severini-Egoroff theorem,
there exists a Borel set G̃ ⊆ G such that |G\G̃| ≤ δ and ζε → 0 uniformly in G̃
as ε → 0. Now, we have

∫
G
gε(Q∗

ε) dx
(4.75)≥

∫
G̃
(ξε − κ∗)2 dx +

∫
G̃

ξ2ε ζε dx

+
∫
G\G̃

(−2ξε κ∗ + κ2∗ ) dx .

The integral of ξ2ε ζ∗ on G̃ tends to zero, because ξε is bounded in L2(G) (by
Lemma 4.3) and ζε → 0 uniformly in G̃. As ξε ⇀ ξ∗ weakly in L2(G) (see (4.66)),
we deduce that

lim inf
ε→0

∫
G
gε(Q∗

ε) dx ≥
∫
G̃
(ξ∗ − κ∗)2 dx +

∫
G\G̃

(−2ξ∗ κ∗ + κ2∗ ) dx .



110 Page 32 of 61 Arch. Rational Mech. Anal. (2023) 247:110

The area of G \ G̃ may be taken arbitrarily small, so (4.74) follows.
Finally, for the term in u∗

ε , we apply classical �-convergence results for the
vectorial Modica-Mortola functional (see e.g. [7,28]), as well as Lemma 4.16:

lim inf
ε→0

∫
G

(
ε

2
|∇uε|2 + 1

ε
h(uε)

)
dx ≥ cβ H1(Su∗ ∩ G). (4.76)

Here u∗ is the L1(G)-limit of the sequence u∗
ε , as in (4.55). By (4.57), we have

Su∗ = SM∗ , and hence

lim inf
ε→0

∫
G

(
ε

2
|∇uε|2 + 1

ε
h(uε)

)
dx ≥ cβ H1(SM∗ ∩ G). (4.77)

Combining (4.71), (4.72), (4.73), (4.74) and (4.77), the lemma follows. 
�
Lemma 4.18. For any σ > 0 sufficiently small and any j ∈ {1, . . . , 2 |d|}, we
have

lim inf
ε→0

(
Fε(Q∗

ε , M
∗
ε ; Bσ (a∗

j )) − π |log ε|
)

≥ π log σ + γ∗ − Cσ,

where γ∗ is the constant given by (4.64) and C is a constant that does not depend
on ε, σ .

Proof. Take σ is so small that the ball Bσ (a∗
j ) does not contain any other singu-

lar point a∗
k , with k �= j . We consider the function J (Q∗

ε) defined in (4.30). By
Lemma 4.7, we have

J (Q∗
ε) → π sign(d) δa∗

j
in W−1,1(Bσ (a∗

j )).

Then, we can apply pre-existing �-convergence results for the Ginzburg–Landau
functional—for instance, [1, Theorem 5.3]. We obtain a (sharp) lower bound for
the Ginzburg–Landau energy of Q∗

ε :

lim inf
ε→0

(∫
Bσ (a∗

j )

(
1

2

∣∣∇Q∗
ε

∣∣2 + 1

4ε2
(
∣∣Q∗

ε

∣∣2 − 1)2
)
dx − π |log ε|

)
≥ π log σ + γ∗.

(4.78)
On the other hand, Lemma 3.1 gives

1

ε2

∫
Bσ (a∗

j )

fε(Q∗
ε , M

∗
ε ) dx ≥ 1

4ε2

∫
Bσ (a∗

j )

(
∣∣Q∗

ε

∣∣2 − 1)2 dx

− β√
2ε

∫
Bσ (a∗

j )

∣∣M∗
ε

∣∣2 ∣∣∣∣Q∗
ε

∣∣− 1
∣∣ dx .

As M∗
ε is uniformly bounded in L∞(�) (by Lemma 4.1), we obtain via Hölder’s

inequality

1

ε2

∫
Bσ (a∗

j )

fε(Q∗
ε , M

∗
ε ) dx ≥ 1

4ε2

∫
Bσ (a∗

j )

(
∣∣Q∗

ε

∣∣2 − 1)2 dx

− Cσ

(
1

ε2

∫
�

(
∣∣Q∗

ε

∣∣− 1)2 dx

)1/2

.
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The constant C here depends only on β. Finally, Lemma 4.3 implies

1

ε2

∫
�

(
∣∣Q∗

ε

∣∣− 1)2 dx ≤ 1

ε2

∫
�

(
∣∣Q∗

ε

∣∣2 − 1)2 dx ≤ C,

and hence,

1

ε2

∫
Bσ (a∗

j )

fε(Q∗
ε , M

∗
ε ) dx ≥ 1

4ε2

∫
Bσ (a∗

j )

(
∣∣Q∗

ε

∣∣2 − 1)2 dx − Cσ (4.79)

Combining (4.78) with (4.79), the lemma follows. 
�
We can now complete the proof of Proposition 4.14.

Proof of Proposition 4.14. Let σ > 0 be small enough that the balls Bσ (a∗
j ),

Bσ (b∗
k ) are pairwise disjoint. We define

�σ := � \
⎛
⎝2|d|⋃

j=1

B̄σ (a∗
j ) ∪

K⋃
k=1

B̄σ (b∗
k )

⎞
⎠ .

We construct open sets G1, …, GN with the following properties:

i. the sets Gi are pairwise disjoint;
ii. their closures, Gi , cover all of �σ ;
iii. each G j is simply connected;
iv. H1(SM∗ ∩ ∂Gi ∩ �σ ) = 0 for any j .

For instance, we can partition�σ by considering a grid, consisting of finitely many
vertical and horizontal lines. SinceH1(SM∗) < +∞ by Proposition 4.11, we have

H1 (SM∗ ∩ ({c} × R)) = H1 (SM∗ ∩ (R × {d})) = 0 (4.80)

for all but countably many values of c ∈ R, d ∈ R. We choose numbers

c0 < c1 < . . . < cN1 , d0 < d1 < . . . < dN2

that satisfy (4.80) in such away that� ⊆ (c0, cN1)×(d0, dN2). For a suitable choice
of ch , d�, we can make sure that no ball Bσ (a∗

j ) or Bσ (b∗
k ) is entirely contained in a

rectangle of the form (ch, ch+1) × (d�, d�+1), and that any rectangle (ch, ch+1) ×
(d�, d�+1) intersects at most one of the balls. Then, the sets

Gh,� := ((ch, ch+1) × (d�, d�+1)) ∩ �σ

are all simply connected and satisfy the properties (i)–(iv) above. We relabel
the Gh,�’s as Gi .

We apply Lemma 4.17 on each Gi , then sum over all the indices i . We obtain

Fε(Q∗
ε , M

∗
ε ; �σ ) ≥ 1

2

∫
�σ

∣∣∇Q∗∣∣2 dx +
∫

�σ

(ξ∗ − κ∗)2 dx

+ cβ H1(SM∗ ∩ �σ ) + oε→0(1).

(4.81)
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On the other hand, Lemma 4.18 implies

Fε(Q∗
ε , M

∗
ε ; Bσ (a∗

j )) − π |log ε| ≥ −π |log σ | + γ∗ − Cσ + oε→0(1) (4.82)

for any j ∈ {1, . . . , 2 |d|}. Combining (4.81) with (4.82), we obtain

Fε(Q∗
ε , M

∗
ε ) − 2π |d| |log ε| ≥ 1

2

∫
�σ

∣∣∇Q∗∣∣2 dx − 2π |d| |log σ | + 2 |d| γ∗

+ cβ H1(SM∗ ∩ �σ ) +
∫

�σ

(ξ∗ − κ∗)2 dx + oε→0(1) + oσ→0(1).

(4.83)
ByProposition 4.9,Q∗ is the canonical harmonicmapwith singularities at (a∗

1 , . . . ,

a∗
2|d|) and boundary datum Qbd. Then, we can write the right-hand side of (4.83)
in terms of the renormalised energy, W, defined in (2.14). First, we observe that

1

2

∫
⋃K

k=1 Bσ (b∗
k )

∣∣∇Q∗∣∣2 dx → 0 as σ → 0, (4.84)

becauseQ∗ ∈ W 1,2
loc (�\{a∗

1 , . . . , a∗
2|d|}, S2×2

0 ). Then, from(4.83), (4.84) and (2.14)
we deduce that

Fε(Q∗
ε , M

∗
ε ) − 2π |d| |log ε| ≥ W(a∗

1 , . . . , a∗
2|d|) + 2 |d| γ∗

+ cβ H1(SM∗ ∩ �σ ) +
∫

�σ

(ξ∗ − κ∗)2 dx + oε→0(1) + oσ→0(1).
(4.85)

Now we pass to the limit in both sides of (4.85), first as ε → 0, then as σ → 0.
The proposition follows. 
�
4.4.2. Sharp Upper Bounds In this section we will prove an upper bound for
the energy of minimizers; namely,

Proposition 4.19. Let a1, . . . , a2|d| be distinct points in �. Then, there exist
maps Qε ∈ W 1,2(�, S2×2

0 ), Mε ∈ W 1,2(�, R2) that satisfy the boundary condi-
tion (2.3) and

Fε(Qε, Mε) ≤ 2π |d| |log ε| +Wβ(a1, · · · , a2|d|) + 2 |d| γ∗ + oε→0(1), (4.86)

where Wβ and γ∗ are as in (4.63), (4.64) respectively.

The proof of Proposition 4.19 is based on a rather explicit construction. For the
component Qε, we follow classical arguments from the Ginzburg–Landau litera-
ture (see e.g. [1,11]), with minor modifications. For the component Mε, we first
construct a vector field M̃ε : � → R

2 of constant norm, such that M̃ε(x) is an
eigenvector of Qε(x) at each point x ∈ �. As Qε has non-orientable singularities
at the points a j , there is no smooth vector field M̃ε with this property. However,
we can construct a BV-vector field M̃ε, which jumps along finitely many line
segments that join the points a j along a minimal connection (see Appendix A).
Then, we defineMε by regularising M̃ε in a small neighbourhood of the jump set.
The regularisation procedure is reminiscent of the optimal profile problem for the
Modica-Mortola functional [42].
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Proof of Proposition 4.19. We follow the argument of [1], Theorem 5.3. Let σ > 0
be such that Bσ (ai ) are disjoints and contained in� and set�σ := �\⋃2|d|

i=1 Bσ (ai ).
First, we minimize the functional

(Q, R1, . . . ,R2|d|) 	→ 1

2

∫
�σ

|∇Q|2 dx (4.87)

over all maps Q ∈ H1(�σ , N ) and all rotation matrices Ri ∈ SO(2) such that
Q = Qbd on ∂� and

Q(x) = √
2

(
(Ri (x − ai )) ⊗ (Ri (x − ai ))

σ 2 − I
2

)
for x ∈ ∂Bσ (ai ).

We denote by m(σ ) the minimum value and by P̃1, R̃i the minimisers of this
functional.Next,weminimise theGinzburg–Landau energy, on aball Bσ of radiusσ
centered at the origin,

GLε(Q, Bσ ) :=
∫
Bσ

(1
2
|∇Q|2 + 1

4ε2
(1 − |Q|2)2

)
dx (4.88)

among all the maps Q ∈ H1(Bσ , S2×2
0 ) such that

Q(x) = √
2

(
x ⊗ x

σ 2 − I
2

)
for x ∈ ∂Bσ .

We denote by γ (ε, σ ) the minimum value and by P̃2 the minimiser of this func-
tional.

We define a map Q̃ε ∈ H1(�, S2×2
0 ) as

Q̃ε(x) :=
{
P̃1(x) if x ∈ �σ

R̃i P̃2(x − ai )R̃T
i if x ∈ Bσ (ai ).

This map satisfies Q̃ε = Qbd on ∂�, |Q̃ε| ≤ 1 in �, |Q̃ε| = 1 in �σ . Moreover,
thanks to [11, Theorem I.9 and Section III.1], we have∫

�

(1
2
|∇Q̃ε|2 + 1

4ε2
(1 − |Q̃ε|2)2

)
dx

= m(σ ) + 2 |d| γ (σ, ε)

= m(σ ) + 2 |d| γ∗ − 2 |d| π log
ε

σ
+ o ε

σ
→0(1)

= W(a1, · · · , a2|d|) − 2π |d| log σ + 2 |d| γ∗ − 2 |d| π log
ε

σ
+ oσ→0(1)

+ o ε
σ

→0(1)

= W(a1, · · · , a2|d|) + 2 |d| γ∗ + 2 |d| π log |ε| + oσ→0(1) + o ε
σ

→0(1).

We will choose σ = σε in such a way that

σε → 0,
ε

σε

→ 0.
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Define Qε := (1 + εκ∗)Q̃ε on �. Then, |Qε| = 1 + εκ∗ on �σε = �\⋃2|d|
j=1

Bσε (a j ). Moreover, we have
∣∣∣∣
∫

�

|∇Q̃ε|2 − |∇Qε|2
∣∣∣∣ � κ∗ε

∫
�

|∇Q̃ε|2 � ε |log ε| . (4.89)

On the other hand, for the Ginzburg–Landau potential we have

1

4ε2

∣∣∣∣∣
∫
⋃2|d|

j=1 Bσε (a j )

(
1 − |Q̃ε|2

)2 −
∫
⋃2|d|

j=1 Bσε (a j )

(
1 − |Qε|2

)2∣∣∣∣∣

= 1

4ε2

∣∣∣∣∣
∫
⋃2|d|

j=1 Bσε (a j )

(
2(1 + εκ∗)2 − 2

)
|Q̃ε|2 −

(
(1 + εκ∗)4 − 1

)
|Q̃ε|4

∣∣∣∣∣ = O(ε),

since, by construction, |Q̃ε| ≤ 1. In conclusion, we have

1

2

∫
�

|∇Qε|2 dx + 1

4ε2

∫
⋃2|d|

j=1 Bσε (a j )

(1 − |Qε|2)2 dx

= W(a1, · · · , a2|d|) + 2 |d| γ∗ + 2 |d| π |log ε| + oε→0(1).

(4.90)

We will estimate the contribution of the potential on �σε later on.
We construct the component Mε. Using the results of Appendix A, we find

a minimal connection L1, · · · , L |d| for a1, · · · , a2|d| with Li pairwise disjoint
(see Lemma A.2). By reasoning as in Lemma A.3, we define a lifting M̃ε ∈
SBV(�σε , R

2) of Q̃ε—that is, a vector field M̃ε : �σε → R
2 such that |M̃ε| =

(
√
2β + 1)

1
2 and

Q̃ε = √
2

(
M̃ε ⊗ M̃ε√
2β + 1

− I
2

)
, (4.91)

which, in addition, satisfies SM̃ε
= (

⋃|d|
i=1 Li ) ∩ �σε , up to negligible sets. By the

same arguments as in the proof of Proposition 4.2, we can assume with no loss of
generality that M̃ε = Mbd on ∂�. In order to define our competitorMε, we need to
regularise M̃ε near its jump set. We will do this by considering a Modica-Mortola
optimal profile problem. Define u : [0,∞] → R as a minimiser for the following
variational problem:

min

{∫ +∞

0

(1
2
u′2 + 1

2
H2(u)

)
dt : u : [0, +∞) → R,

u(0) = 0, u(+∞) = (
√
2β + 1)

1
2

}
. (4.92)

Here H(u) := √
2 h(u, 0) = 1√

2
|√2β + 1 − u2|. A minimiser for (4.92) exists,

by the direct method of the calculus of variations. The Euler-Lagrange equation
for (4.92) reads as

−u′u′′ + 1

2
(H2)′(u) = 0.
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This can be rewritten as

− d

dt

(
u′2

2

)
+ 1

2

d

dt
(H2(u)) = 0;

that is,
−u′2 + H2(u) = constant = 0, (4.93)

due to the conditions at infinity. We can compute the integral in (4.92) as

∫ +∞

0

(1
2
u′2+1

2
H(u)

)
dt

(4.93)=
∫ +∞

0
u′H(u) dt =

∫ (
√
2β+1)1/2

0
H(u) du = 1

2
cβ,

(4.94)
where cβ is given by (4.62) (see Lemma 4.16).

We define the competitor Mε in �σε by a suitable regularisation of M̃ε in a
neighbourhood of each singular line segment L j . To simplify the notation, we focus
on L1 and we assume without loss of generality, up to rotations and translations,
that L1 = [0, a] × {0} for some a > 0. We assume that ε is small enough, so that

σε � a
4 . Let Aε := [0, a] × [−σε, σε]\

(
Bσε (0, 0)

⋃
Bσε (a, 0)

)
. We define

Mε(x) :=

⎧⎪⎪⎨
⎪⎪⎩
u
( |x2|

ε

)

u
(

σε

ε

) M̃ε(x), in A1
ε (and similarly in each A j

ε )

M̃ε(x), on �σε \⋃2|d|
j=1 A

j
ε .

(4.95)

For ε small enough, we have Mε = M̃ε = Mbd on ∂�. In �σε\
⋃2|d|

j=1 A
j
ε , we

have |∇Mε|2 � |∇M̃ε|2. The latter can be estimated by differentiating both sides
of (4.91), by the BV-chain rule; this gives ‖∇M̃ε‖2L2(�σε )

� ‖∇Q̃ε‖2L2(�σε )
�

|log ε|. Let

ηε :=
√
2β + 1

u
(

σε

ε

)2 .

We observe that ηε → 1 as ε → 0, due to the condition at infinity in (4.92). We
have in A1

ε that

ε

2
|∇Mε|2 = ηε

2

∣∣∣∣u′
( |x2|

ε

)∣∣∣∣
2

+ O(ε|∇M̃ε|2),

and therefore,

ε

2

∫
A1

ε

|∇Mε|2dx ≤ O(ε| log ε|) + ηε

2

∫
A1

ε

∣∣∣∣u′
( |x2|

ε

)∣∣∣∣
2

dx + O(ε‖∇M̃ε‖2L2(�σε )
)

= O(ε| log ε|) + ηε

2
H1(L1) ·

∫ σε

−σε

∣∣∣∣u′
( |x2|

ε

)∣∣∣∣
2

dx2

= O(ε| log ε|) + ηε H1(L1) ·
∫ σε

ε

0

∣∣u′(t)
∣∣2 dt.
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By repeating this argument on each A j
ε , we deduce that

ε

2

∫
�σε

|∇Mε|2dx ≤ O(ε| log ε|) + ηε L(a1, . . . , a2|d|) ·
∫ σε

ε

0

∣∣u′(t)
∣∣2 dt.

(4.96)

Next,we estimate the potential term.On�σε\
⋃|d|

j=1 A
j
ε ,wehave |Qε| = 1+κ∗ε

and |Mε| = (
√
2β + 1)

1
2 . The identity (4.91) can be written as

Qε

1 + κ∗ε
= √

2

(
Mε ⊗ Mε√
2β + 1

− I
2

)
,

which implies

QεMε · Mε = √
2(1 + κ∗ε)

( |Mε|4√
2β + 1

− 1

2
|Mε|2

)
=

√
2

2
(1 + κ∗ε)(

√
2β + 1).

In conclusion, at each point of �σε\
⋃|d|

j=1 A
j
ε we have

fε(Qε,Mε) = 1

4
(2κ∗ε + κ2∗ε2)2 + εβ2

2
− βε√

2
(1 + κ∗ε)(

√
2β + 1) + κε

= oε→0(ε
2),

(4.97)
by taking Lemma 3.1 into account. Therefore, the total contribution from the po-
tential on �σε\

⋃|d|
j=1 A

j
ε is negligible. Let us compute the potential on A j

ε . Con-
sidering, for simplicity, the case j = 1, again we have |Qε| = 1 + κ∗ε, but

|Mε(x)| = η1/2ε u

( |x2|
ε

)
.

Then, (4.91) can be written as

Qε = √
2(1 + κ∗ε)

(
Mε ⊗ Mε

|Mε|2 − I
2

)
,

which implies

QεMε · Mε =
√
2

2
(1 + κ∗ε) ηε u

2
( |x2|

ε

)
.
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At a generic point x ∈ A1
ε , we have (writing vε := η

1/2
ε u(|x2|/ε) for simplicity)

fε(Qε,Mε) = κ∗ε2

4
(2 + κ∗ε)2 + ε

4
(1 − v2ε ) − βε

√
2

2
(1 + κ∗ε)v2ε

+ 1

2
(β2 + √

2β)ε + κ2∗ε2 + o(ε2)

= 2κ2∗ε2 + ε

4
(1 − v2ε )

2 − βε√
2
v2ε − κ∗βε2√

2
v2ε + 1

2
(β2 + √

2β)ε + o(ε2)

= O(ε2) + ε

(
h(vε, 0) − β2 + √

2β

2

)
+ 1

2
(β2 + √

2β)ε

= O(ε2) + εh(vε, 0)

= O(ε2) + ε

2
H2(vε).

By repeating this argument on each A j
ε , and taking the integral over A

j
ε , we obtain

1

ε2

∫
⋃|d|

j=1 A j
ε

fε(Qε,Mε) dx =
∫
⋃|d|

j=1 A j
ε

O(1) + 1

2ε
H2

(
η1/2ε u

( |x2|
ε

))
dx

= O(σε) + 1

2ε

|d|∑
j=1

∫
A j

ε

H2
(

η1/2ε u

( |x2|
ε

))
dx

= oε→0(1) + L(a1, · · · , a2|d|) ·
∫ σε

ε

0
H2(η1/2ε u(t)) dt.

(4.98)
By combining (4.90), (4.96), (4.97) and (4.98), keeping in mind that ηε → 1,
σε/ε → +∞ as ε → 0, and applying Lebesgue’s dominated convergence theorem,
we obtain

Fε(Qε,Mε;� \
2|d|⋃
j=1

Bσε (a j ))

≤ oε→0(1) + L(a1, · · · , a2d)
∫ +∞

0

(
u′2(t) + H2(u(t))

)
dt

+ 2π |d| |log ε| + W(a1, · · · , a2|d|) + 2 |d| γ∗
(4.94)= 2π |d| |log ε| + Wβ(a1, · · · , a2|d|) + 2 |d| γ∗ + oε→0(1).

(4.99)

It only remains to defineMε in each ball Bσε (a j ). For each j , there exists ρ =
ρ( j) ∈ (σε, 2σε) such that
∫

∂Bρ(a j )

|∇Mε|2 dH1 ≤ 1

σε

∫
B2σε (a j )\Bσε (a j )

|∇Mε|2 dx = O

( |log ε|
σε

)
+ O(

1

ε
).

Define Mε on Bρ(a j ) as

Mε(x) := |x − a j |
ρ

Mε

(
ρ(x − a j )

|x − a j |
)

. (4.100)
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The vector field Mε was already defined in Bρ(a j ) \ Bσε (a j ), but we disregard its
previous values and re-define it according to (4.100). We have

ε

∫
Bρ(a j )

|∇Mε|2 dx ≤ σε

∫
∂Bρ(a j )

ε|∇Mε|2 dH1 + ε

∫
Bρ(a j )

O

(
1

ρ2

)
dx

≤ O(ε| log ε|) + O(σε) + O(ε) → 0
(4.101)

and

1

ε2

∫
Bρ(a j )

(
fε(Qε,Mε) − 1

4
(1 − |Qε|2)2

)
dx = O

(
σ 2

ε

ε

)
. (4.102)

If we choose ε � σε � ε
1
2 , then the total contribution ofMε to the energy on each

ball Bρ(a j ) tends to zero as ε → 0. 
�
Remark 4.2. The proof of Proposition 4.19 carries over, with no essential modifica-
tions, to the casewe imposeDirichlet boundary conditions for theQ-component and
Neumann boundary conditions for theM-component, as described in Remark 2.1.
Indeed, while the structure of the (orientable) boundary datum for Q is important
to the analysis, the boundary condition forM does not play a crucial role; the cou-
pling between Q and M is determined by the potential fε and not the boundary
conditions.

We can now complete the proof of our main result, Theorem 2.1.

Conclusion of the proof of Theorem 2.1, proof of Proposition 4.13. FromProposi-
tion 4.14 and Proposition 4.19, we deduce that

W(a∗
1 , . . . , a∗

2|d|) + cβ H1(SM∗) +
∫

�

(ξ∗ − κ∗)2 dx + 2 |d| γ∗

≤ lim inf
ε→0

(
Fε(Q∗

ε , M
∗
ε ) − 2π |d| |log ε| )

≤ lim sup
ε→0

(
Fε(Q∗

ε , M
∗
ε ) − 2π |d| |log ε| )

≤ W(a1, . . . , a2|d|) + cβ L(a1, . . . , a2|d|) + 2 |d| γ∗

(4.103)

for any (2 |d|)-uple of distinct points a1,…, a2|d| in�. In particular, choosing a j =
a∗
j , we obtain

H1(SM∗) = L(a∗
1 , . . . , a∗

2|d|), ξ∗ = κ∗, (4.104)

and Proposition (4.13) follows. Moreover, Proposition 4.15 and (4.104) imply that
the jumpset SM∗ coincides (up tonegligible sets)with∪|d|

j=1L j ,where (L1, . . . , L |d|)
is a minimal connection for (a1, . . . , a2|d|). Finally, from (4.103) and (4.104) we
deduce that

Wβ(a∗
1 , . . . , a∗

2|d|) ≤ Wβ(a1, . . . , a2|d|) (4.105)

for any (2 |d|)-uple of distinct points a1, …, a2|d| in �—that is, (a∗
1 , . . . , a∗

2|d|)
minimises Wβ . 
�
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5. Numerics

In this section, we numerically compute some stable critical points of the fer-
ronematic free energy, on square domains with topologically non-trivial Dirichlet
boundary conditions for Q andM. These numerical results do not directly support
our main results on global energy minimizers of (2.1) in the ε → 0 limit, since the
numerically computed critical points need not be global energy minimizers, and
we expect multiple local and global energy minimizers of (2.1) for ε > 0.

Instead of solving the Euler-Lagrange equations directly, we solve an L2-
gradient flow associated with the effective re-scaled free energy for ferronematics
(2.1), given by

d

dt
Fε(Q,M) = −

∫
�

(η1|∂tQ|2 + η2|∂tM|2)dx. (5.1)

Here η1 > 0 and η2 > 0 are arbitrary friction coefficients. Due to limited physical
data, we do not comment on physically relevant values of ε,β and the friction coeffi-
cients. The system of L2-gradient flow equations for Q11, Q12 and the components,
M1, M2 of the magnetisation vector, can be written as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2η1 ∂t Q11 = 2	Q11 − 1
ε2

(4Q11(Q2
11 + Q2

12 − 1/2) − βε(M2
1 − M2

2 ))

2η1 ∂t Q12 = 2	Q12 − 1
ε2

(4Q12(Q2
11 + Q2

12 − 1/2) − 2βεM1M2)

η2 ∂t M1 = ε	M1 − 1
ε2

(ε(M2
1 + M2

2 − 1)M1 − βε(2Q11M1 + 2Q12M2))

η2 ∂t M2 = −ε	M2 − 1
ε2

(ε(M2
1 + M2

2 −1)M2 − βε(−2Q11M2+2Q12M1)).

(5.2)
The stationary time-independent or equilibrium solutions of the L2-gradient flow
satisfy the original Euler-Lagrange equations of (2.1). For non-convex free energies
as in (2.1), there are multiple critical points, with many of them being unstable
saddle points [47]. One can efficiently compute stable critical points of such free
energies by considering an L2-gradient flow associated with the non-convex free
energies and these gradient flows converge to a stable critical point, for a given initial
condition, thus avoiding the unstable saddle points. From a numerical standpoint,
the L2-gradient flowcanbemore straightforward to solve than thenonlinear coupled
Euler-Lagrange equations, primarily due to the inclusion of time relaxation in the
L2-gradient flow.

In the follow simulations that, we take η1 = 1 and η2 = ε and do not of-
fer rigorous justifications for these choices, except as numerical experiments to
qualitatively support out theoretical results. We impose the continuous degree +k
boundary condition

Mb = (
√
2β + 1)1/2(cos kθ, sin kθ), Qb = √

2

( 1
2 cos 2kθ

1
2 sin 2kθ

1
2 sin 2kθ

1
2 cos 2kθ

)
, (5.3)

where
θ(x, y) = atan2 (y − 0.5, x − 0.5) − π/2, (x, y) ∈ ∂�, (5.4)

and atan2(y, x) is the 2-argument arctangent that computes the principal value of the
argument function applied to the complex number x + iy. So −π ≤ atan2(y, x) ≤
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Fig. 1. Numerical results for the gradient flows (5.2) with a β = 1, ε = 0.05 at t = 0.02,
0.05 and 1 and b β = 1, ε = 0.02 at t = 0.02, 0.05 and 1 (Continuous degree +1 boundary
condition, h = 1/50, τ = 1/1000). In each sub-figure, the nematic configuration is shown in
the left panel, where the white bars represent nematic field n (the eigenvector ofQ associated
with the largest eigenvalue) and the color represents trQ2 = 2(Q2

11 + Q2
12); the M-profile

is shown in the right panel, where the white bars represent magnetic field M and the color
bar represents |M|2 = M2

1 + M2
2

π . For example, if x > 0, then atan2(y, x) = arctan
( y
x

)
. The initial condition is

prescribed to be

M0=(
√
2β+1)1/2(cos kθ, sin kθ), Q0=√

2

( 1
2 cos 2kθ

1
2 sin 2kθ

1
2 sin 2kθ

1
2 cos 2kθ,

)
, (5.5)

where

θ(x, y) = atan2 (y − 0.5, x − 0.5) − π/2, (x, y) ∈ (0, 1)2. (5.6)

We solve the L2-gradient flow equation using standard central finite difference
methods [33]. For the temporal discretization, we employ a second-order Crank-
Nicolson method [33]. The grid size and temporal step size are denoted by h and
τ , respectively. In all our computations, we set h = 1/50 and τ = 1/1000.

In Fig. 1, we plot the dynamical evolution of the solutions of the gradient flow
equations, for k = 1 boundary conditions, with the initial condition (5.5). The
time-dependent solutions converge for t ≥ 1, and we treat the numerical solution
at t = 1 to the converged equilibrium state. We cannot conclusively argue that the
converged solution is an energy minimizer but it is locally stable, the converged
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Fig. 2. Numerical results for the gradient flows (5.2) with a β = 1, ε = 0.05 at t = 0.02,
0.05 and 1 and b β = 1, ε = 0.02 at t = 0.02, 0.05 and 1 (Continuous degree +2 boundary
condition, h = 1/50, τ = 1/1000). In each sub-figure, the nematic configuration is shown in
the left panel, where the white bars represent nematic field n (the eigenvector ofQ associated
with the largest eigenvalue) and the color represents trQ2 = 2(Q2

11 + Q2
12); the magnetic

configuration is shown in the right panel, where the white bars represent magnetic field M
and the color represents |M|2 = M2

1 + M2
2

Q-profile has two non-orientable defects and the corresponding M-profile has a
jump set composed of a straight line connecting the nematic defect pair, consistent
with our theoretical results on global energy minimizers. We consider two different
values of ε and it is clear that theQ-defects and the jump set inM become more lo-
calised as ε becomes smaller, as expected from the theoretical- results.We have also
investigated the effects of β on the converged solutions—the defects become closer
as β increases. This is expected, since the cost of the minimal connection between
the nematic defects increases as β increases, and hence the shorter connections
require the defects to be closer to each other (at least in a pairwise sense).

In Fig. 2, we plot the dynamical evolution of the solutions of the gradient flow
equations, for k = 2 boundary conditions, with the initial condition (5.5), and we
treat the numerical solution at t = 1 to be the converged equilibrium state. Again,
the converged solution is locally stable, the Q-profile has four non-orientable de-
fects,theM-profile has twodistinct jump sets connecting twopairs of non-orientable
nematic defects, and the jump sets are indeed approximately straight lines. Smaller
values of ε correspond to the sharp interface limit which induces more localised
defects for Q, straighter line defects forM and larger values of β push the defects
closer together, all in qualitative agreement with our theoretical results.
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Theorem 2.1 is restricted to global minimizers of (2.1) in the ε → 0 limit,
but the numerical illustrations in Figs. 1 and 2 suggest that Theorem 2.1 may also
partially apply to local energy minimizers of (2.1). In other words, locally energy
minimizing pairs, (Qε,Mε), may also converge to a pair (Q∗,M∗), for which
Q∗ is a canonical harmonic map with non-orientable point defects and M∗ has a
jump set connecting the non-orientable point defects of Q∗, with the location of
the defects being prescribed by the critical point(s) of the normalization energy in
Theorem 2.1. The numerical illustrations in Figs. 1 and 2 cannot be directly related
to Theorem 2.1, since we have only considered two small and non-zero values of ε

and for a fixedβ > 0, theremaybemultiple local and global energyminimizerswith
different jump sets in M i.e. different choices of the minimal connection of equal
length, or different connections of different lengths between the nematic defect
pairs. For example, it is conceivable that a locally stable M-profile also connects
the nematic defects by means of straight lines, but this connection is not minimal.
There may also be non energy-minimising critical points with orientable point
defects inM tailored by the non-orientable nematic defects. Similarly, there may be
non energy-minimising critical points with non-orientable and orientable nematic
defects, whose locations are not minimisers but critical points of the modified
renormalised energy in Theorem 2.1. We defer these interesting questions to future
work.

6. Conclusions

We study a simplified model for ferronematics in two-dimensional domains,
with Dirichlet boundary conditions, building on previous work in [14]. The model
is only valid for dilute ferronematic suspensions and we do not expect quantita-
tive agreement with experiments. Further, the experimentally relevant choices for
the boundary conditions for M are not well established and our methods can be
adapted to other choices of boundary conditions e.g. Neumann conditions for the
magnetisation vector. Similarly, it is not clear if topologically non-trivial Dirich-
let conditions can be imposed on the nematic directors, for physically relevant
experimental scenarios. Having said that, our model problem is a fascinating math-
ematical problem because of the tremendous complexity of ferronematic solution
landscapes, the multiplicity of the energy minimizers and non energy-minimizing
critical points, and the multitude of admissible coupled defect profiles for the ne-
matic and magnetic profiles. There are several forward research directions, some
of which could facilitate experimental observations of the theoretically predicted
morphologies in this manuscript. For example, one could study the experimentally
relevant generalisation of our model problem with Dirichlet conditions for Q and
Neumann conditions forM, or study different asymptotic limits of the ferronematic
free energy in (1.1), a prime candidate being the ε → 0 limit for fixed ξ and c0
(independent of ε). This limit, although relevant for dilute suspensions, would sig-
nificantly change the vacuum manifold N in the ε → 0 limit. In fact, we expect
to observe stable point defects in the energy-minimizing M-profiles for this limit,
where ξ and c0 are independent of ε, as ε → 0. Further, there is the interesting
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question of how this ferronematic model can be generalised to non-dilute suspen-
sions or to propose a catalogue of magneto-nematic coupling energies for different
kinds of MNP-MNP interactions and MNP-NLC interactions. The physics of fer-
ronematics is complex, and it is challenging to translate the physics to tractable
mathematical problems with multiple order parameters, and we hope that our work
is solid progress in this direction with bright interdisciplinary prospects.
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A. Lifting of a Map with Non-orientable Singularities

The aim of this section is to prove Proposition 4.15.We reformulate the problem
in a slightly more general setting.

Let a ∈ R
2, and let Q ∈ W 1,2

loc (R2\{a}, N ). By Fubini theorem and Sobolev
embedding, the restriction ofQ on the circle ∂Bρ(a) is well-defined and continuous
for a.e. ρ > 0. Therefore, it makes sense to define the topological degree of Q
on ∂Bρ(a) as an half-integer, deg(Q, a) ∈ 1

2Z. As the notation suggests, the degree
is independent of the choice of ρ: for a.e. 0 < ρ1 < ρ2, the degrees ofQ on ∂Bρ1(a)

and ∂Bρ2(a) are the same. If Q is smooth, this is a consequence of the homotopy
lifting property; for more general Q ∈ W 1,2

loc (R2\{a}, N ), this follows from an
approximation argument (based on [44, Proposition p. 267]). We will say that a is
a non-orientable singularity of Q if deg(Q, a) ∈ 1

2Z\Z.
Given an open set� ⊆ R

2, a mapQ : � → N and a unit vector fieldM : � →
S
1, we say that M is a lifting for Q if

Q(x) = √
2

(
M(x) ⊗ M(x) − I

2

)
for a.e. x ∈ �. (A.1)

Any map Q ∈ BV(�, N ) admits a lifting M ∈ BV(�, S1) (see e.g. [32]). The
vector field M∗ given by Theorem 2.1 is not a lifting of Q∗, according to the
definition above, because |M∗| �= 1. However, |M∗| is still a positive constant (see
Proposition 4.11), so we can construct a lifting of unit-norm simply by rescaling.

We focus on properties of the lifting forQ-tensors of a particular form, namely,
we assume that Q has an even number of non orientable singularities at distinct
points a1,…, a2d .We recall that a connection for {a1, . . . , a2d} as a finite collection
of straight line segments {L1, . . . , Ld}, with endpoints in {a1, . . . , a2d}, such that
each ai is an endpoint of one of the segments L j . We recall that

L(a1, . . . , a2d)

:= min

{
d∑

i=1

H1(Li ) : {L1, . . . , Ld} is a connection for {a1, . . . , a2d}
}

.

(A.2)

A minimal connection for {a1, . . . , a2d} is a connection that attains the minimum
in the right-hand side of (A.2). Given two sets A, B, we denote their symmetric
difference as A	B := (A\B) ∪ (B\A).

Proposition A.1. Let � ⊆ R
2 be a bounded, convex domain, let d ≥ 1 be an

integer, and let a1, …, a2d be distinct points in �. Let Q ∈ W 1,1(�, N ) ∩
W 1,2

loc (�\{a1, . . . , a2d}, N ) be a map with a non-orientable singularity at each a j .
IfM ∈ SBV(�, S1) is a lifting for Q such that SM ⊂⊂ �, then

H1(SM) ≥ L(a1, . . . , a2d).

The equality holds if and only if there exists a minimal connection {L1, . . . , Ld}
for {a1, . . . , ad} such that H1(SM	 ∪d

j=1 L j ) = 0.



Arch. Rational Mech. Anal. (2023) 247:110 Page 47 of 61 110

Proposition 4.15 is an immediate consequence of Proposition A.1. The proof
of Proposition A.1 is based on classical results in Geometric Measure Theory, but
we provide it in full detail for the reader’s convenience. Before we prove Proposi-
tion A.1, we state a few preliminary results.

Lemma A.2. If {L1, . . . , Ld} is a minimal connection for {a1, . . . , a2d}, then
the L j ’s are pairwise disjoint.

Proof. Suppose, towards a contradiction, that {L1, . . . , Ld} is a minimal con-
nection with L1 ∩ L2 �= ∅. The intersection L1 ∩ L2 must be either a non-
degenerate sub-segment of both L1 and L2 or a point. If L1∩ L2 is non-degenerate,
then (L1 ∪ L2) \ (L1 ∩ L2) can be written as the disjoint union of two straight line
segments, K1 and K2, and

H1(K1) + H1(K2) = H1((L1 ∪ L2) \ (L1 ∩ L2)) < H1(L1) + H1(L2).

This contradicts the minimality of {L1, . . . , Ld}. Now, suppose that L1 ∩ L2 is a
point. By the pigeon-hole principle, L1 ∩ L2 cannot be an endpoint for either L1
or L2. Say, for instance, that L1 is the segment of endpoints a1, a2, while L2 is the
segment of endpoints a3, a4. Let H1, H2 be the segments of endpoints (a1, a3),
(a2, a4) respectively. Then, by the triangular inequality,

H1(H1) + H1(H2) < H1(L1) + H1(L2),

which again contradicts the minimality of {L1, . . . , Ld}. 
�
Lemma A.3. Let � ⊆ R

2 be a bounded, convex domain and let a1, …, a2d be
distinct points in �. Let Q ∈ W 1,1(�, N ) ∩ W 1,2

loc (�\{a1, . . . , a2d}, N ) be a
map with a non-orientable singularity at each a j . If {L1, . . . , Ld} is a minimal
connection for {a1, . . . , a2d}, then there exists a lifting M∗ ∈ SBV(�, S1) such
that H1(SM∗	 ∪d

j=1 L j ) = 0.

Proof. For any ρ > 0 and j ∈ {1, . . . , d}, we define
Uj,ρ :=

{
x ∈ R

2 : dist(x, L j ) < ρ
}
.

and

�ρ := � \
d⋃
j=1

Uj,ρ .

Since � is convex, L j ⊆ � for any j and hence, Uj,ρ ⊆ � for any j and ρ

small enough. Each Uj ρ is a simply connected domain with piecewise smooth
boundary. Moreover, for ρ fixed and small, the sets Uj,ρ are pairwise disjoint,
because the L j ’s are pairwise disjoint (Lemma A.2). The trace of Q on ∂Uj,ρ is
orientable, because ∂Uj,ρ contains exactly two non-orientable singularities of Q.
Then, for any ρ > 0 small enough, Q|�ρ has a lifting M∗

ρ ∈ W 1,2(�ρ, S1) [8,
Proposition 7]. In fact, the lifting is unique up to the choice of the sign [8, Propo-
sition 2]; in particular, if 0 < ρ1 < ρ2 then we have eitherM∗

ρ2
= M∗

ρ1
a.e. in �ρ2
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orM∗
ρ2

= −M∗
ρ1

a.e. in �ρ2 . As a consequence, for any sequence ρk ↘ 0, we can
choose liftings M∗

ρk
∈ W 1,2(�ρk , S

1) of Q∗|�ρk
in such a way that M∗

ρk+1
= M∗

ρk

a.e. in �ρk . By glueing the M∗
ρk
’s, we obtain a lifting

M∗ ∈ W 1,2
loc (� \ ∪ j L j , S

1)

of Q. By differentiating the identity (A.1), we obtain
√
2 |∇M∗| = |∇Q| a.e. and,

since∇Q ∈ L1(�, R2⊗R
2×2)byassumption,wededuce that soM∗ ∈ W 1,1(�\∪ j

L j , S
1). The set ∪ j L j has finite length andM∗ is bounded, so we also haveM∗ ∈

SBV(�, S1) (see [3, Proposition 4.4]).
By construction, we have SM∗ ⊆ ∪ j L j . Therefore, it only remains to prove that

SM∗ contains H1-almost all of ∪ j L j . Consider, for instance, the segment L1; up
to a rotation and traslation, we can assume that L1 = [0, b] × {0} for some b > 0.
Given a small parameter ρ > 0 and t ∈ (0, b), we define Kρ,t := (−ρ, t) ×
(−ρ, ρ). Fubini theorem implies that, for a.e. ρ and t ,Q restricted to ∂Kρ,t belongs
to W 1,2(∂Kρ,t , N ) and hence, by Sobolev embedding, is continuous. Since the
segments L j are pairwise disjoint byLemmaA.2, forρ small enough there is exactly
one non-orientable singularity of Q inside Kρ,t . Therefore, Q is non-orientable
on ∂Kρ,t for a.e. t ∈ (0, b) and a.e. ρ > 0 small enough; in particular, there is no
continuous lifting of Q on ∂Kρ,t . Since M∗ is continuous on ∂Kρ,t\L1 for a.e. ρ
and t , we conclude that SM∗ contains H1-almost all of L1. 
�

Given a countably 1-rectifiable set � ⊆ R
2 and a H1-measurable unit vector

field τ : � → S
1, we say that τ is an orientation for � if τ (x) spans the (approxi-

mate) tangent line of� at x , forH1-a.e. x ∈ �. In case� is the jump set of an SBV-
map M, τ : SM → S

1 is an orientation for SM if and only if τ (x) · νM(x) = 0
for H1-a.e. x ∈ SM.

Lemma A.4. Let � ⊆ R
2 be a bounded, convex domain and let a1, …, a2d be

distinct points in �. Let Q ∈ W 1,1(�, N ) ∩ W 1,2
loc (�\{a1, . . . , a2d}, N ) be a

map with a non-orientable singularity at each a j . Let {L1, . . . , Ld} be a minimal
connection for {a1, . . . , a2d}. Up to relabelling, we assume that L j is the segment
of endpoints a2 j−1, a2 j , for any j ∈ {1, . . . , d}. LetM ∈ SBV(�, S1) be a lifting
for Q such that SM ⊂⊂ �. Then, there exist H1-measurable sets Tj ⊆ L j and an
orientation τM for SM such that, for any ϕ ∈ C∞

c (R2), if holds that

∫
SM

∇ϕ · τM dH1 =
d∑
j=1

(
ϕ(a2 j−1) − ϕ(a2 j )

)− 2
d∑
j=1

∫
Tj

∇ϕ · a2 j−1 − a2 j∣∣a2 j−1 − a2 j
∣∣ dH1.

Proof. Let M∗ ∈ SBV(�, S1) be the lifting of Q given by Lemma A.3. By con-
struction, SM∗ coincides with ∪ j L j ⊂⊂ � up toH1-negligible sets. Since we have
assumed that SM ⊂⊂ �, there exists a neighbourhood U ⊆ � of ∂� in � such
that M ∈ W 1,1(U, S1), M∗ ∈ W 1,1(U, S1). A map that belongs to W 1,1(U, N )

has at most two different liftings in W 1,1(U, S1), which differ only for the sign [8,
Proposition 2]. Therefore, since both M and M∗ are liftings of Q in U , we have
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that either M = M∗ a.e. in U or M = −M∗ a.e. in U . Changing the sign of M∗ if
necessary, we can assume thatM = −M∗ a.e. in U . Then, the set

A := {x ∈ � : M(x) · M∗(x) = 1}
is compactly contained in �.

The Leibnitz rule for BV-functions (see e.g. [3, Example 3.97]) implies thatM ·
M∗ ∈ SBV(�; {−1, 1}) As a consequence, A has finite perimeter in � (see e.g.
[3, Theorem 3.40]); since A ⊂⊂ �, A has also finite perimeter inR2. By the Gauss-
Green formula (see e.g. [3, Theorem 3.36, Eq. (3.47)]), for any ϕ ∈ C∞

c (R2) we
have

0 =
∫
A
curl∇ϕ =

∫
∂∗A

∇ϕ · τ A dH1, (A.3)

where ∂∗A is the reduced boundary of A and τ A is an orientation for ∂∗A. Up toH1-
negligible sets, ∂∗A coincides with SM·M∗ (see e.g. [3, Example 3.68 and Theo-
rem 3.61]). By the Leibnitz rule for BV-functions, SM·M∗ coincides with SM	SM∗
up toH1-negligible sets, so

H1
(
∂∗A	(SM	 ∪d

j=1 L j )
)

= 0. (A.4)

For any j ∈ {1, . . . , d}, let τ j := (a2 j−1 − a2 j )/|a2 j−1 − a2 j |. We define an
orientation τM for SM as τM := τ A on SM \ (∪ j L j ) (observing that, by (A.4),
H1-almost all of SM \ (∪ j L j ) is contained in ∂∗A) and τM := τ j on SM ∩ L j , for
any j . Then, (A.3) and (A.4) imply

∫
SM

∇ϕ · τM dH1 −
d∑
j=1

∫
L j

∇ϕ · τ j dH1

+
d∑
j=1

∫
L j\SM

(1 + τ A · τ j )∇ϕ · τ j dH1 = 0,

(A.5)

On H1-almost all of L j \ SM, both τ j and τ A are tangent to L j . Therefore, for
H1-a.e. x ∈ L j\SM we have τ A(x) · τ j (x) ∈ {−1, 1}. If we define Tj := {x ∈
L j\SM : τ A(x) · τ j (x) = 1}, then the lemma follows from (A.5). 
�

Lemma A.4 can be reformulated in terms of currents. We recall a few basic
definitions in the theory of currents, because they will be useful to complete the
proof of Proposition A.1. Actually, we will only work with currents of dimension 0
or 1. We refer to, e.g., [27,45] for more details.

A 0-dimensional current, or 0-current, in R2 is just a distribution on R2, i.e. an
element of the topological dual ofC∞

c (R2) (whereC∞
c (R2) is given a suitable topol-

ogy). A 1-dimensional current, or 1-current, in R2 is an element of the topological
dual of C∞

c (R2; (R2)′), where (R2)′ denotes the dual of R2 and C∞
c (R2; (R2)′)

is given a suitable topology, in much the same way as C∞
c (R2). In other words, a

1-dimensional current is an R2-valued distribution. The boundary of a 1-current T
is the 0-current ∂T defined by

〈∂T, ϕ〉 := 〈T, dϕ〉 for any ϕ ∈ C∞
c (R2).
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The mass of a 1-current T is defined as

M(T ) := sup
{
〈T, ω〉 : ω ∈ C∞

c (R2; (R2)′), |ω(x)| ≤ 1 for any x ∈ R
2
}
;

the mass of a 0-current is defined analogously.
We single out a particular subset of currents, called integer-multiplicity rectifi-

able currents or rectifiable currents for short. A rectifiable 0-current is a current of
the form

T =
p∑

k=1

nk δbk , (A.6)

where k ∈ N, nk ∈ Z and bk ∈ R
2. A rectifibiable 0-current has finite mass: for the

current T given by (A.6), we haveM(T ) = ∑p
k=1 |nk |. A 1-current is called recti-

fiable if there exist a countably 1-rectifiable set � ⊆ R
2 with H1(�) < +∞,

an orientation τ : � → S
1 for � and an integer-valued, H1-integrable func-

tion θ : � → Z such that

〈T, ω〉 =
∫

�

θ(x)〈τ (x), ω(x)〉 dH1(x) for any ω ∈ C∞
c (R2; (R2)′). (A.7)

The current T defined by (A.7) is called the rectifiable 1-current carried by �, with
multiplicity θ and orientation τ ; it satisfies

M(T ) =
∫

�

|θ(x)| dH1(x) < +∞.

The set of rectifiable 0-currents, respectively rectifiable 1-currents, is denoted
by R0(R

2), respectively R1(R
2).

Given a Lipschitz, injective map f : [0, 1] → R
2, we denote by f# I the rec-

tifiable 1-current carried by f([0, 1]), with unit multiplicity and orientation given
by f ′. The mass of f# I is the length of the curve parametrised by f and ∂(f# I ) =
δf(1) − δf(0); in particular, ∂(f# I ) = 0 if f(1) = f(0). The assumption that f is
injective can be relaxed; for instance, if the curve parametrised by f has only a
finite number of self-intersections, then f# I is still well-defined and the properties
above remain valid.

We take a bounded, convex domain� ⊆ R
2, distinct points a1,…a2d and amap

Q ∈ W 1,1(�, N )∩W 1,2
loc (�\{a1, . . . , a2d}, N )with a non-orientable singularity

at each ai . LetM ∈ SBV(�, S1) be a lifting ofQ such that SM ⊂⊂ �. By Federer-
Vol’pert theorem (see e.g. [3, Theorem 3.78]), the set SM is countably 1-rectifiable.
We claim that H1(SM) < +∞. Indeed, since Q has no jump set, by the BV-chain
rule (see e.g. [3, Theorem 3.96]) we deduce that M+(x) = −M−(x) at H1-a.e.
point x ∈ SM. This implies

H1(SM) ≤ 1

2

∫
SM

|M+ − M−| dH1 � |DM| (�) < +∞,

as claimed. In particular, there is a well-defined, rectifiable 1-current carried by SM,
with unit multiplicity and orientation τM given by Lemma A.4; we denote it
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Fig. 3. A decomposition of the graph G , as defined in the proof of Lemma A.5, into edge-
disjoint trails E1 (in red) and E2 (in blue). In addition to the edges of G , there may be other
cycles, carried by the curves g j ([0, 1]) with j ≥ q + 1; they are shown in black

by �SM�. Lemma A.4 provides information on the boundary of �SM�. More pre-
cisely, Lemma A.4 implies

∂�SM� =
2d∑
i=1

δai + 2 ∂Q, (A.8)

where Q is a rectifiable 1-chain, defined as

〈Q, ψ〉 :=
d∑
j=1

∫
Tj

〈
ψ(x),

a2 j−1 − a2 j∣∣a2 j−1 − a2 j
∣∣
〉
dH1(x) (A.9)

for anyψ ∈ C∞
c (R2, (R2)′). The Tj ’s are 1-rectifiable sets that depend only onM,

not on ψ , as given by Lemma A.4.

Lemma A.5. Let �, Q be as above. Let M ∈ SBV(�, S1) be a lifting of Q
with SM ⊂⊂ �. Then, there exist countably may Lipschitz functions f j : [0, 1] →
R
2, with finitely many self-intersections, a rectifiable 1-current R ∈ R1(R

2) and a
permutation σ of the indices {1, . . . , 2d} such that the following properties hold:

�SM� =
∑
j≥1

f j,# I + 2R (A.10)

M(�SM�) =
∑
j≥1

M
(
f j,# I

)
(A.11)

∂(f j,# I ) = δσ(2 j) − δσ(2 j−1) if j ∈ {1, . . . , d},
∂(f j,# I ) = 0 otherwise. (A.12)

Proof. By applying, e.g., [48, Theorem 6.3] or [4, Corollary 4.2], we find rectifiable
1-currents T , R ∈ R1(R

2) such thatM(T ) = M(�SM�) = H1(SM), ∂T ∈ R0(R
2)

and
T = �SM� + 2R. (A.13)
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By taking the boundary of both sides of (A.13), and applying (A.8), we obtain

∂T =
2d∑
i=1

δai + 2P, (A.14)

with P := ∂(R + Q) (and Q as in (A.9)). The current 2P = ∂T − ∑2d
i=1 δai is

rectifiable, soM(P) < +∞. Moreover, P isthe boundary of a rectifiable 1-current.
Then, Federer’s closure theorem [27, 4.2.16] implies that P itself is rectifiable. As
a consequence, we can re-write (A.14) as

∂T =
2d∑
i=1

δai + 2
p∑

k=1

nk δbk , (A.15)

for some integers nk and some distinct points bk ∈ R
2. By applying [27, 4.2.25],

we find countably many Lipschitz, injective maps g j : [0, 1] → R such that

T =
∑
j≥1

g j,# I,
∑
j≥1

(
M(g j,# I ) + M(∂(g j,# I ))

) = M(T ) + M(∂T ) < +∞.

(A.16)
For any j , we have either ∂(g j,# I ) = 0 (if g j,#(1) = g j,#(0)) or M(∂(g j,# I )) =
2 (otherwise). Therefore, by (A.16), there are only finitely many indices j such
that g j,#(1) �= g j,#(0). Up to a relabelling of the g j ’s, we assume that there is an
integer q such that g j,#(1) �= g j,#(0) if and only if j ≤ q.

Now, the problem reduces to a combinatorial, or graph-theoretical, one. We
consider the finite (multi-)graph G whose edges are the curves parametrised by g1,
…, gq , and whose vertices are the endpoints of such curves. There can be two
or more edges that join the same pair of vertices. However, we can disregard the
orientation of the edges: changing the orientation of the curve parametrised by g j

corresponds to passing from the current g j,# I to the current −g j,# I ; the difference
g j,# I −(−g j,# I ) = 2g j,# I can be absorbed into the term 2R that appears in (A.10).

We would like to partition the set of edges of G into d disjoint subsets E1,
…Ed , where each E j is a trail (i.e., a sequence of distinct edges such that each edge
is adjacent to the next one) and, for a suitable permutation σ of {1, . . . , 2d}, the
trail E j connects aσ(2 j−1) with aσ(2 j). If we do so, then we can define f j : [0, 1] →
R
2 for j ∈ {1, . . . , d} as a Lipschitz map that parameterises the trail E j , with

suitable orientations of each edge; for j ≥ d + 1, we define f j := gq+ j−d . With
this choice of f j , the lemma follows. It is possible to find E1, …Ed as required
because the graph G has the following property: any ai is an endpoint of an odd
number of edges of G ; conversely, any vertex of G other than the ai ’s is an endpoint
of an even number of edges of G . This property follows from (A.15). Then, we can
construct E1, …Ed by reasoning along the lines of, e.g., [16, Theorem 12]. 
�

We can now conclude the proof of Proposition A.1.
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Proof of Proposition A.1. Weconsider the decompositionof �SM�givenbyLemmaA.5.
Thanks to (A.12), for any j ∈ {1, . . . , d} the curveparametrisedby f j joinsaσ(2 j−1)
with aσ(2 j). Then,

H1(SM) = M(�SM�) ≥
d∑
j=1

M(f j,# I ) ≥
d∑
j=1

∣∣aσ(2 j) − aσ(2 j−1)
∣∣ ≥ L(a1, . . . , a2d).

The equality can only be attained if there are exactly d maps f j and each of them
parametrises a straight line segment. 
�

B. Properties of fε

The aim of this section is to prove Lemma 3.1. We first of all, we characterise
the zero-set of the potential fε, in terms of the (unique) solution to an algebraic
system depending on ε and β.

Lemma B.1. For any ε > 0, the algebraic system

⎧⎨
⎩
X (X − 1 − β2ε)2 = β2ε2

2
X > 1 + β2ε

(B.1)

admits a unique solution Xε, which satisfies

Xε = 1 + 1√
2

(√
2β + 1

)
βε − 1

4

(√
2β + 1

)
β2ε2 + o(ε2) as ε → 0.

Proof. The function P(X) := X (X−1−β2ε)2 is continuous and strictly increasing
in the interval [1+β2ε, +∞), because P ′(X) = (X−1−β2ε)(3X−1−β2ε) > 0
for X > 1 + β2ε. Moreover, P(1 + β2ε) = 0 and P(X) → +∞ as X → +∞.
Therefore, the system (B.1) admits a unique solution. Let Yε > 0 be such that

Xε = 1 + β2ε + βε Yε.

Then, (B.1) can be rewritten as

Y 2
ε = 1

2 + 2β2ε + 2βε Yε

, (B.2)

which implies Yε → 1/
√
2 as ε → 0. Using (B.2) again, we obtain

Yε = 1(
2 + 2β2ε + √

2βε + o(ε)
)1/2 = 1√

2
− 1

4

(√
2β + 1

)
βε + o(ε)

as ε → 0, and the lemma follows. 
�
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For any ε > 0, we define

sε := X1/2
ε , λε :=

(
Xε − 1

Xε − 1 − β2ε

)1/2

. (B.3)

Lemma B.1 implies, via routine algebraic manipulations, that

sε = 1 + 1

2
√
2

(√
2β + 1

)
βε + o(ε),

λ2ε = √
2β + 1 + 1

2

(√
2β + 1

)
β2ε + o(ε) (B.4)

as ε → 0.

Lemma B.2. A pair (Q, M) ∈ S2×2
0 × R

2 satisfies fε(Q, M) = 0 if and only if

|M| = λε, Q = √
2 sε

(
M ⊗ M

λ2ε
− I

2

)
.

Proof. By imposing that the gradient of fε is equal to zero, we obtain the system

(|Q|2 − 1)Q = βε

(
M ⊗ M − |M|2

2
I

)
(B.5)

(|M|2 − 1)M = 2β QM. (B.6)

Suppose first thatM = 0. Then, Equation (B.5) implies that eitherQ = 0 or |Q| =
1. The pair Q = 0, M = 0 is not a minimiser for fε, because ∇2

Q fε(0, 0) =
−I < 0. If |Q| = 1, M = 0, then ∇2

M fε(Q, 0) = −ε(I + 2βQ). Since Q is
non-zero, symmetric and trace-free, there exists n ∈ S

1 such thatQn ·n > 0. Then,
∇2
M fε(Q, 0)n · n < 0, so the pair (Q, M = 0) is not a minimiser of fε. It remains

to consider the caseM �= 0. In this case, we haveQ �= 0 and |Q| �= 1, due to (B.5).
Solving (B.5) for Q, and then substituting in (B.6), we obtain

|M|2 − 1 = β2ε |M|2
|Q|2 − 1

,

and hence, solving for |M|2,

|M|2 = |Q|2 − 1

|Q|2 − 1 − β2ε
. (B.7)

By taking the squared norm of both sides of (B.5), we obtain

(|Q|2 − 1)2 |Q|2 = β2ε2

2
|M|4 ,

and hence, using (B.7),

|Q|2 = β2ε2

2(|Q|2 − 1 − β2ε)2
. (B.8)
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We either have |Q|2 < 1 or |Q|2 > 1 + β2ε, because of (B.7). On the other hand,
by imposing that the second derivative of fε with respect to Q is non-negative, we
obtain |Q|2 ≥ 1. Therefore, we conclude that |Q|2 = Xε is the unique solution to
the system (B.1) and, taking (B.7) into account, the proposition follows. 
�

We can now prove Lemma 3.1. For convenience, we recall the statement here.

Lemma B.3. The potential fε satisfies the following properties:

i. The constant κε in (2.2), uniquely defined by imposing the condition inf fε = 0,
satisfies

κε = 1

2

(
β2 + √

2β
)

ε + κ2∗ ε2 + o(ε2) (B.9)

In particular, κε ≥ 0 for ε small enough.
ii. If (Q, M) ∈ S2×2

0 × R
2 is such that

|M| = (
√
2β + 1)1/2, Q = √

2

(
M ⊗ M√
2β + 1

− I
2

)
(B.10)

then fε(Q, M) = κ∗ ε2 + o(ε2).
iii. If ε is sufficiently small, then

1

ε2
fε(Q, M) ≥ 1

4ε2
(|Q|2 − 1)2 − β√

2ε
|M|2 ||Q| − 1| (B.11)

1

ε2
fε(Q, M) ≥ 1

8ε2
(|Q|2 − 1)2 − β2 |M|4 (B.12)

for any (Q, M) ∈ S2×2
0 × R

2.

Proof of Statement (i). Let (Q∗∗, M∗) ∈ S2×2
0 ×R

2 be aminimiser for fε, i.e. fε(Q∗∗,
M∗) = 0. By Lemma B.2, we have

κε = −1

4
(|Q∗∗|2 − 1)2 − ε

4
(|M∗|2 − 1)2 + βεQ∗∗M∗ · M∗

= −1

4
(s2ε − 1)2 − ε

4
(λ2ε − 1)2 + βε√

2
sελ

2
ε.

We expand sε, λε in terms of ε, as given by (B.4). Equation (B.9) then follows by
standard algebraic manipulations.

Proof of Statement (ii). The assumption (B.10) implies

|Q| = 1, QM·M = √
2

(
|M|4√
2β + 1

− 1

2
|M|2

)
=

√
2

2

(√
2β + 1

)
= β+

√
2

2
.

Therefore,

fε(Q, M) = ε β2

2
− βε

(
β +

√
2

2

)
+ κε

= −ε

2

(
β2 + √

2β
)

+ κε
(B.9)= κ∗ ε2 + o(ε2).



110 Page 56 of 61 Arch. Rational Mech. Anal. (2023) 247:110

Proof of Statement (iii). When Q = 0, we have fε(0, M) ≥ 1/4 + κε and κε > 0
is positive for ε small enough, due to (B.9). Then, (B.11) follows. When Q �= 0,
it is convenient to make the change of variables we have introduced in Sect. 3. We
write

Q = |Q|√
2

(n ⊗ n − m ⊗ m) ,

where (n, m) is anorthonormal basis of eigenvalues forQ.Wedefineu = (u1, u2) ∈
R
2 as u1 := M · n, u2 := M · m. The potential fε can be expressed in terms of Q,

u as (see Equation (3.14)),

1

ε2
fε(Q, M) = 1

4ε2
(|Q|2 − 1)2 + 1

ε
h(u) + β√

2 ε
(1 − |Q|) (u21 − u22)

+ κε

ε2
− 1

2ε
(β2 + √

2β),

where h is defined in (3.8). By Lemma (3.4), we know that h ≥ 0. Moreover,
Equation (B.9) implies

κε

ε2
− 1

2ε
(β2 + √

2β) = κ2∗ + o(1) ≥ 0

for ε small enough. Then, (B.11) follows. Equation (B.12) follows from (B.11), as

β√
2ε

|M|2 ||Q| − 1| ≤ β2 |M|4 + 1

8ε2
(|Q| − 1)2 ≤ β2 |M|4 + 1

8ε2
(|Q|2 − 1)2.


�

C. Proof of Lemma 4.5

The aim of this section is to prove Lemma C.1, which we recall here for the
convenience of the reader. We recall that gε : S2×2

0 → R is the function defined
in (3.7).

Lemma C.1. Let B = Br (x0) ⊆ � be an open ball. Suppose thatQ∗
ε ⇀ Q∗ weakly

in W 1,2(∂B) and that
∫

∂B

(
1

2

∣∣∇Q∗
ε

∣∣2 + gε(Q∗
ε)

)
dH1 ≤ C (C.1)

for some constant C that may depend on the radius r , but not on ε. Then, there
exists a map Qε ∈ W 1,2(B, S2×2

0 ) such that

Qε = Q∗
ε on ∂B, |Qε| ≥ 1

2
in B (C.2)

∫
B

(
1

2
|∇Qε|2 + gε(Qε)

)
dx → 1

2

∫
B

∣∣∇Q∗∣∣2 dx . (C.3)
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Lemma C.1 is inspired by interpolation results in the literature on harmonic
maps (see e.g. [39, Lemma 1]). As we work in a two-dimensional domain, we can
simplify some points of the proof in [39]. On the other hand, we need to estimate
the contributions from the term gε(Qε), which is not present in [39].

Proof of Lemma C.1. Without loss of generality, we can assume that x0 = 0. By
assumption, we have Q∗

ε ⇀ Q∗ weakly in W 1,2(∂B) and hence, by Sobolev em-
bedding, uniformly on ∂B. In particular,

∣∣Q∗
ε

∣∣ → 1 uniformly on ∂B. Let λε > 0
be a small number, to be chosen later on. We consider the decomposition B =
A1

ε ∪ A2
ε ∪ A3

ε , where

A1
ε := Br \ B̄r−λεr , A2

ε := B̄r−λεr \ B̄r−2λεr , A3
ε := B̄r−2λεr .

Wedefine themapQε using polar coordinates (ρ, θ), as follows. If x = ρeiθ ∈ A1
ε ,

we define

Qε(x) := tε(ρ)Q∗
ε(re

iθ ) + (1 + κ∗ε)(1 − tε(ρ))
Q∗

ε(re
iθ )∣∣Q∗

ε(re
iθ )
∣∣ ,

where tε : R → R is an affine function such that tε(r) = 1, tε(r − λεr) = 0.
If x = ρeiθ ∈ A2

ε , we define

Qε(x) := (1 + κ∗ε)
sε(ρ)Q∗

ε(re
iθ ) + (1 − sε(ρ))Q∗(reiθ )∣∣sε(ρ)Q∗

ε(re
iθ ) + (1 − sε(ρ))Q∗(reiθ )

∣∣ ,

where sε : R → R is an affine function such that sε(r−λεr) = 1, sε(r−2λεr) = 0.
Finally, if x ∈ A3

ε , we define

Qε(x) := (1 + κ∗ε)Q∗
(

x

1 − 2λε

)
.

The map Qε is well-defined in B, beacuse |Qε| → 1 uniformly on ∂B. Moreover,
we have |Qε| ≥ 1/2 for ε small enough, Qε ∈ W 1,2(B, S2×2

0 ) (at the interfaces
between A1

ε , A
2
ε , A

3
ε , the traces ofQε on either side of the interfacematch), andQε =

Q∗
ε on ∂B.
It only remains to prove (C.3). First, we estimate the integral of gε(Qε). On A2

ε ∪
A3

ε , we have |Qε| = 1 + κ∗ε and hence, substituting in (3.7),

gε(Qε) = κ2∗
(
1

4
(2 + κ∗ε)2 − 1

)
= κ2∗

(
κ∗ε + κ2∗ε2

)
= O(ε). (C.4)

We consider the annulus A1
ε . By Lemma 3.3, we have

gε(Qε) ≤
(
1

ε
(|Qε| − 1) − κ∗

)2

+ C

ε2
(|Qε| − 1)2.
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For x ∈ A1
ε , we have |Qε(x)| = tε

∣∣Q∗
ε(r x/ |x |)∣∣ + (1 − tε)(1 + κ∗ε), with tε =

tε(ρ) ∈ [0, 1]. As a consequence,
∫
A1

ε

gε(Qε) dx � λε

∫
∂B

(
1

ε
(
∣∣Q∗

ε

∣∣− 1) − κ∗
)2

dH1

+ λε

ε2

∫
∂B

(
∣∣Q∗

ε

∣∣− 1)2 dH1 + λεκ
2∗ .

(C.5)

On the other hand, as
∣∣Q∗

ε

∣∣ → 1 uniformly on ∂B, from Lemma 3.3 we deduce that

gε(Q∗
ε) ≥

(
1

ε
(|Q∗

ε | − 1) − κ∗
)2

− 3

4ε2
(|Q∗

ε | − 1)2 ≥ 1

8ε2
(|Q∗

ε | − 1)2 − 7κ2∗
(C.6)

at any point of ∂B, for ε small enough. Combining (C.5) and (C.6), we obtain
∫
A1

ε

gε(Qε) dx � λε

∫
∂B

gε(Q∗
ε) dH1 + λεκ

2∗
(C.1)

� λε. (C.7)

If we choose λε in such a way that λε → 0 as ε → 0, then (C.4) and (C.7) imply∫
B
gε(Qε) dx → 0 as ε → 0. (C.8)

Finally, we estimate the gradient term. An explicit computation shows that∫
A1

ε∪A2
ε

|∇Qε|2 dx

� λε

∫
∂B

(∣∣∇Q∗
ε

∣∣2 + ∣∣∇Q∗∣∣2 + 1

λ2ε

∣∣Q∗
ε − Q∗∣∣2 + 1

λ2ε

(∣∣Q∗
ε

∣∣− 1 − κ∗ε
)2) dH1

(C.6)

� λε

∫
∂B

(∣∣∇Q∗
ε

∣∣2 + ∣∣∇Q∗∣∣2 + 1

λ2ε

∣∣Q∗
ε − Q∗∣∣2 + ε2

λ2ε
gε(Q∗

ε) + ε2κ∗
λ2ε

)
dH1.

By the assumption (C.1), we deduce that
∫
A1

ε∪A2
ε

|∇Qε|2 dx
(C.6)

� λε + ε2

λε

+ 1

λε

∫
∂B

∣∣Q∗
ε − Q∗∣∣2 dH1. (C.9)

We take

λε := ε +
(∫

∂B

∣∣Q∗
ε − Q∗∣∣2 dH1

)1/2

. (C.10)

By assumption, we haveQ∗
ε ⇀ Q∗ weakly inW 1,2(∂B), hence strongly in L2(∂B).

Therefore, λε → 0 as ε → 0. Moreover, (C.9) and (C.10) imply∫
A1

ε∪A2
ε

|∇Qε|2 dx → 0 as ε → 0. (C.11)

On the other hand, we have∫
A3

ε

|∇Qε|2 dx =
∫
B

∣∣∇Q∗∣∣2 dx (C.12)

for any ε. Therefore, (C.3) follows from (C.8), (C.11) and (C.12). 
�
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