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Abstract—Monitoring and predicting wind power output more
precisely can be very beneficial for an increasingly competitive
Wind Power industry. Although many advances have been made
throughout the last decades, the production forecast is still based
mainly on the manufacturing power curve and wind speed. Even
though this approach is very useful, especially during the design
phase, it does not consider other factors that affect production,
such as topography, weather conditions, and wind features. A
more precise prediction model that is able to recognize production
fluctuation and is tailored using current operational data is
proposed in this paper. The model analyzes the performance
through Meteorological Mast Data (Met Mast Data) and then
uses it as an input to monitor and predict power output. As a
result, the model proposed achieves high accuracy and can be key
to understanding the wind turbine asset’s behavior throughout
its lifespan, assisting operators in decision making to increase
overall power production.

Index Terms—wind power curve, output prediction, perfor-
mance, met mast data, machine learning, monitoring

I. INTRODUCTION

Wind Power has consistently increased its importance in
the energy industry, achieving 15% of Europe’s electricity
demand in 2021 [1]. A more competitive market has enhanced
the need for a better performance with higher production
at lower costs. With that in mind, improving wind power
output prediction has become important not only in its design,
but also in its operational phase. A better understanding of
production fluctuations could be beneficial to operators in
order to minimize curtailment losses [2], plan maintenance in
better periods, considering lower wind regimes [3], or even
assist them to identify abnormalities in the equipment [4],
[5]. All this together, could support operators to increase the
overall production as well as evaluate more precisely the real
efficiency of the wind farm.

The most common way to monitor and predict wind power
output is through the power curve, which in most cases is
provided by the manufacturer. As defined by BS IEC 61400-
12-1-2017, the power curve is based on the average power
produced in a predetermined wind speed bin [6]. Although
very useful, these curves do not usually consider the external

features and some of the possible operational losses. There-
fore, during the design phase a rate is considered in order to
calculate the net production. According to Ioannou et al. [7]
90% is a reasonable estimation to be used in the design phase.
However, in the operational phase, this approximation does not
help operators to understand and identify what is causing the
operational losses and fluctuations in production.

Wind energy output is mainly calculated through the amount
of Kinect energy flux from the wind taken by the rotor,
considering the density of the air, wind speed, rotor area
and the power coefficient. The power coefficient is what
determines how much energy can actually be captured from the
wind and it is related to some wind features and rotor features,
which include the tip speed ratio and blade pitch angle [8].
According to Betz’s law, the theoretical maximum possible
performance is equal to 16/27, i.e. 59.3% of the kinetic energy
in wind.

External factors such as climate, wind conditions and to-
pography can clearly affect the outcome and could be the
reason for high fluctuation. Recent studies have been trying to
create alternative curves to increase accuracy in prediction and
comprehension of production. In the literature there are studies
creating curves adding more inputs, such as air density [9], hu-
midity [10], wind direction [11], turbulence [12], and periods
of the day [13]. Also machine learning has been largely used to
predict wind power output, as shown in [14]–[20] and also to
create a model of day-ahead prediction [21]. Even though these
models are very useful and beneficial for operators, the great
number of curves can make decision making more complex,
and also, they do not seem to offer a totally tailored approach.

A solution given by Sathler et al. [22] is the creation
of a new variable called performance, where the variance
of production is calculated by dividing each value by the
maximum registered on the related bin. As a result, the
index itself has proved to have similar efficiency in predicting
production and, when used together with wind speed, the
results were higher than 96% when considering the entire farm.
The results also showed that some periods with similar wind
can have drastically different production when relying on the
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index created. Even though these are promising results, the
study does not bring solutions for monitoring performance in
an effective way.

As mentioned before some of possible reasons for fluctua-
tion in production are due to external factors. To monitor the
external factors, farms have a separate tower with sensors in
order to measure several wind and climate features. Therefore,
the goal of this study is to check if the information provided
by this tower, also known as Meteorological Mast Data (Met
Mast Data), can be used to predict the performance index of
the turbines and check if they provide a reliable power output
prediction to assist operators in monitoring their turbines.

The rest of this paper is organized as follows. Chapter 2
describes briefly the methods used in this study, while in
Chapter 3, a description of the data and simulation strategies
are provided. Chapter 4 contains the results and discussion,
followed by Chapter 5 which contains the conclusion and
suggestions for future work.

II. METHODS

Machine learning has become very popular in recent years;
this is due mainly to the advances in technology, especially
those related to storage systems and faster processing of
data. There are many types of algorithms and methods inside
machine learning, which can help to find patterns in their
outcomes, connecting inputs to outputs to make predictions
with lower errors. In this study, regression-supervised models
will be used. They are classified as supervised because the
algorithm is trained based on historical data previously avail-
able, and as regression since production and performance are
considered quantitative continuous values.

To design both models, production output and performance
prediction, four different methods were chosen: Linear Re-
gression (LNR), Decision Tree Regression (DTR), Support
Vector Regression (SVR) and Random Forest Regression
(RFR). Table I gives a short explanation on the methods with
references for further interest. The goal of this paper is to keep
the models as simple as possible and check if the model is
consistent, avoiding the need of high computational resources.
For this reason more advanced methods were not assessed.

A normal problem in machine learning is the selection of
the data, which can affect results positively or negatively. So,
to avoid any misleading in the conclusions or any bias due to
data selection, k-fold Cross Validation (CV) will be used. In
this method, the data are split into “k” equal parts, where each
of these parts is used as a test set, while the rest of data is
used as a training set, so the model runs k-times. This process
provides “k” different outcomes, so further statistical analysis
will lead to evaluating each regression model, and the one that
fits best for the purpose of this study will be selected.

Finally, to assess the accuracy of the method proposed,
four different metrics were selected. First, the coefficient
of determination, or R-squared (R2), measures how well a
dependent variable explains the independent variable. This
metric is calculated considering the squared sums of the

TABLE I: Description of Machine Learning Methods Selected.

Model Description Reference

Linear Regression (LNR)

Linear prediction method.
Look for best fit, with
lower errors, considering
straight linear equation.

-

Decision Tree Regression
(DTR)

It is a nonlinear supervised
prediction method, which
creates conditional state-
ments.

[23]

Support Vector Regression
(SVR)

Based on Support Vec-
tor Machines, uses hyper-
parameters with a tolerance
to minimize errors.

[24]

Random Forest Regression
(RFR)

Construction of multiple
decision trees. A proba-
bilistic analysis is made
among those decision tree
to select the best predic-
tion.

[25]

“distance” between predicted values and the actual observed
ones and the total sum of squares, according to Eq. 1.

R2 = 1− SSR

SST
(1)

where SSR is the sum of squared residuals and SST total sum
of squares. The results vary from 0 to 1, where 1 means perfect
correlation, in other words, the dependent variables explain
100% of the variance in the independent variable. Conversely,
a result equal to zero means there is no correlation.

The other three metrics calculate the mean value of the
residuals, they are: the Mean Absolute Error (MAE), the Mean
Percentage Absolute Error, and the Root Mean Squared Error
(RMSE) As suggested by its name, MAE (Eq. 2) considers the
mean absolute value of the difference between the prediction
and the real value. Similar to MAE, MAPE (Eq. 3) also
consider absolute values, however, the error is divided by the
real value, providing a ratio of its accuracy. Finally, by being
squared, RMSE (Eq. 4) penalizes bad predictions, providing
important information from the accuracy of the model. In
Eqs. 2 to 4, yi is the tested value and ŷi is the predicted
one.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (4)
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III. DATA ANALYSIS

For confidentiality reasons the location and model cannot
be disclosed. To test the model proposed, SCADA data from
five wind turbines of 2MW and Met Mast Data from the farm
tower were used. It was provided information from 172 days
with 10 minutes range, totaling 24,768 records per turbine.
From the SCADA data was retrieved production and wind
speed. The Met Mast Data, on the other hand, includes wind
speed measured at five different heights, direction of the wind
at four different points, humidity and temperature, both from
two distinct points, and finally ambient pressure.

A. Pre-processing

From these data some abnormalities, such as negative out-
puts, missing data, and periods where wind speed was out
of the production range were removed. Even though the cut-
in speed of this turbine is 4 m/s, recordings below 5 m/s
were not considered, because of the high fluctuations caused
by the starting-up of the turbine. Production below 100kW
was eliminated as well, since this is the minimum output
according to the manufacturer curve. Hence, this values are
more likely to be an error and could mislead the model. The
goal of this work is to create a model to predict production and
performance. Therefore, outliers can minimize the accuracy of
the model. Considering that, an interval of confidence of 99%
was calculated and the values out of this range were considered
to be outliers.

As mentioned in the introduction, the performance index
was calculated by the division of each validated data to the
maximum production recorded in the same bin. The wind
speed range of 0.5m/s was selected for this study, following the
recommendation from BS IEC 61400-12-1-2017. From now
on, all the processes will be presented only considering the first
wind turbine generator (WTG1) in order not to be repetitive.
But the process explained here is the same applied to all
turbines and in the same farm. As a result, from the original
24,768 recordings provided, 15,141 were used to assess the
methodology proposed after pre-processing in WTG1.

Figure 1 illustrates the pre-processing evolution in three
different stages. Figure 1a represents the total amount of
data provided; it can be seen that the production fluctuates
significantly during the period assessed. In Figure 1b, the
first criteria for data reduction, wind speed below 5 m/s and
production below 100kW, was undertaken and the interval of
confidence of 99% was calculated. In this graph it is clear
how outliers, especially those above the upper limit, can affect
results. Since the performance is a rate between each value and
its maximum, the outliers would affect all values in that bin,
creating distortions in the model. It is important to note that
this outlier was occasional, since there are no other points
around it in the range, which justifies its removal. Finally, the
Figure 1c includes a colour map with the performance index
calculated. The black line is the power curve provided by the
manufacturer and the blue one is the average production.

(a)

(b)

(c)

Fig. 1: Pre-processing steps in WTG1: a) Complete Data; b)
First removal criteria + Interval of Confidence; c) Data Pre-
processed + Performance.

B. Model Selection

In the model selection activity, basic procedures and pa-
rameters were used. Nonetheless, a deep investigation of
parameters was developed to run the methodology proposed
and it is presented in Sub-Section III-C. Hence, in few words,
to find the best LNR model, Ordinary Least Square method
was used. To train the RFR, one hundred trees was used
and the kernel selected to the SVR was the “Radial Basis
Function”. In all methods square error was used as a metric
to the loss function and the input features were scaled through
Standardization.

To avoid bias, a cross validation was performed to identify
and select the best regression method. In this analysis it was
considered k = 10 and the metric used was R2. This study is
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divided into two different models: one to calculate the power
output considering wind speed and performance (MODEL 1),
and the other to predict the performance of production using
Met Mast Data (MODEL 2). However, before defining the
models, to evaluate the advantages of adding performance as
an input, the same procedure was done considering only wind
speed, which is illustrated in Figure 2. The graph presents
a box plot of the result. The mean value and the standard
deviation from each model is presented within the plot.

Fig. 2: Box Plot of CV of Power Output Prediction with only
Wind Speed.

Fig. 3: Box Plot of CV of Power Output Prediction with
Performance and Wind Speed (MODEL 1).

Figure 3 presents the results of the models to calculate
production considering wind speed and performance. Even
though considering only wind speed has some good values, the
addition of performance significantly improved the accuracy
in all methods. The high result is not a surprise since the
performance index identifies the fluctuation of production in
a certain bin, in other words, where exactly the production
output will be. Although the visible curvature, LNR obtained
a high result, around 0.94, which illustrates and reaffirms
the importance of the performance index as an input. DTR

Fig. 4: Box Plot of CV Performance Prediction through Met
Mast Data Prediction Model (MODEL 2).

and RFR, considered nonlinear regression conditional models,
achieved nearly perfect correlation, with RFR having a slight
better result.

The biggest challenge of the model proposed is the pre-
diction of the performance index. Figure 4 shows the results
of MODEL 2, where the performance was predicted using
Met Mast Data as input. In this scenario SVR and RFR
had the best results, achieving an average R2 of 0.886 and
0.916 respectively. Considering the best outcome, RFR, the
result is very consistent since the standard deviation was
lower, around 0.0025, which means that around 91% of wind
turbine performance can be explained by the Met Mast Data
or external interference.

C. Power Output Model

As shown in the model selection analysis, RFR had per-
formed better in both models proposed, so this method will
be used to predict the performance index (MODEL 2) and
to calculate the power output (MODEL 1). The possibilities
behind RFR architecture are infinite. Besides the amount of
‘trees’ that can be analysed in each ‘forest’, parameters such
as number of leafs, depth, and nodes of the architecture of
the ‘trees‘ can also affect the results. More information about
the parameters can be found in [27]. The strategy used in this
paper to tune the best parameters for the models was divided
into two parts. First, from a larger possibility of parameters,
a number of random selected combination was calculated.
Then, according to the best results in the random selection,
a more strict range was retested, but this time considering
all possibilities. A five fold cross validation was considered
in each iteration. Table II shows the parameters and criteria
assessed in each stage, as well as the one selected. Figure 5
shows the box plot of MODEL 2 after the parameters were
redefined, improving the average R2 by 0.54%. Since MODEL
1 achieved R2 equals to 0.999, the basic structure was kept
without further analysis.

Finally, from the total data provided, 30% was separated
to validate the model, while 70% was used to train the
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TABLE II: RFR Optimization Routine - WTG01.

Param. Random Single Selected
Bootstrap [’True’, ’False’] [’False’] [’False’]

Max. Depth None and linspace(20, 110, 4) [’None’, 20, 80] [’None’]
Max. Feature per leaf [1, 2, 5, 10, 14] [1, 2, 5] [1]
Min. Samples per leaf [1, 2, 4] [1, 2] [1]

Min. Samples Split [2, 4, 10] [2, 10] [2]
Number of Estimators linspace(10, 1010, 11) [110, 210, 410] [210]

Total Possible Combinations 4950 108 -
Total Tested 1000 108 -

Fig. 5: Box Plot of MODEL 2 after RFR Optimization.

models. It is important to mention that the validation data
were separated before the performance calculation. The goal
behind this strategy is to emulate a real scenario, where the
performance index is calculated only with provided data and
the performance index predicted is unknown. It is expected this
will increase the reliability on the models proposed and avoid
any possible bias. In addition, to increment the results, the
algorithm created was run five times with a random selection
of the data set. Figure 6 summarizes the process proposed
in this work. It is important to mention that to calculate the
complete farm, the whole process was redone adding a new
input variable to identify each one of the five turbines. In other
words, “All Farm” scenario is not the average analysis of the
five turbines individually, but it is a new simulation.

IV. RESULTS AND DISCUSSION

The proposed approach proved to be efficient to predict the
wind power output. Table III presents the results from the five
iterations considering turbine WTG01, where the predictions
achieved an average of 0.24% error when compared to the
real production. Regarding the metrics, the results were also
very consistent, independently of the iterations. The R2 was
close to 1.0 and the average RMSE was around 77.9kW; since
this is a 2MW turbine, this error is acceptable considering the
benefit the model can bring. Gross production, i.e., the one
considering the manufacturer power curve, was presented as
a reference as well as the net production, considering 90.0%
performance.

It is important to note that the net production has achieved a
good result as well; however, this value is more appropriate for
the design phase. By using a fixed rate, this value does not help
the operators to understand the production behavior, during
the operational phase. As mentioned before, there are many
factors that affect the turbine performance, many of which are
related directly to the external factors and climate features.
Therefore, the use of Met Mast Data to monitor performance
and estimate production can be considered reliable. Some of
the known operational losses are due to turbulence, air density,
or wake effects, for example, and they can be linked to the
differences in wind speed in different points, temperature,
and wind direction, respectively, and all this information is
provided by the Met Mast Data.

Another advantage of the model is that it gives extra
information to operators about possible losses in the equip-
ment’s efficiency. Components of the turbine tend to reduce its
performance before breakdowns [26], but considering the high
fluctuation in production, it is hard to identify if and when this
possible loss is due to wind features or an equipment issue.
Monitoring the expected performance through Met Mast Data
could work as a reference to operators to check if the fluctua-
tion is normal, considering the environment characteristics, or
if this could be a mechanical or electrical problem.

Although it is possible to find in the literature better results
in terms of accuracy, the model presented in this paper has
the advantage of using less computational resources when
compared to more advanced techniques, such as Artificial
Neural Network. Also, since the model here proposed uses
data from different sources, it can avoid redundancies and
provide a new independent input for operators to monitor
the real performance of the turbine. Furthermore, if more
data are taken into account considering a whole year when
training the model and an in depth evaluation for elimination
of abnormalities is performed, an improvement in the perfor-
mance prediction is expected. In this study, fault alarm data
were not provided by the operators, which prevented a proper
abnormalities evaluation.

While the model seems very useful to monitor production
and performance in real time, future predictions were not
evaluated until here. Knowing that it is very unlikely to have
accurate forecasts within a 10 minute range, as calculated
so far, an additional simulation of performance prediction
considering average daily results was done and the results are
shown in Figure 7. From the 172 days of data provided, the
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Fig. 6: Flowchart of the model proposed.

TABLE III: Results from WTG1 with 15,141 data points (RP = Real Production, MP = Model Prediction, GP = Gross
Production, NP = Net Production)

Iteration RP (kWh) MP (kWh) GP (kWh) NP (kWh) R2 MAE MAPE RMSE

1 Values 883,364.64 885,941.83 972,915.38 875,623.84 0.9852 52.6931 6.00% 78.1422

∆ - 0.29% 10.14% -0.88%

2 Values 884,423.00 886,833.65 976,478.52 878,830.67 0.9848 53.4556 5.97% 78.6284

∆ - 0.27% 10.41% -0.63%

3 Values 888,095.65 890,885.79 978,283.22 880,454.90 0.9851 52.9711 5.94% 78.3595

∆ - 0.31% 10.16% -0.86%

4 Values 881,308.79 882,689.29 971,379.26 874,241.33 0.9854 52.2486 5.85% 77.2820

∆ - 0.16% 10.22% -0.80%

5 Values 889,771.90 891,025.18 977,694.58 879,925.12 0.9857 51.4527 5.77% 77.1723

∆ - 0.14% 9.88% -1.11%
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month of January, i.e., 31 days, was separated out as a test
set, and the other 141 days as training. In this simulation the
R2 of the performance prediction was 0.89 and RMSE was
0.04, which means the model can provide a good accuracy
even considering larger ranges. This can be useful, especially
in order to plan maintenance in advance, since in some periods
the total production can be lower, even though the wind speed
is the same.

Fig. 7: Performance Prediction x Real Performance – WTG1
– January.

To sum up, Table IV presents the average results achieved
in each turbine and when the entire farm is assessed together.
Considering all simulations the average error between the real
production and from the model was 0.16%. The MAPE and
the RMSE was respectively, 5.65% and 72.42kW. The entire
farm obtained a slight better results whrn compared to the
individual analysis, with an average RMSE of 61.6kW. This
could be due to the amount of data or by the identification of
the turbine as an extra input. It is expected that the difference
in individual performance can be better tracked when they are
assessed together, especially considering the wake effect loss.

TABLE IV: Average results from all simulations.

Param. WTG1 WTG2 WTG3 WTG4 WTG5 All
Error 0.24% 0.07% 0.16% 0.08% 0.18% 0.21%
R2 0.9852 0.9871 0.9863 0.9860 0.9858 0.9905

MAE 52.5642 49.4654 49.5505 51.1040 50.8078 41.4567
MAPE 5.90% 5.54% 5.71% 5.83% 5.93% 5.00%
RMSE 77.9169 71.1578 73.7286 74.6535 75.4473 61.5918

V. CONCLUSION

The competitiveness of the energy market leads operators to
make the best of its equipment with the lowest possible cost
and a deep understanding of the production behavior can be a
very strategic ally. The model proposed focused on relates Met
Mast Data to the performance of production, or fluctuations,
and uses this information as a new input to predict wind
power output. The model proved to have a better accuracy

when compared to the more traditional use of a manufacturer
power curve. Considering all outcomes from all turbines, the
R2 results were superior to 0.98 in all individual iterations
and obtained an average error of 0.14% when compared
to the real production, the average R2, MAE, MAPE, and
RMSE was respectively, 0.986, 50.7kW, 5.78%, and 74.6kW.
Considering the ”all farm” simulation, the error, R2, MAE,
MAPE and RMSE were 0.21%, 0.990, 41.5kW, 5.00% and
61.6kW, respectively.

The use of Met Mast Data to predict performance can be
very beneficial: Firstly, because they contain most of the ex-
ternal information that directly affects wind power production,
so it could reduce the use of several curves, which assess
these inputs individually, to only one model. Secondly, for
the authors, the turbine behavior is unique, which means that
although known, the influence of each factor on production
losses can vary from farm to farm due to the topography,
wind conditions and climate. So, the use of the Met Mast Data
related to real performance provides an increasingly tailored
model. In addition, a daily average model was created and
proved to be as effective as using a 10 minute range, which
means the model can be used for short- or medium-term
predictions, depending on the accuracy of climate and wind
feature forecasts or a historical database.

To end up, the model proved to be very effective in
helping operators with decision making as a tool to moni-
tor performance and predict production in real time or for
future predictions. As future work is recommended a more
detailed feature analysis and reduction, eliminating possible
disturbances. Also, the use of similar methodology with more
advanced machine learning techniques could improve perfor-
mance analysis. Finally, another important suggestion is to
relate and quantify the losses in the performance with each
input, through a “feature importance analysis”.

ACKNOWLEDGMENT

The authors thank the financial and technical support from
ational Counsel of Technological and Scientific Development
(CNPq) and Petróleo Brasileiro S.A. (Petrobras).

REFERENCES

[1] WindEurope.: Wind energy in Europe: 2021 Statistics and the outlook
for 2022-2026. (2022) http://www.windeurope.org

[2] R. Davison-Kernan, X. Liu, S. McLoone, and B. Fox.: Quantification of
wind curtailment on a medium-sized power system and mitigation using
municipal water pumping load, Renew. Sustain. Energy Rev., vol. 112,
no. June 2019, pp. 499–507 (2019). 10.1016/j.rser.2019.06.004
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