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Abstract

Interfaces between different solid dielectric
materials often exhibit lower breakdown
strength  when compared to bulk solid
materials. Of particular concern in many HV
and pulsed-power systems are configurations
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Results & Analysis __/

v Field Enhancement v

The self consistent solution of the equation (1) with (2) yield expressions for the
cavity field of the form:

E, (r,0,t) = A,(t)s {sin@ 0 — cos 0 'F}

and pL e cor A, (1)
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interface is developed. In such cases, past g(,u, ?) h, | K H K } 3)
studies [1] have shown that solid-solid o ,

interfaces are particularly susceptible to Where coefficients Ag(t) are dependant on all pairs of parameters (€,0), geometry,
electrical breakdown. A reason for such . input waveform parameters, and time. Subscripts differentiate between respective

reduction in dielectric strength is the presence
of gas cavities formed at the interface, as a
result of the inevitability that the contact
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cavity shape, spheroid or ellipsoid. The full spatially varying fields are able to be
visualised from their closed form expressions as shown in Figure 3.
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The self-consistent solution of the pre-breakdown Laplacian field around a
single gas cavity encased in a poorly-conductive bulk.

Two fully analytical models for the electric field approximating the cavity as (1)
a spheroid and (2) an ellipsoid, under a uniform external field energised with a
double-exponential impulsive waveform.

The inclusion of an additional layer on the inside of the void as a model for
potentially heightened permittivity and conductivity, possibly as a result of
previous (partial) discharge activity.

Preliminary analysis of the transient behaviour and identification of parameters

Figure 3: Colour plots representing the field enhancement E/E  in a gas cavity. Parameters (¢,0) here
are (3.2,107?), (4.5,10°) and (1,0) for the bulk, layer and gas respectively. Energising voltage is +5 kV
with a gap separation of 4 mm. Cavity dimension parallel to the field is 30 um with a layer ~1 um.

v Parametric Analysis of Transient Response v

Closed form solutions allows any system parameter to be readily swept across a
large range of values. Figure 4 encloses the behaviour of the peak cavity electric
fleld strength and peak time as a function of the bulk parameters (g,0), whilst the
layer parameters are kept constant (as in Figure 3). The energising impulse is of
the double-exponential form (4) and tuned to give a standard 1.2/50 us lightning
Impulse as an example.
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Figure 4: Plots of the peak field magnitude and peak time inside the gas cavity as a function of bulk

. 1 conductivity and permittivity. Notice the significant change in peak time for around o = ~10° S/m under
_Lo(t) Eo(t) A this configuration. Similar analysis can be repeated for all system parameters.
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8’8 c G Fully analytical, closed-form expressions for the electric field inside a cavity at
€,0 €y O b7 b a solid-solid interface have been derived. The model considers arbitrary (g,0) in
U (t) €, 0, — UL(t) — the bulk, the cavity and an additional layer introduced as a model for

Figure 2: Domains for the analysis of gas cavities. (Left) Spheroidal coordinate system. (Right) Prolate
Ellipsoidal Coordinate system. &, o are the relative permittivity and electrical conductivity (S/m)
respectively. Subscripts b, | and g refer to the bulk, layer and gas.

The boundary value problem may be set up by imposing electrostatic boundary
conditions across each interface and far from the cavity:

v Potential Continuity v v Normal Flux & Current v

Sﬁg(wl) = (1)
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Here, x is the coordinate, where subscript 1, 2 represent the boundaries between g,l
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heightened parameters on the void internal surface.

Parametric analysis over a large range of material parameters is possible with
this model, and was conducted under a 1.2/50 ps lightning impulse signal.

It is observed that the transient behaviour of the field inside the cavity is
complex, and under certain (g,0) the peak time can increase significantly
beyond the peak of the input signal.

The model is expected to be extended further to include nonuniform external
field topologies such as spherical or needle electrodes.

It is planned to use the current model alongside a kinetic approach for the
prediction of solid-solid interfacial breakdown under impulsive stress.
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