
yPlease fill in the name of the event you 
are preparing this manuscript for. SPE Europec featured at 82nd EAGE Conference 

Please fill in your 6-digit SPE 
manuscript number. SPE-200581-MS 

Please fill in your manuscript title. Development of a Multi-solution Framework for Simultaneous Well Placement, Completion, 
and Control Optimization 

Please fill in your author name(s) and company affiliation. 
Given Name Surname Company 

Mohammad Salehian Heriot-Watt University 
Morteza Haghighat Sefat Heriot-Watt University 
Khafiz Muradov Heriot-Watt University 

This template is provided to give authors a basic shell for preparing your manuscript for submittal to an SPE meeting or event. Styles have 
been included (Head1, Head2, Para, Fig Caption, etc.) to give you an idea of how your finalized paper will look before it is published by 
SPE. All manuscripts submitted to SPE will be extracted from this template and tagged into an XML format; SPE’s standardized styles 
and fonts will be used when laying out the final manuscript. Links will be added to your manuscript for references, tables, and equations. 
Figures and tables should be placed directly after the first paragraph they are mentioned in. The technical content of your paper WILL 
NOT be changed. Please start your manuscript below. 

Abstract 
Optimal field development and control aim to maximize the economic profit of oil and gas production. 
This, however, results in a complex optimization problem with a large number of correlated control 
variables at different levels (e.g. well locations, completions and controls) and a computationally 
expensive objective function (i.e. a simulated reservoir model). The typical limitations of the existing 
optimization frameworks are: (1) single-level optimization at a time (i.e. ignoring correlations among 
control variables at different levels); and (2) providing a single solution only whereas operational 
problems often add unexpected constraints likely to reduce the ‘optimal’, inflexible solution to a sub-
optimal scenario. 

The developed framework in this paper is based on sequential iterative optimization of control 
variables at different levels. An ensemble of close-to-optimum solutions is selected from each level (e.g. 
for well location) and transferred to the next level of optimization (e.g. to control settings), and this loop 
continues until no significant improvement is observed in the objective value. Fit-for-purpose clustering 
techniques are developed to systematically select an ensemble of solutions, with maximum differences in 
control variables but close-to-optimum objective values, at each level of optimization. The framework 
also considers pre-defined constraints such as the minimum well spacing, irregular reservoir boundaries, 
and production/injection rate limits. 

The proposed framework has been tested on a benchmark case study, known as the Brugge field, to 
find the optimal well placement and control in two development scenarios: with conventional (surface 
control only) and intelligent wells (with additional zonal control using Interval Control Valves). Multiple 
solutions are obtained in both development scenarios, with different well locations and control settings 
but close-to-optimum objective values. We also show that suboptimal solutions from an early optimization 
level can approach and even outdo the optimal one at the higher-level optimization, highlighting the value 
of the here-developed multi-solution framework in exploring the search space as compared to the 
traditional single-solution approaches. The development scenario with intelligent completion installed at 
the optimal well location and optimally controlled during the production period achieved the maximum 
added value. Our results demonstrate the advantage of the developed multi-solution optimization 
framework in providing the much-needed operational flexibility to field operators. 
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Introduction 
Well location and control settings are critical decisions that need to be made during field development and 
production optimization studies in order to maximize the economic profit of oil and gas production. 
Several efforts have been made to develop efficient frameworks to optimize the system with one or 
multiple types of such decision variables (in this paper we refer to optimization on different variable types 
as different ‘levels’; e.g. the well location optimization is one level and the well production/injection 
control optimization is another level). Single-level optimization workflows were initially developed to 
optimize variables at a particular level only, such as well locations (Awotunde and Naranjo 2014, Bangerth 
et al. 2006, Al-Ismael et al. 2018, Wang et al. 2012) or control settings (Li and Reynolds 2011, Wang et 
al. 2002, Wang et al. 2015, Haghighat Sefat 2016, Lu et al. 2017b, Wang et al. 2019). These were later 
extended to multi-level optimization aiming to achieve an optimal solution at multiple levels (e.g. drilling 
order, well type, location, and control settings) by considering correlation between the variables during 
the optimization process (Li et al. 2013, Tavallali et al. 2013, Forouzanfar et al. 2016, Shirangi et al. 2018). 
Current multi-level optimization techniques can be classified as:  

1) Joint optimization (Li et al. 2013, Tavallali et al. 2013, Isebor, Durlofsky, et al. 2014, Shirangi et 
al. 2018): simultaneously optimizing a single augmented vector of all the control variables from all levels 
(e.g. all well locations and control settings). This, however, could result in optimization algorithm failure 
due to a large number of control variables. 

2) Sequential optimization (Li and Jafarpour 2012, Forouzanfar et al. 2016, Lu et al. 2017a): 
techniques have been developed to reduce the number of control variables by dividing the main problem 
into sub-problems, where each sub-problem contains single-type control variables related to an individual 
optimization level. The field design is iteratively optimized as a sequence of such sub-problems (in order 
to capture the correlation between the control variables) and  the loop is terminated when no major 
improvement is observed in the objective value (Li and Jafarpour 2012). 

Both the gradient-based and the derivative-free algorithms have been used in field development and 
production control optimization studies. The adjoint gradient –based method has been shown to be 
computationally fast (Sarma et al. 2005, Kraaijevanger et al. 2007, Bukshtynov et al. 2015) and has been 
employed in  field development studies using in-house reservoir simulators (Brouwer and Jansen 2002, 
Sarma et al. 2005, Van Essen et al. 2011). However, calculation of the adjoint gradient requires access to 
the subsurface flow simulation source code, hence this approach cannot be easily used with many 
commercial, reservoir flow simulators. Alternative algorithms have been developed, that use an estimation 
of the gradient calculated using black-box simulators, to iteratively move the control state in the 
approximately optimum direction (Lu et al. 2017b, Sefat et al. 2016). The estimated gradient is 
approximately calculated using an ensemble of simultaneous perturbation of the control variables. These 
include Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall 1998), and different 
variations of Ensemble based Optimization (EnOpt) (Chen et al. 2009) such as the Stochastic Simplex 
Approximate Gradient (StoSAG) method (Fonseca et al. 2017). SPSA has been used in well placement 
(Li et al. 2013, Bangerth et al. 2006) and control settings (Sefat et al. 2016) optimization problems, 
showing its efficiency in handling a large number of variables. StoSAG has been also successfully 
employed in well control problems (Lu et al. 2017a, 2017b) and has been shown to outperform the classic 
EnOpt, developed by Chen et al. (2009), in large scale robust optimization problems (Lu et al. 2017b). 
Gradient-based methods can provide computational advantages in terms of efficiency. They, however, 
have issues with handling categorical (e.g. well type) variables. Derivative-free optimization (DFO) 
methods have also been used in the context of field development and control. These include Particle 
Swarm Optimization (PSO) (Eberhart and Kennedy 1995, Ciaurri et al. 2011, Isebor, Echeverría Ciaurri, 
et al. 2014) and Genetic Algorithms (GAs) (Holland 1992, Stoisits et al. 2001, Almeida et al. 2010). These 
methods can handle all types of variables (e.g. categorical, integer, continuous). However, they typically 
require many more function evaluations than gradient-based algorithms (Zingg et al. 2008). The 
application of these approaches are described by Tavallali et al. (2018), Lu and Reynolds (2019), 
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Onwunalu and Durlofsky (2010), Panahli (2017), Stoisits et al. (2001), Ciaurri et al. (2011), and Almeida 
et al. (2010). 

This work investigates field development and control optimization in a relatively large-scale 
problem by employing a sequential optimization approach. One of the limitations of the current sequential 
frameworks is that only a single optimal solution is provided as the output (Figure 1-Left). However, 
unexpected issues that commonly arise during operation can impose extra constraints, resulting in 
operators having to come up with a modified and usually sub-optimal scenario. For instance, the well 
location solution provided by the optimization algorithm could be impractical (or difficult) to drill, due to 
the deviation of the well trajectory from the planned trajectory, caused by tools/operational errors. This 
necessitates the development of a multi-solution framework to provide the much-needed operational 
flexibility to field operators. Previous works (Sefat et al. 2016, Fonseca et al. 2014) showed that the search 
space in optimization problems with a large number of control variables contains several local optima 
with objective values close to each other. Therefore, an efficient optimization framework can explore the 
search space to identify multiple solutions with distinctly different values of the control variables but still 
with the close-to-optimum objective values. The developed framework in this study is based on the 
iterative sequential approach (Li and Jafarpour 2012), however, an ensemble of optimal solutions with 
close to optimum objective values and different variables are transferred between optimization levels (sub-
problems), as shown in Figure 1-Right. Fit-for-purpose clustering techniques are developed to 
systematically select an ensemble of solutions from each sub-problem. SPSA is employed as the 
optimization algorithm in this work, however, the developed framework is compatible with other 
optimization algorithms. The SPSA works by randomly perturbing the given vector of control variables 
several times at every step, with the subsequent averaging of the resulting ensemble’s vector and objective 
function to find the (approximate) steepest decent direction. The developed workflow is tested on a 
benchmark case study, known as the Brugge field, for two development scenarios: 1) Conventional wells 
with surface control only, and 2) Intelligent wells with additional zonal control via Interval Control Valves 
(ICVs) providing a flexible flow control option managed from the surface (Robinson 2003, Sefat et al. 
2016). 
 

 
Figure 1-Left: Existing single-solution optimization framework for well placement and control,  

Right: Developed multi-solution optimization framework for well placement and control. 
 

The outline of this paper is as follows: first, problem formulation for multi-level optimization of 
well placement and control is presented. Then, the structure of the developed multi-solution optimization 
framework is explained, followed by its application to a benchmark case study. Finally, results are 
presented, and conclusions are drawn. 
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Problem Formulation 
The objective is to maximize the net present value (NPV) of a field for its expected production lifespan. 
For a given field reservoir model, the NPV is estimated as: 
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where 𝑥𝑥 is the 𝑁𝑁𝑥𝑥 dimensional vector of the optimization variables; 𝑚𝑚 is the 𝑁𝑁𝑚𝑚 dimensional state 

vector of the reservoir (e.g. saturation, pressure field); 𝑛𝑛 is the 𝑛𝑛th time step of the reservoir simulation; 𝑆𝑆 
is the total number of simulation steps; 𝛿𝛿𝑡𝑡𝑛𝑛 is the length of 𝑛𝑛th simulation step; 𝑡𝑡𝑛𝑛 is the simulation time 
at the end of the 𝑛𝑛th time step; the annual discount rate 𝑏𝑏 is in decimal; and 𝑁𝑁𝑃𝑃 and 𝑁𝑁𝐼𝐼 are the number of 
producers and injectors, respectively. The cost coefficients 𝑟𝑟𝑜𝑜, 𝑟𝑟𝑝𝑝𝑝𝑝, and 𝑐𝑐𝑤𝑤𝑤𝑤 are the oil price (USD/STB), 
the water handling cost (USD/STB), and the water injection cost (USD/STB), respectively. 𝑞𝑞𝑜𝑜,𝑗𝑗

𝑛𝑛  and 𝑞𝑞𝑤𝑤,𝑗𝑗
𝑛𝑛  

are the oil and water production rates of well 𝑗𝑗 at time step 𝑛𝑛 in STB/day. 𝑞𝑞𝑤𝑤𝑤𝑤,𝑘𝑘𝑛𝑛  is the water injection rate 
of well 𝑘𝑘 at time step 𝑛𝑛 in STB/day. A simulation run is performed using a commercial reservoir simulator 
(ECLIPSE-100) (Schlumberger 2017). In this study, Eq. (2) is employed to scale the control variables 𝑥𝑥 
from the domain [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] to [0, 1] to eliminate the problem of different type of control variables with 
different ranges at various optimization levels (sub-problems).  

 
𝑢𝑢𝑖𝑖 =

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖
 

(2) 
 

Multi-Solution Optimization Procedure  
The developed optimization framework selects an ensemble of representative solutions from each 
optimization level to be optimized at the subsequent level. The aim is to select an ensemble of close-to-
optimum solutions with distinct differences in the values of control parameters from all the optimization 
iterations performed at each individual level. Hence, these optimal solutions can be treated as suitable 
realizations of control variable scenarios. Then, a similar approach as the one by Sefat et al. (2016) can be 
employed to select an ensemble of representative realizations (optimal solutions) from each level, as 
explained below: 

Ensemble Selection: The solutions with 1) low objective function values or with 2) high objective 
function values but with the decision variable values close to an optimum solution’s already selected are 
not good for the representative ensemble of optimal solutions from each level. Hence, only the 
representative solutions with distinct difference in decision parameters are selected from the (𝑝𝑝%) of the 
cases with top NPVs. The optimal value of 𝑝𝑝 (𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) depends on two competing criteria: distinct 
dissimilarity of the selected solutions, and proximity of the objective value of the selected cases to the 
maximum NPV. Selecting a large percentage of cases at each level (𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜% → 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) captures the 
maximum diversity between optimization scenarios. However, the selected cases do not all have the 
potential to achieve the close-to-optimum objective function values after next level of optimization and 
therefore their use only slows down the optimization speed. In our case a sensitivity study showed that 
selecting top 20% (by NPV) solutions at each optimization level (i.e. 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 = 20%) showed the best 
performance in both sufficiently capturing the ensemble diversity yet showing a relatively fast 
optimization speed.  

Similarity/Dissimilarity Measure: The similarity/dissimilarity between the selected solutions are 
measured as a pairwise distance between their corresponding control variable vectors. These control 
(variable) vectors are normalized into the [0,1] domain using Eq. (2) to alleviate the impact of having 
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control variables of different types and scales. Conventional Euclidean distance is then used to calculate 
the similarity/dissimilarity between selected ensemble of solutions at the well control optimization level 
(a similar approach was used by Sefat et al. (2016)). Note that the conventional Euclidean distance of two 
identical solutions with the well names merely swapped confusingly shows a non-zero distance (or 
dissimilarity) between them (Figure 2-Left). Hence, a modified measure is employed comparing distances 
between the reservoir grids with active wells irrespective of the well names (Figure 2-Right). 

 
Figure 2-Left: Conventional Euclidean distance measure based on well names. Right: Modified distance 

measure based on reservoir grid blocks with active well and irrespective of well names. 
 
Multi-Dimensional Scaling and Clustering: the above similarity/dissimilarity distance measures 

are used to generate distance matrices of size  𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛, where 𝑛𝑛𝑛𝑛 is the ensemble size of the selected 
solutions at each optimization level. Multi-dimensional scaling (MDS) is then employed to map the 
solutions into 2-dimensional space while preserving the characteristics of the data as much as possible 
(Borg and Groenen 2003, Sefat et al. 2016). Hence, the relative distance between points in 2D space 
represents dissimilarity of the solution scenarios in the original space. Subsequently, K-means clustering 
(Seber 2009) is used to group the projected solutions into a smaller number of clusters (𝑁𝑁𝑐𝑐). The optimum 
number of clusters (𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is identified by comparing the average silhouette values (Sefat et al. 2016) of 
all data points for different (𝑁𝑁𝑐𝑐), where the maximum silhouette value shows the best clustering 
performance. A single, representative solution is then selected from each cluster, resulting in 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
solutions as the representative solutions from that particular level of optimization, to be transferred to the 
next level.  

Well Placement and Control Constraints: Maximum and minimum liquid production rate and 
water injection rate are considered as bound constraints during well control optimization. A minimum 
inter-well distance constraint is enforced during well placement optimization using the penalty method 
similar to the one in Lu et al. (2017a). Previous studies (Li and Jafarpour 2012, Bellout et al. 2012, Li et 
al. 2013, Awotunde and Naranjo 2014, Lu et al. 2017a, Al-Ismael et al. 2018) use inequalities constraints 
to ensure wells are located within a rectangular domain inside irregular reservoir boundaries. This work 
accounts for irregular reservoir boundaries by generating a binary matrix with 0 and 1 elements 
representing null and active reservoir grids, respectively. The well is moved to the nearest active grid if it 
appears outside the reservoir boundaries during location optimization.  
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Model Description 
Brugge is a benchmark reservoir model developed by TNO based on a North Sea field (Peters et al. 2010). 
It contains 139 × 48 × 9 grid blocks with a relatively heterogeneous permeability distribution. The original 
model consists of 20 producers and 10 injectors. Five vertical producers (named 𝑃𝑃1 to 𝑃𝑃5 in the original 
model) and five vertical injectors (named 𝐼𝐼1, 𝐼𝐼3, 𝐼𝐼5, 𝐼𝐼7, 𝐼𝐼10 in the original model) are used in this test case 
due to limited computational resources. Figure 3 shows the top structure of the model with the base case 
well locations. The wells are completed in all nine reservoir layers. More information on the reservoir 
rock and fluid properties of the Brugge model can be found in Peters et al. (2010). The objective function 
NPV (Eq. (1)) is calculated using the economic parameters, as provided in Table 1. 300 iterations are 
performed at each optimization level to ensure algorithm convergence. While one geological realization 
is considered in this work, the developed framework can be extended to a robust optimization problem to 
account for the geological uncertainty in the reservoir model. 
 
 

 
Figure 3-Top structure of the Brugge model. 

 
Table 1-Economic parameters for calculating NPV 

Parameter Value 
Oil Price 50 USD/STB 
Water handling cost 6 USD/STB 
Water injection cost 3 USD/STB 
Discount rate 10 %/year 

 

Results and Discussion 
Case-1 (conventional well-based field development and control study): 
Top (𝑖𝑖, 𝑗𝑗) locations of the vertical wells are optimized during well location optimization over the set of 
10×2=20 control variables. The producers are each controlled by its fixed, liquid production rate; while 
the injectors are each controlled by its fixed, water injection rate, both bounded between 0 and 5000 
STB/day. Moreover, the producers are shut when their water cut reaches 90%, because after this WC value 
the well production is no longer profitable for the oil price and water cost values listed in Table 1. The 30 
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years of the field production period are divided into six control steps of equal duration (of 5 years) resulting 
in the total of 10×6=60 well production/injection control variables used in well control optimization.  

The NPV of the base case with non-optimal well locations and fully open control settings is 
2.111×109 USD, which was improved to the maximum value of 2.597×109 USD after the first, well 
location optimization step. The top 20% (by NPV) of the well location optimization solutions (𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 = 20) 
are selected (i.e. 60 out of 300 total iterations) and the dissimilarity matrix is generated using the modified 
distance measure. Figure 4 shows the projection of the selected solutions into 2D using MDS where each 
data point represents a well location solution with color showing the NPV. A reasonable degree of 
variability in the well locations on the sub-set of the solutions is observed while the NPV among them 
changes within a relatively small range [2.559×109- 2.597×109USD]. Figure 4 also shows that there are 
solutions with different well locations but close NPVs confirming that the search space is characterized 
by different local optima with close-to-optimum objective values. 

Figure 5 shows the average Silhouette values of all data points as a function of 𝑁𝑁𝑐𝑐. Here, the three-
cluster set (the red point) is considered to be optimum providing a balance between computation time and 
clustering performance. The resulting clusters are shown in Figure 6. Selecting one representative solution 
from each cluster is a critical decision that needs to be made prior to the next level of optimization. Herein, 
the solution with the maximum NPV in each cluster is selected as the representative of that cluster, 
considering the objective of selecting solutions with high NPVs. The maximum NPV case (i.e. the solution 
of the classic sequential approach) is automatically selected as one of the representatives. The 
representative well placement solutions (𝐿𝐿1, 𝐿𝐿2, and 𝐿𝐿3) are shown in Figure 7. 

 
Figure 4-Projection of 60 well location solutions into a two-dimensional space using MDS (associated 

with their corresponding NPVs) 

 
Figure 5– Mean Silhouette value of 60 well placement solutions for different numbers of clusters. 
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Figure 6-K-means clustering considering three clusters (𝑁𝑁𝑐𝑐 = 3) 

 

 
Figure 7- Three sets of optimal well locations: 𝐿𝐿1, 𝐿𝐿2, and 𝐿𝐿3, in the Brugge model  

 
The control settings of the three optimal well locations are then individually optimized at the second 
optimization level. A similar clustering approach is applied to the control solutions where an ensemble of 
representative solutions is selected from the top 20% (by NPV) of the cases. Conventional Euclidean 
distance is used to measure the dissimilarity between control scenarios followed by MDS to map them 
into 2D (Figure 8). Figure 9 shows the final clusters where the optimum number of clusters (𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) are 
identified same as after well location optimization level by comparing the average Silhouette values of all 
data points for different number of clusters (𝑁𝑁𝑐𝑐) while considering the balance between computation time 
and clustering performance. The control scenario with the maximum NPV is selected from each cluster as 
the representative of that cluster, resulting in a total of 11 control scenarios, for all three well placement 
strategies (Figure 10). Figure 10 compares the extra control scenarios obtained by multi-solution 
framework (grey line) with the classic single solution sequential approach (red line). The sequential 
optimization loop was terminated since no further improvements in the objective value was obtained.   

Table 2 compares the base case NPV (i.e. base case well locations with fully open control), with 
the improvement after well location optimization, and as a results of best control settings for each well 
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placement strategy. Although 𝐿𝐿1 shows the maximum NPV after well placement optimization, 𝐿𝐿2 shows 
higher improvement due to control optimization (15.1%), implying that a sub-optimal solution from the 
previous optimization level can approach and even outdo the optimal one at the next level. Figure 11 
summarizes the tree-structure of the developed multi-solution framework indicating the operational 
flexibility achieved by different field development and control scenarios with close-to-optimum NPVs.  
 
Table 2-The summary of NPV values, before and after well placement and control settings optimization 

 
Base Case NPV 
(USD) 

Well Placement 
Solution 

NPV after well placement 
optimization (USD) % change  Maximum NPV after well 

control optimization (USD) % change 

2.111 × 109 
𝐿𝐿1 2.597 × 109 + 23.2 2.977 × 109 + 14.6 
𝐿𝐿2 2.589 × 109 + 22.7 2.977 × 109 + 15.1 
𝐿𝐿3 2.583 × 109 + 22.3 2.922 × 109 + 13.2 

 

 
Figure 8- Projection of 60 well control solutions, attributed to 𝐿𝐿1, 𝐿𝐿2 and 𝐿𝐿3 into a two-dimensional 

space using MDS. 
 

 
Figure 9-K-means clustering results for well control solutions, attributed to 𝐿𝐿1, 𝐿𝐿2, and 𝐿𝐿3, considering 

the optimal number of clusters for each ensemble. 
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Figure 10- Optimal water injection (left) and liquid production (right) rates for wells in the Brugge 

model (The red line is the single best solution; grey lines are other optimal scenarios). 
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Figure 11-Summary of the multi-solution optimization framework for case 1. 

 
Case-2 (intelligent well-based field development and control study): 
Similar to case-1, top (𝑖𝑖, 𝑗𝑗) location of ten wells are optimized, resulting in 20 control variables during 
well location optimization. Conventional injectors are controlled by water injection rate, bounded between 
0 and 5000 STB/day. In this case, zonal flow control in each (intelligent) producer is achieved using three 
Interval Control Valves (ICVs) with infinitely variable flow area installed downhole. 30 years of the 
production period are divided into six equal control steps, resulting in 5×6=30 control variables for 
injectors and 5×3×6=90 control variables for producers during well control optimization.  
The multi-solution optimization framework is applied to the intelligent well case in a similar manner as 
the conventional well case presented before. The initial well placement optimization level gives the same 
solutions as in case-1 (Figure 7) since here I-wells with initially fully open ICVs provide the same 
performance as the conventional wells. Zonal control optimization was then performed for each of the 
three representative optimal well placement solutions. Conventional Euclidean distance was used to 
measure the pairwise distance between top 20% control scenarios followed by MDS to project them on 
2D. The optimum number of clusters for all cases is identified as 3 to provide a balance between clustering 
performance (i.e. high Mean Silhouette value) and computation time. The optimization loop was 
terminated since no further improvements in the optimal solutions were observed. Figure 12 summarizes 
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the obtained solutions for case 2 indicating the operational flexibility achieved by different field 
development and control scenarios with close-to-optimum NPVs. Maximum NPV is achieved when the 
optimal control is applied to the I-wells located at the optimal location of conventional wells. Higher 
cumulative oil production, lower cumulative water production, and therefore higher NPVs are achieved 
in case-2 due to the flexible zonal control provided by ICVs (Figure 13), which is consistent with the 
previous reports on the added value from zonal control (Almeida et al. 2010, Sefat et al. 2016, Prakasa et 
al. 2017). Note that this work presents the principal research results and observations from developing a 
multi-solution optimization framework. Therefore, we use the same number of iterations at each level and 
do not change the order of the levels.  
 
 

 
Figure 12-Summary of the multi-solution optimization framework for case 2. 
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Figure 13-Normalized average NPV over the ensemble of selected solutions in case 1 (conventional 

well) and case 2 (I-well) versus optimization iterations. 

Conclusions 
To expand the flexibility of field development and control decisions, and insure against the unexpected 
operational constraints, this study presented a multi-solution optimization framework that provides 
multiple optimal solutions by exploring the search space. A systematic clustering procedure was 
developed to select an ensemble of distinct scenarios with close-to-optimum objective values. SPSA 
algorithm was employed in a multi-level iterative sequential approach to find optimal well locations and 
control settings. However, the developed framework is compatible with other optimization algorithms as 
well. In addition to the constraints on liquid production and water injection rates, a minimum well spacing 
and a modified procedure of respecting irregular reservoir boundaries were considered within the 
optimization procedure. The proposed framework has been tested in a benchmark case study, known as 
Brugge model, considering two development scenarios: conventional and intelligent wells. Multiple 
optimal field development and control solutions with close-to-optimum objective values but different 
control variables were obtained. Results demonstrate that suboptimal solutions from an early optimization 
level can approach and even outdo the optimal one at the higher optimization levels, highlighting the 
advantage of the here-developed multi-solution framework in order to provide the much-needed 
operational flexibility in field optimization problems.  
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