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Abstract 

Real-time monitoring of wind turbine performance degradation can improve the 

economics and safety of wind farms. Normal operational data can accurately reflect the 

generation performance of a wind turbine and in the wind-speed coordinate system 

these normal data constitute the “main power band”. This paper invokes a Dirichlet 

Process Gaussian Mixture Model (DPGMM) to cluster operational data in each 

horizontal power bin, and the number of Gaussian components can be determined 

automatically. The confidence ellipses of Gaussian components can be used to identify 

the contour of the main power band which is then used as baseline performance model. 

In the monitoring phase, Mahalanobis distance is used to judge whether new monitoring 

data lies outside the contour of main power band and thus should be labeled as degraded 

operational data. When the proportion of such data exceeds a set value in a sliding 

window, a wind turbine performance degradation alarm is triggered. Degradation 

degree and rate can quantitatively measure the severity of performance degradation. 

For an industrial performance degradation case caused by gearbox oil over temperature, 

the method proposed timely gives alarm only 12 points (2 hours) later than the first 
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degraded operational data appears and is proved to be effective. 

 

Keywords: wind turbine; performance degradation; Dirichlet Process Gaussian Mixture 

Model (DPGMM); Mahalanobis distance. 

 

1. Introduction 

Some component faults and abnormalities may not result in the shutdown of wind 

turbines or trigger alarms, but can significantly reduce the output power and so degrade 

wind turbine performance. Real-time analysis of SCADA data to detect performance 

degradation in a timely manner can improve the safety and economic benefits of wind 

turbines. 

The power curve is an important measure of the generation performance of a wind 

turbine [1-3]. The method of bins is used to create the power curve. Ten-minute averaged 

SCADA data are allocated to different wind speed bins according to their wind speed, 

each bin having a wind speed interval of 0.5m/s. Average wind speed and average power 

are calculated for each wind speed bin and these averaged pairs comprise the power 

curve by joining the pairs sequentially, from lowest to highest wind speed. But the 

averages absorb too much data variation and comparing power curves alone may not 

provide sufficient quantitative information about performance differentiation or 

degradation. [4,5] carried out comprehensive review and comparison of different wind 

turbine power curve modeling methods. [6,7] used machine learning method such as 

Gaussian Process (GP), Random Forest (RF), Support Vector Regression (SVR) and k-

Nearest Neighbors (KNN) to construct multivariable power curve model and detected 

performance degradation through analysis of power predicting residuals. In [8], the 

authors applied a two-phase method for assessing wind turbine performance. In the first 

phase, wind power is predicted by an ensemble of extreme learning machines. In the 

second phase, the predicted power and wind speed are used to construct a Copula model 

and parameters of the Copula models served as metrics for assessing the performance 
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of wind turbines. [9] constructed linear and Weibull based power curve models and used 

a control chart as residual analysis methods to monitor the wind turbine generation 

performance. [10] proposed a daily performance monitoring method for wind turbines. 

After data cleaning with k-mean method, five-parameters Logistic regression function 

was used to model the power curve with cleaned data. Improved fuzzy comprehensive 

evaluation method was established to monitoring future wind turbine condition. But 

methods in [6-10] for wind turbine performance monitoring are not really intuitive, and 

how to quantitatively measure the degree of performance degradation is still not 

properly resolved. [11] evaluated the wind turbine performance by performing principal 

component analysis on the quasi-linear region of power curve and used the standard 

deviation of the secondary principal component as health value for performance 

degradation assessment. But the power curve between cut-in and rated wind speeds is 

related to the cubic of wind speed and far from linear shape which may lower the 

accuracy of degradation monitoring result. [12] predicted the active power via 

ensembling of multivariate polynomial regression models that exploit a higher number 

of input (include environmental variables and operational variables) for performance 

analysis, but did not give detailed method for degradation judgement. In [13], the 

authors put forward two methods for creating power threshold curves that was used to 

monitor performance degradation such as blade ice accretion. The first method relies 

on a percentage deviation from the manufacturer’s power curve. The second method 

obtained threshold curve based on the observed variance of operational data. When 

monitoring data consecutively occurred outside the power threshold, degradation such 

as blade icing may happen. But the power threshold curve was greatly influenced by 

the data variance which reduced the accuracy of monitoring results. 

In this paper, an intuitive and effective performance degradation monitoring 

method is proposed. Contour of main power band constituted with normal operational 

data is intuitively extracted and used as performance model. Deviation of monitoring 

data from performance model is quantitatively measured by Mahalanobis distance. 
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Degradation degree and rate can be accurately calculated to give degradation alarms. 

The effectiveness of the method is demonstrated with an industrial study case. The 

content of the paper is organized as follows. Section 2 outlines the performance 

degradation monitoring principle. In Section 3, the wind turbine performance model is 

constructed using a DPGMM. Subsequently in Section 4, the Mahalanobis distance and 

sliding window are invoked to generate performance degradation alarms. 

2. Data from Test Wind Turbine and Performance Degradation 

Monitoring Principle 

The test wind turbine is rated at 1.5MW and named A03. The SCADA data is 10-

min averaged and covers 63 variables including wind speed, active power, pitch angle, 

gearbox temperature and ambient temperature. There are totally 4320 records from 

1/5/2019 to 30/5/2019 as shown in Fig.1. The wind speed and power in each record 

comprise a data point in the wind speed-power (V-P) coordinate system. Data points 

from normal operation during 1/5 to 28/5 are located densely to form the so called 

“main power band”. The characteristics of the main power band such as the envelope 

contour and the distribution of the data points are a real reflection of the wind turbine 

generation performance and can be used as a baseline against which to determine any 

degradation. During the period 29/5 to 30/5, towards the end of the monitoring, the test 

wind turbine exhibits obvious degradation. Many data points with power values well 

below the normal points at same wind speed lie outside the right edge of the main power 

band. More isolated individual points outside the main power band are mainly the result 

of sensor failure, or reflect a transient process of wind turbine startup or shut down. 

However, data points like those from 29/5 to 30/5 appeared consecutively and with an 

obviously horizontal distribution characteristic, it suggests that the wind turbine 

experienced performance degradation caused by some abnormality or a failure of 

components. 
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Fig.1 raw SCADA data from test wind turbine 

This paper extracts the contour of main power band in Fig.1 as the wind turbine 

baseline performance model using a horizontal stratified Dirichlet Process Gaussian 

Mixture Model (DPGMM). After the performance model is constructed, the 

Mahalanobis distance is used to provide a timely and intuitive measure of monitoring 

data deviation from the performance model. When degraded operational data occur 

consecutively, performance degradation alarms are triggered.  

With the passage of time, the performance model should be updated with new 

SCADA data to ensure model accuracy and reflects the fact that wind turbine 

performance does slowly change as result of ambient factors such as air density. A 

cyclic performance degradation monitoring strategy composed of a model construction 

phase and monitoring phase is implemented. Details of this strategy can be found in 

[14]. 

3. Wind Turbine Generation Performance Model Construction 

3.1 Procedures for the construction of wind turbine performance model 

 For the data of 1/5 to 28/5, besides normal data, there are some abnormal data lie 

outside the main power band. In order to extract the contour of main power band as 

performance model, the abnormal data should be firstly identified and removed. In this 

paper, DPGMM is used to construct the performance model with following two steps: 

(1) Creating horizontal power bins. As shown in Fig. 1, the distribution of data points 

in V-P coordinate system is complex, and it is difficult to extract the contour of main 



Wind turbine performance degradation monitoring using DPGMM and Mahalanobis distance 

6 

 

power band as a whole. Because the data points above the rated wind speed and those 

with artificial power curtailment show horizontal distributions, creating multiple power 

bins with a certain interval (i.e., in the horizontal power direction) and analyzing data 

points in each power bin successively can provide useful information. In order to 

facilitate data processing and ensure sufficient data points in each power bin, the power 

interval is set as 50KW in this paper. 

（2）DPGMM is used to cluster the data point in each power bin for identifying and 

removing the abnormal data. Confidence ellipses of Gaussian components of DPGMM 

for clustering normal data in each power bin form the contour of main power band 

which is used as performance model. 

3.2 Data cluster for power bin with Dirichlet Process Gaussian Mixture Model 

For each power bin below rated power, DPGMM [15-18] is used to identify abnormal 

data and extract the contour of main power band. Compared to a traditional Gaussian 

Mixture Model which needs the clustering number fixed beforehand, a DPGMM which 

is an infinite mixture model can automatically determine the clustering number 

according to distribution characteristics of the data and thereby get an improved 

clustering result. The Dirichlet Process (DP) provides prior distribution parameters for 

clusters of DPGMM and translates a finite clustering problem into an infinite one. For 

DPGMM, the cluster number can increase adaptively to the complexity of the data. 

Clusters number and parameters for DPGMM can be obtained through iteration with 

Chinese Restaurant Process (CRP) or stick-breaking process methods.  

A Dirichlet Process (DP) is a stochastic process that defines a probability 

distribution on an infinite dimensional space. For an arbitrary segmentation of sample 

space as 
1
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then G  follows a Dirichlet Process (DP) as: 

       
0~ ( , )G DP G              (2) 

where,   is a concentration parameter that controls the probability of creation of new 
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cluster during iteration (the greater   is, the higher the probability of creating new 

cluster), 
0G  is base distribution that defines the initial shape of the clusters, and Dir is 

a Dirichlet distribution. 

In a Dirichlet Process Mixture Model (DPMM), DP serves as prior distribution for 

the parameters of clusters.  

Assume that there are N  data points in a power bin as: 

1 2[ , , ]N=D x x x            (3) 

In DPMM, the probability ( )ip x  for a data point 
ix  in a power bin follows: 
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where, )kF θ（  , 
kθ   and 

k   are respectively the distribution function, distribution 

parameters and weight for cluster k  . And the infinite number of clusters learned 

through DP iteration can converge to be finite as K . Because in this paper we need to 

cluster two-dimensional data points with wind speed and power, two-dimensional 

Gaussian distribution is chosen for )kF θ（  . A DPMM with Gaussian distribution as 

cluster is called Dirichlet Process Gaussian Mixture Model (DPGMM) and each 

Gaussian distribution for the mixture model is called a Gaussian component.

 ,k k k=θ μ Σ  is the parameter for the Gaussian component with mean value 
kμ  and 

variance 
kΣ . The distribution of 

kθ  follows G  which has base distribution 
0G  and 

concentration parameter  . 

In order to determine the number ( K ) of Gaussian components of DPGMM in each 

power bin, cluster weights 
k  and the parameters 

kθ  for each component, following 

posterior probability for DPGMM will be calculated. 

1 2 1 2 1 2( , , , , , , , | , , )K K Np   θ θ θ x x x           (5) 

In this paper, a Gibbs sampler [19-20] is used to calculate the posterior probability of (5). 

Data clustering with DPGMM for each power bin is shown in Fig.2. 
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Fig.2 Procedure for DPGMM clustering in each power bin 

As shown in Fig.2, the procedure for data clustering with DPGMM in each power 

bin are as following: 

(1) Initialization of DPGMM for a power bin. Iteration number 200M = , concentration 

parameter 20 = . Because the DPGMM can adaptively increase the cluster number 

according to data complexity, the initial cluster number can be small as 2. The base 

distribution 
0G   is selected as a Normal Inverse Wishart (NIW) that has conjugate 

relationship with Gaussian distribution as (6): 

0 0 0( , , , )G NIW  = μ Σ          (6) 

0 0, , , μ Σ  are parameters for NIW. The value for the 
0G  can be initialized as: 

T

0 0

1

/ , ,
N

i

i

N N 
=

= =  = =μ x Σ D D      (7) 

(2) The parameters for cluster 
kθ  are sampled from the base distribution 

0G  and the 

prior Dirichlet distributions are determined.  

(3) Cluster assignment for each data point 
ix  in the power bin is implemented with 

Chinese Restaurant Process (CRP) in Fig.3. CRP is a classical implementation approach 

for Dirichlet Process. CRP describes DP as a customer (each data point) sitting (cluster 

assignment) at a table (cluster) in a restaurant as shown in Fig.3. The restaurant is 

infinitely large, and there are enough tables to place infinitely. Customers enter the 

restaurant one by one, and each customer observes the current table situations before 
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deciding which table to sit on. The more seated the table is, the more likely it is to be a 

popular table. A new table is placed at an arbitrary position each time the new customer 

enters and is kept or discarded according to the customer's decision. The probabilities 

that the new customer (data point) will sit at the existing table (existing cluster) k  and 

the new table (new cluster) are shown as (8). 

 

Fig.3 Chinese Restaurant Process (CRP) 
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where, N  is the customer number (data point number), ( | )k iP θ x  is the probability of 

new customer (data point) 
ix  being assigned to an already existing table (cluster) k  

with parameter 
kθ ; ( , )i kF x θ  is the probability of 

ix  under the Gaussian distribution 

with parameter 
kθ  ; 

kn   is the customer number already sitting at table (cluster) k  . 

new( | )iP θ x  is the probability of new customer 
ix  being assigned to a new table (cluster) 

with parameter 
newθ  ; 

new( , )iF x θ   is the probability of 
ix   under new Gaussian 

distribution with parameter 
newθ .  

 From (8), the probability of a new customer (data point) sitting at an existing table 

(cluster) is proportional to the number of customers already at that table. While the 
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probability of a new table tends to be proportional to the concentration parameter. For 

this reason, the DP is also metaphorically referred to as “richer-get-richer” approach.  

 Based on the probabilities of being assigned to different tables (clusters), a 

multinomial distribution with number of trials fixed as 1 is used to finally determine 

which table (cluster) the customer (data point) 
ix  belongs to as follow: 

~ Multi(1, ( | ))i k iCluster P θ x        (9) 

where, Multi()   is a multinomial distribution; 
iCluster   is the cluster 

ix   belongs to; 

( | )k iP θ x  is the probability of 
ix  being assigned to cluster k  with parameter 

kθ .  

 After cluster assignment for each data point in the power bin, clusters with zero 

data point will be discard. Assume that the number of clusters which has data point is 

K   and these clusters respectively have 
1 2, , , , ,k Kn n n n   data point. For cluster k , it’s 

parameter 
kθ   is sampled from base distribution 

0G  , and its weight in (4) can be 

calculated as: 

              
k

k

n

N
 =                             (10) 

(4) After cluster assignment, the base distribution 
0G  is updated posteriorly and the 

NIW parameters in (6) can be recalculated with data in each cluster according to [15].  

With iteration of steps (2) to (4), the final cluster number K  , weight 
k   and 

parameters  ,k k k=θ μ Σ  for Gaussian components can be obtained when the iteration 

converges. After the DPGMM is constructed, for a data point in a power bin, its 

probability is the weighted sum of its probabilities belonging to K   Gaussian 

components as: 

( )
1

( ) | ,
K

k k k k

k

p F
=

=x x μ Σ                   (11) 

where, 
k  is the weight for Gaussian component k  which reflects the importance of 

this component during clustering, and 
1

1
K

k

k


=

=  . The program for DPGMM data 

clustering was implemented using Python 3.6 with libraries of Numpy and Scipy. 

3.3 DPGMM clustering analysis for power bins 

For the test wind turbine, two representative power bins of 600-650KW and 950-
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1000KW are selected for investigation. In power bin 600-650KW, there are no 

abnormal data, but there are isolated abnormal data in power bin 950-1000KW. 

Data clustering with DPGMM in power bin of 600-650KW is shown in Fig.4. The 

mean values and weights for Gaussian components are listed in Table.1. 

 
Fig.4 DPGMM clustering for 600-650KW power bin 

Table.1 DPGMM parameters for 600-650KW power bin 

component weight mean value 

No.1 0.699 [7.23m/s, 634.8KW] 

No.2 0.301 [7.07m/s, 609.7KW] 

In Fig.4, DPGMM accurately clusters data points in 600-650KW power bin with 

two Gaussian components. The confidence ellipse of each Gaussian component is 

plotted and the confidence level is the commonly used value 95%. As a result, two data 

points far away from the ellipse centers are not included in the ellipses. The center for 

confidence ellipse is mean value 
kμ  for the Gaussian distribution which is composed 

of mean wind speed and mean power. In this power bin, weights for these two 

components are large reflecting that they all cluster considerable number of data points. 

And the mean wind speeds of these two components are quite similar around 7m/s 

which show that these two confidence ellipses are located quite closely in Fig.4. 

Fig.5 is the clustering result for power bin 950-1000KW with DPGMM. And 

parameters for each Gaussian component are shown in Table.2. 
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Fig.5 DPGMM clustering for 950-1000KW power bin 

Table.2 DPGMM parameters for 950-1000KW power bin 

component weight Mean value 

No.1 0.93 [8.52m/s, 975.81KW] 

No.2 0.03 [13.20m/s, 996.40KW] 

No.3 0.04 [12.17m/s, 980.03KW] 

In 950-1000KW power bin, there are some isolated abnormal data. In Fig.5, 

DPGMM automatically uses 3 Gaussian components for clustering. Gaussian 

component 1 clusters normal data points and has large weight as 0.93. Components 2 

and 3 cluster the isolated abnormal data points with very small weights of 0.03 and 0.04. 

In addition, the mean wind speeds for component 2 and 3 are respectively 13.20m/s and 

12.17m/s which are significantly larger than the mean wind speed of component 1 

whose value is only 8.52m/s. Fig.5 shows that in this instance the confidence ellipses 

of component 2 and 3 which cluster abnormal data are quite distant from the confidence 

ellipse of component 1. 

3.4 Extracting the contour of main power band and performance model 

construction 

As shown in Fig.4 and Fig.5, DPGMM can accurately cluster data points in power 

bins. In order to distinguish normal Gaussian component clustering normal data points 

and abnormal Gaussian component clustering abnormal data, following method is 

adopted. 

Comparing with normal data in a power bin such as 950-1000KW in Fig.5, 

abnormal data has a much higher wind speed while with a similar power that make 

them lie at the right side and far away from the main power band. With this reason, in 
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a power bin, the confidence ellipses of Gaussian components that cluster the normal 

data points are always located to the left side of the collection of confidence ellipses. 

While components cluster abnormal data are located at the right side of the power bin 

and far away from the normal ones. Such as in Fig.5 for 950-1000KW power bin, the 

normal confidence ellipse of Gaussian component 1 with mean wind speed of 8.52m/s 

is located at the left side of the power bin, while the abnormal confidence ellipses of 

components 2 and 3 with mean wind speed respectively of 13.2m/s and 12.17m/s are 

quite far away from normal component 1. In Fig.4 of 600-650KW power bin, two 

normal confidence ellipses of Gaussian component 1 and 2 are locate quite closely with 

mean wind speed respectively as 7.07m/s and 7.23m/s. 

With above analysis, among all Gaussian components of the DPGMM in a 

particular power bin, the Gaussian component with the smallest mean wind speed is 

selected as base normal Gaussian component, such as component 2 in Fig.4 and 

component 1 in Fig.5, and its mean wind speed is denoted as GBase . Define a center 

range value for the confidence ellipse of Gaussian component as 
VG . In a power bin, 

if the mean wind speed of a Gaussian component is smaller than 
vGBase G+  , this 

component will be located close to the base normal Gaussian component and is also 

labeled as normal component. Otherwise, the component will be located at a distance 

from the base normal Gaussian component and is labeled as an abnormal component. 

VG  reflects the range of centers for normal Gaussian components in a power bin and is 

decided as follows. 

The relationship between the power and wind speed of a wind turbine is: 

        2 3

P

1

2
P C R V =                         (12) 

where, V  is wind speed, 
PC  is the power coefficient,   is the air density, and R  is 

the rotor radius. 

Therefore, in a power bin with an interval P , the expected variation range of 

wind speed V  is: 
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2 2

P

3

2

P
V

C R V 


 =                      (13) 

For the test turbine, the wind speeds corresponding to cut-in and rated are 3m/s and 

10m/s respectively. The rotor radius is 48 meters, and the air density is 1.225kg/m3. The 

average value of the turbine power coefficient below rated wind speed is 0.4, calculated 

based on the operating data. When the power bin interval is 50KW, the corresponding 

wind speed variation range for the power bin at cut-in and rated wind speed are 

cutin 1.04m/sV =  and 
rated 0.094m/sV =  respectively. The wider wind speed variation range 

(i.e., at the cut-in wind speed) 
cutin 1.04m/sV =   is taken as the reference, 

VG   is 

determined as: 

         v 1.1m/sG =               (14) 

With above method for identifying normal and abnormal Gaussian components, in 

power bin 600-650KW, component 2 is the base normal Gaussian component, and 

7.07GBase =  m/s. The mean wind speed of Gaussian component 1 is 7.23m/s that is 

smaller than 
v 8.17GBase G+ = m/s, therefore component 1 is also labeled as normal. 

In power bin of 950-1000KW, component 1 is the base normal Gaussian 

component with 8.52GBase = m/s. The mean wind speeds of components 2 and 3 are 

respectively 13.20m/s and 12.17m/s and both obviously greater than 
v 9.62GBase G+ =

m/s. And components 2 and 3 are labeled as abnormal. Data points clustered by 

abnormal Gaussian component such as 2 and 3 are also labeled as abnormal data. 

The DPGMM clustering and abnormal data labeling method explained above are 

used for each power bin below rated power and the result is shown in Fig.6.  
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(a) Abnormal data clustering and identification 

 

(b) The contour of main power band 

Fig.6 Data clustering and contour of main power band 

In Fig.6(a), for each power bin, DPGMM method correctly clustering data 

according to dense or sparse data distributions. And abnormal data and corresponding 

confidence ellipses are correctly identified. In Fig.6(b), normal Gaussian components 

of the DPGMM for each power bin cluster the normal data points. The contour of main 

power band which is composed of normal data is determined by the confidence ellipses 

(in different colors) of the normal Gaussian components in each power bin, such as 

components 1 and 2 in 600-650KW power bin or component 1 in 950-1000KW power 
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bin. Abnormal data points clustered by abnormal Gaussian components in Fig.6(b) all 

lie outside the contour of main power band. 

The baseline generation performance model for wind turbine is the contour of main 

power band which is comprised of the confidence ellipses of normal Gaussian 

components in each power bin. 

4. Wind Turbine Performance Degradation Monitoring 

4.1 Degradation assessment of monitoring data using Mahalanobis distance 

In the monitoring phase, after the baseline generation performance model has been 

constructed as in Section 3.4, if a new monitoring data point lies inside the contour of 

main power band, that is, within the confidence ellipses of normal Gaussian 

components, the new monitoring data point will be identified as a normal data. 

Otherwise, if a monitoring data lies right outside the confidence ellipses of the normal 

Gaussian components, compared with normal data in the contour of main power band 

of same power bin, the data has an obviously higher wind speed while with a similar 

power, it will be defined as a degraded operational data. 

In order to accurately identify such data in relation to the confidence ellipses of the 

normal Gaussian components, Mahalanobis distance [21-23] is introduced. Mahalanobis 

distance can measure the distance between a point x  and a distribution P  as: 

T 1

m ( ) ( ) ( )d −= − −x x μ Σ x μ                    (15) 

where, μ  and Σ  are respectively mean value and variance matrix for distribution P . 

In this paper, x   is the monitoring data point, and P   is the normal Gaussian 

component in each power bin.  

Take power bin 600-650KW and new monitoring data point 

obs [8.72m/s,642.2KW]=x  as an example. The following steps are needed for assessing 

whether obsx  is a degraded operational data. 
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Fig.7 Degradation judgment for monitoring data 

(1) Decide which power bin the new monitoring data belonging to and calculate the 

Mahalanobis radius for the confidence ellipses of the normal Gaussian components, 

denoted as RM  in this power bin. Because the power is 642.2KW, this data belongs 

to power bin 600-650KW. RM   can be calculated as the maximum Mahalanobis 

distance of all data points in the confidence ellipse to the ellipse center μ . As shown 

in Fig.7, there are two normal Gaussian components 1 and 2 in 600-650KW power bin, 

and the 
1RM   and 

2RM   are the distances of data points on the edge of confidence 

ellipses to the centers. 

(2) Calculate the Mahalanobis distances between the monitoring data and centers of the 

confidence ellipses as obsM  . As shown in Fig.7, distances between monitoring data 

obsx  and centers of confidence ellipses 1 and 2 are respectively 
obs1M  and 

obs2M . 

(3) If the distances between monitoring data and centers of confidence ellipses are 

greater than the Mahalanobis radius of confidence ellipse, that is, 
obs1 1M RM   and 

obs2 2M RM , then the new monitoring data lies outside the contour of the main power 

band as shown in Fig.7, this indicates degradation. 

Table.3 shows the Mahalanobis radius and distance between the monitoring data to 

the confidence ellipse centers. 
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Table.3 Mahalanobis radius and distance for monitoring data in 600-650KW power bin 

component No.1 No.2 

center [7.23m/s, 634.8KW] [7.07m/s, 609.7KW] 

RM  2.54（
1RM ） 2.55（

2RM ） 

obsM  5.76（
obs1M ） 7.27（

obs2M ） 

obsM / RM  2.27 2.85 

In Table.3, the ratio 
obs /M RM  between Mahalanobis distance obsM  for obsx  and 

the Mahalanobis radius of confidence ellipse RM  can accurately describe how far the 

monitoring data is away from the main power band. If obs /M RM  is greater than 1, it 

means that the monitoring data lies outside the corresponding confidence ellipse. In this 

paper, degradation degree is defined as: 

 obsmin ( ) / ( ), 1,2, ,Degrade M i RM i i n= =      (16) 

where, ( )RM i  and 
obs ( )M i  are respectively the Mahalanobis radius and Mahalanobis 

distance of monitoring data to confidence ellipse of thi −  normal Gaussian component; 

n   is the number of normal Gaussian components of the power bin where the 

monitoring data lies. In 600-650KW power bin, the degradation degree of 
obsx  is: 

   xobs obs obsmin (1) / (1), (2) / (2) min 2.27,2.85 2.27Degrade M RM M RM= = =  (17) 

Monitoring data with a larger degradation degree will be further away from the 

main power band, reflecting that the degradation is more serious. 

In order to ensure that the degraded operational data notably locating at the right 

side of the main power band, a degradation value is set as: 
degrade 1.1V = . New monitoring 

data with a degradation degree 
xobs degradeDegrade V   will be labeled as degraded 

operational data such as 
obsx . 

The concentration parameter    is the hyperparameter for DPGMM. As 

mentioned before, a larger   will lead to a higher probability of creating new cluster 

(Gaussian component) for data points in a power bin. In above studies,   is set as 20. 

For a comparison, DPGMM with a larger hyperparameter   as 40 is applied to power 

bin of 600-650KW and the result is shown in Fig.8. 
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Fig.8 DPGMM with larger hyperparameter clustering for 600-650KW power bin 

Comparing Fig.4 and Fig.8, we can see that with larger hyperparameter    , 

DPGMM tends to create more components of three (No.1 to No.3) in Fig.8 instead of 

two (No.1 to No.2) components in Fig.4 to cover the isolated data points. This will 

result two disadvantages for degradation monitoring: (1) Increase of components will 

add computing burden and cost to degradation monitoring; (2) because more 

components (such as No.1 and No.3) in Fig.8 tend to cluster isolated data point in the 

power bin, the contour of the main power band (confidence ellipses of No.1 and No.3) 

will be erroneously expanded to cover the isolated data points which will decrease the 

sensitivity for performance degrading monitoring comparing to a relatively narrow 

contour in Fig.4. With above reasons, smaller hyperparameter   is recommended. 

4.2 Creating a robust wind turbine performance degradation alarm 

As explained earlier, sensor failure and transient processes of wind turbine startup 

or shutdown may randomly and intermittently produce data that could suggest degraded 

operation. In order to detect systematic performance degradation in a timely manner 

and reduce the number of false alarms, a sliding window [24] monitoring method is 

adopted to trigger alarms. The window width is 
winN , that is, there are 

winN  monitoring 

data in the sliding window. Each sliding window will be updated with 
updateN  new data 

as shown in Fig.9. It should be noted that the monitoring data in a sliding window 

should have power value greater than zero.  
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Fig.9 Sliding windows 

The method of Section 4.1 is used to judge whether the 
winN  monitoring data in 

the sliding window are degraded operational data, one by one. Assuming there are 

degradeN  such data in a sliding window, then the degradation rate can be defined as: 

degrade

degrade

Win

100%
N

R
N

=                       (18) 

Set a wind turbine performance degradation alarm value as 
alarmV . If the degradation 

rate of a sliding window exceeds this value, a performance degradation alarm is 

triggered. The alarm moment is the time stamp of the latest monitoring data in the 

sliding window. 

4.3 Industrial study case of wind turbine performance degradation 

As shown in Fig.6(b), the wind turbine baseline performance model is constructed 

with data from 1/5 to 28/5. Data after 0:00 29/5 are used as monitoring data. Sliding 

window with large width (data number) will have better average effect which can 

suppress random noise and reduce false alarm but may lead to low alarm sensitivity. 

Because the SCADA data are 10-min averages which itself is an average for 600 1-

second sampling raw data, the window width and updating data number is defined 

moderately as 30 (5 hours) and 6 (1 hour) that can reach a satisfied balance between 

reliability and sensitivity. The degradation alarm value is set as alarm =40%V  . Fig.10 

shows the degradation rate trend from 0:00 29/5. Fig.11(a) shows the degraded 

operational data in 5th sliding window. Fig.11(b) shows all such data during 29/5-30/5. 

Compared with the raw SCADA data in Fig.1, the method of combining DPGMM and 

Mahalanobis distance accurately identifies degraded operational data which lies outside 
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the contour of the main power band (performance model). 

In Fig.10, the first degraded operational data appears in the 3th window, and 

degradation rates of next sliding windows gradually increase. At the 5th sliding window, 

the degradation rate reaches 43.3% and exceeds the alarm value (
alarm =40%V ), that is, at 

win update+4 54N N =  monitoring data of 9:00 29/5, performance degradation alarm for the 

test wind turbine is triggered. This alarm is only 12 points (2 hours) later than the first 

degraded operational data appears in the 3th sliding window. If the SCADA data were 

1-min averages rather than 10-min averages, the degradation alarm can be generated 

more quickly.  

 

Fig.10 wind turbine degradation monitoring with sliding windows 

 

(a) degrade data in 5th sliding window        (b) degrade data of 29/5-30/5 

Fig.11 degradation monitoring results with DPGMM 

 The performance monitoring method in [13] is used as a comparison. [13] created 

power threshold curve based on the observed variance of data of 1/5 to 28/5. In each 
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wind bin of 0.5m/s, 2.5 standard deviation of the data is subtracted from the mean power 

in the bin to build the power threshold curve as Fig.12 shown. 

 

Fig.12 degradation monitoring method comparison 

 Because there are abnormal data during 1/5 to 28/5, the power variances in some 

wind bins such as 10-10.5 m/s are large which makes the power threshold curve deviate 

obviously from the main power band. The method in this paper uses DPGMM to 

identify abnormal data and the main power band contour correctly depicts the edge of 

normal data. In Fig.12, we can see some degraded operational data lies outside the main 

power band contour while within the power threshold curve of [13]. The method in this 

paper will have a higher degradation monitoring accuracy.  

The reason for the performance degradation can be identified from a careful 

parameter comparison between degraded operational data and the normal data in the 

main power band for the same wind speed or power working condition as shown in 

Fig.13. In Fig.13(a), gearbox oil temperatures of degraded operational data during 29/5 

to 30/5 reach as high as 75℃ which is much higher than the temperatures of normal 

data in the main power band at the same power working condition. In Fig.13(b), pitch 

angles of degraded operational data are also much higher than that of data in the main 

power band at the same wind speed condition. We infer that during 29/5 to 30/5 the test 
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wind turbine automatically curtailed output power due to gearbox abnormalities. 

Because the gearbox oil temperatures reached 75℃, output power was derated with 

pitch angle obviously larger than for normal operation and wind turbine experienced 

major performance degradation. The method described in this paper accurately 

identifies and in a timely manner generates an alarm, in the example only 2 hours after 

the first signs of degraded operation. 

 

(a) gearbox temperature                       (b) pitch angle 

Fig.13 Gearbox oil temperature and pitch angle for degrade data 

5. Conclusions 

(1) Normal operational data points in a V-P coordinate system constitute the main power 

band which is a good reflection of wind turbine generation performance. Data points 

are partitioned into horizontal power bins. For each power bin DPGMM is used to 

cluster data points. The envelope contour of the main power band is extracted using 

confidence ellipses of normal Gaussian components in each power bin and used as the 

baseline performance model. 

(2) An assessment of degraded operational data, based intuitively on Mahalanobis 

distance, is proposed. Mahalanobis distance is used to measure the distance between 

the monitoring data and the baseline performance model (the main power band). A 

degradation degree is defined that can intuitively measure how serious the degradation 

is for incoming monitoring data.  

(3) A sliding window is introduced to improve the reliability of wind turbine 

performance degradation alarm generation. Whenever the degradation rate exceeds a 

set value, an alarm is triggered. The reasons for performance degradation can be rooted 
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out by careful examination of other parameters from the SCADA data. In the example 

provided, degradation in power output was caused by gearbox oil over temperature, and 

this confirms the effectiveness of the method.  

This paper provides a new approach and method for wind turbine performance 

degradation monitoring. And the degradation value and degradation alarm value can be 

treated as adjustable parameters to regulate the sensitivity and reliability of the 

proposed method in field application.  
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