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Abstract—This paper studies the application of Machine
Learning techniques in Planetary Defense. To quickly respond
to an asteroid impact scenario, an Intelligent Decision Support
System is proposed to automatically decide if a deflection mission
is necessary, and then select the most effective deflection strategy.
This system consists of two sub-systems: the first one is named
as Asteroid Impact Scenarios Identifier, and the second one is
named as Asteroid Deflection Strategies Selector. The input to
the Asteroid Impact Scenarios Identifier is the warning time,
the orbital parameters and the diameter of the asteroid and
the corresponding uncertainties. According to the Probability
of Collision and the corresponding confidence, the output is
the decision of action: the deflection is needed, no deflection
is needed, or more measurements need to be obtained before
making any decision. If the deflection is needed, the Asteroid
Deflection Strategies Selector is activated to output the most
efficient deflection strategy that offers the highest probability of
success. The training dataset is produced by generating thousands
of virtual impact scenarios, sampled from the real distribution
of Near-Earth Objects. A robust optimization is performed,
under mixed aleatory/epistemic uncertainties, with five different
deflection strategies (Nuclear Explosion Device, Kinetic Impactor,
Laser Ablation, Gravity Tractor and Ion Beam Shepherd). The
robust performance indices are considered as the deflection effec-
tiveness, which is quantified by the change of impact probability
pre and post deflection. We demonstrate the capabilities of
Random Forest, Deep Neural Networks and Convolutional Neural
Networks at classifying impact scenarios and deflection strategies.
Simulation results suggest that the proposed system can quickly
provide decisions to respond to an asteroid impact scenario. Once
trained, the Intelligent Decision Support System, does not require
re-running expensive simulations and is, therefore, suitable for
the rapid prescreening deflection options.

Index Terms—Robust Optimisation, Machine Learning, Aster-
oid Deflection, Epistemic Uncertainty

I. INTRODUCTION

Asteroid impact poses a major threaten to all life on the
Earth. Several serious impact events through history, from the
Chixulub Event 66 million years ago, to the Tunguska Event in
1908 down to the Chelyabinsk Event in 2013, have concretely
demonstrated the risk of an impact with asteroids and comets.
Most recently, on July 25, 2019, the asteroid 2019 OK (about
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80-m in diameter) passed by the Earth from a distance of
73,000 km just a few hours after its discovery. Planetary
defense is the term used to encompass all the capabilities
needed to detect the possibility and warn of potential asteroid
or comet impacts with Earth, and then either prevent them or
mitigate their possible effects [1].

In the planning and decision making process that pre-
cedes the implementation of an asteroid deflection missions,
such as identifying hazardous asteroids and selecting as-
teroid deflection strategies, there is a considerable amount
of uncertainty affecting any decision [2, 3]. In addition to
the aleatory uncertainties which derive from the inherent
randomness that are irreducible, the epistemic uncertainties
that are caused by the lack of knowledge and limited ex-
perimental opportunities cannot be ignored. For example, the
uncertainty interval of asteroid Itokawa’s mass before and after
Hayabusa 1 mission, narrowed from [2.7×1010, 6.5×1010]kg
to [3.40 × 1010, 3.76 × 1010]kg [4, 5]. Both aleatory and
epistemic uncertainties should be considered be during the
decision making process. Although Dempster-Shafer theory of
evidence (DSt) [6] can deal with both types of uncertainties
in its framework, incorporating epistemic uncertainty into
the robust optimisation framework will be computationally
expensive [7]. Machine Learning (ML) offers a potentially
interesting solution to reduce this cost, therefore, deliver a
rapid decision support on identifying hazardous asteroids and
selecting effective deflection strategies under mixed aleatory
and epistemic uncertainties.

This paper proposes an Intelligent Decision Support System
(IDSS) that consists of two sub-systems: Asteroid Impact Sce-
narios Identifier and Asteroid Deflections Strategies Selector.
The diagram of IDSS is shown in Figure 1. The input to the
Asteroid Impact Scenarios Identifier is the warning time, the
orbital parameters and the diameter of the asteroid and the
corresponding uncertainties. The output is the action decision:
the deflection is needed, no deflection is needed, or more
measurements need to be obtained before making any decision.
If the deflection is needed, the Asteroid Deflection Strategies
Selector is activated to output the most efficient deflection
strategy that offers the highest probability of success. Five as-
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teroid deflection strategies are considered: Nuclear Explosions
Device (NED) [8], Kinetic Impactor (KI) [9], Laser ablation
(LA) [10], Gravitational Tractor (GT) [11] and Ion Beam
Shepherd (IBS) [12]. IDSS is based on a machine learning
algorithm that is trained on the dataset of virtual impactors
and deflections scenarios. Three different Machine Learning
techniques are compared in this paper: Random Forest (RF),
Deep Neural Networks (DNNs) and Convolutional Neural
Networks (CNNs).

II. METHODOLOGY

This section will briefly introduce our proposed approach
to uncertainty quantification and propagation, the model of
probability of collision, deflection dynamics, as well as the
method of Evidence-based robust optmisation.

A. Uncertainty quantification and propagation

1) Uncertainty quantification: In this paper, the mixed
aleatory and epistemic uncertainties are defined as the distribu-
tion type is deterministic (Gaussian distribution is considered),
but the intervals of distribution parameters are non determinis-
tic. The real values of orbital elements æ̃ and absolute visual
magnitude H̃ under uncertainties can be described as

æ̃ ≈ æ+∆æ (1)

H̃ ≈ H +∆H (2)

while æ and H are nominal values, and ∆æ and ∆H are
corresponding uncertainty values. Absolute visual magnitude
H [13] is be used for estimating the mass of the asteroid{

D = 1329
100.2H

√
p

mAst =
1
6πD

3ρ
(3)

where assumes the asteroid’s density ρ is 2.6 g/cm3, albedo
p is 0.154.

Let λæ and λH be the distribution parameters (mean value
µ and standard deviation σ) of ∆æ and ∆H . Then, æ̃ and
H̃ under mixed aleatory and epistemic uncertainties can be
modelled as

æ̃ ≈ æ+∆æ (λæ) , λæ = [µT
æ,σ

T
æ]

H̃ ≈ H +∆H (λH) , λH = [µT
H , σT

H ]
(4)

while λæ and λM are subject to the condition of {λæ|λæ ≤
λæ ≤ λæ} and λH |λH ≤ λH ≤ λH}. For the current version
of IDSS, we only consider the intervals of standard deviation
σ instead of mean value µ, that is, λæ = σT

æ and λH = σT
H .

The covariance matrix of orbital elements Σæ at the initial
state is defined as

Σæ = AAT, A = diag (σa, σe, σi, σΩ, σω, σM ) (5)

When the epistemic uncertainties are introduced through
Dempster-Shafer theory of evidence (DSt), the uncertain
quantities are modelled with intervals with associated Basic
Probability Assignment (bpa). Consider for each component
ui of the uncertainty vector u, a collection of si intervals:

Ii = {eij |ui ∈ eij , j = 1, ..., si} (6)

with a bpa(eij) ∈ [0, 1] associated to each interval. Then
the uncertainty set U is given by the Cartesian product
U = I1 × I2 × ...In and we can define a focal element
γq = e1Jq(1) × e2Jq(2) × ...eiJq(i) × ...enJq(n) with associated
bpa(γq) =

∏
i bpaiJq(i) where the vector Jq has n components

and contains a permutation of indexes j. We can now define
the set Aν as:

Aν = {f(d,u)|f(d,u) < ν,d ∈ D,u ∈ U} (7)

the cumulative Belief (Bel) and Plausibility (Pl) associated to
proposition in Eq.(7) can be used to estimate the confidence:

Bel(Aν) =
∑

γq⊆Aν

bpa(γq) (8)

Pl(Aν) =
∑

γq∩Aν ̸=∅
bpa(γq) (9)

2) Uncertainty propagation: The Unscented Transforma-
tion (UT) [14] is used for uncertainty propagation in this
paper. UT technique was proposed to calculate the mean
value and the covariance matrix of probability distribution of
a random variable that undergoes a nonlinear transformation
[15]. The basic idea is that, instead of performing a higher
order analysis, the probability distribution at a future time can
be approximated by using a set of representative points, called
sigma points.

Given the n-dimensional random variable x with a mean
value x̄ and a covariance P xx, and a nonlinear transformation
y = f(x), the UT is used to estimated the mean value ȳ and
the covariance P yy of the random variable y by the following
steps.

① Calculate the sigma points X and their weights
W

(i)
m ,W

(i)
c (i = 0, 1, ..., 2n):

X (0) = x̄, W (0)
m =

λ

(n+ λ)
, W (0)

c = W (i)
m + (1− α2 + β)

X (j) = x̄+
(√

(n+ λ)P xx

)
j
, W (j)

m =
1

2 (n+ λ)
,

W (j)
c = W (j)

m

X (n+j) = x̄−
(√

(n+ λ)P xx

)
j
, W (n+j)

m =
1

2 (n+ λ)
,

W (n+j)
c = W (n+j)

m

(10)

where j = 1, 2, ..., n;n ∈ N is the dimension of the state
vector; β should be 2 for Gaussian distributions; and (. . . )j
means the jth column vector of the matrix.

② Obtain the set of the transformed sigma points Y(i):

Y(i) = f
(
X (i)

)
(11)

③ The mean value and the covariance are calculated by
using the weights and transformed sigma points as follows:

ȳ =
2n∑
i=0

W (i)
c Y (12)

P yy =
2n∑
i=0

W (i)
c

[
Y(i) − ȳ

] [
Y(i) − ȳ

]T
(13)

Intelligent decision support system for planetary defense under mixed aleatory/epistemic uncertainties



Figure 1. Diagram of Intelligent Decision Support System for Planetary Defense.

B. Asteroid Probability of Collision

The B-plane reference frame
〈
ξ̂, η̂, ζ̂

〉
, which is centred at

the Earth’s mass point at the expected impact epoch (time of
Minimum Orbit Intersection Distance, MOID), is introduced
to quantified the asteroid Probability of Collision (Pc). The
asteroid’s position on the B-plane at the time of MOID is
x̃ξζ = (ξ, ζ). Defining the covariance matrix

(
µξ,Σξζ

)
=

Φ (µæ,Σæ), where Φ is the nolinear function which maps the
covariance matrix of the asteroid from Keplerian elements to
(ξ, ζ) on the B-plane. Then, Pc is computed by integrating the
uncertainty ellipsoid, centered on the asteroid’s mass point and
projected on the B-plane, over the closed region B ((0, 0) , R)
defined by Earth’s radius (assuming RE = 6378km in this
paper).

Pc

(
xξζ ;µξζ ,Σξζ

)
=

1

2π
√
|Σξζ |

∫∫
B((0,0),R)

pdf dξ dζ

(14)

where pdf = e
− 1

2

[
(xξζ−µξζ)

T
Σ−1

ξζ (xξζ−µξζ)
]
. Patera’s method

[16] is used for calculating Pc due to the fact that computa-
tional efficiency is advantageous when large numbers of Pc

evaluations are performed.

C. Deflection Dynamics

According to the different deflection mechanism, deflec-
tion strategies can be divided into two categories: Impulsive
methods (NED, KI) and Slow-push methods (LA, GT, IBS).
This section briefly recalls the deflection dynamics formulas
to calculate the Pc, where the momentum transfer models of
different strategies refer to Ref. [12]

1) Impulsive methods: The effect of an impulsive change in
the velocity of the asteroid induces a variation of its orbit and
related orbital elements. According to Ref. [9], the deflection
position on the impact plane can be calculated analytically by
rewriting δv in a tangential, normal, out-of-plane reference
frame

δv = [δvt, δvn, δvh]
T (15)

The variation of Keplerian elements at the time of deflection
(caused by δv and ephemeris uncertainties) can be calculated
by

δa =
2ã2ṽ

µ
δvt

δe =
1

ṽ

[
2
(
ẽ+ cos θ̃d

)
δvt −

r̃

ã
sin θ̃dδvn

δi =
r̃ cos θ̃∗d

h̃
δvh

δΩ =
r̃ sin θ̃∗d
h̃ sin ĩ

δvh

δω =
1

ẽṽ

[
2 sin θ̃dδvt + (2e+

r̃

ã
cos θ̃d)δvn

]
−

r̃ sin θ̃∗d cos ĩ

h̃ sin ĩ
δvh

δMd = − b̃

ẽãṽ

[
2

(
1 +

ẽ2r̃

p̃

)
sin θ̃dδvt +

r̃

ã
cos θ̃dδvn

]

(16)

due to the change of semi-major axis, the change in the mean
anomaly at the time of MOID is given by

δMn = δn∆t =

(√
µ

a3
−
√

µ

(a+ δa)
3

)
(tMOID − td) (17)

therefore, the total variation in the mean anomaly δM between
the unperturbed and the deflected orbit is δM = δMd+ δMn.

The position of the deflected asteroid with respect to the
undeflected one at the true anomaly θMOID along the orbit of
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the undeflected asteroid is [17]:

δxr ≈ r

a
δa+

ae sin θMOID√
1− e2

δM − a cos θMOIDδe

δyθ ≈ r

(1− e2)
3/2

(1 + e cos θMOID)
2
δM + rδω+

r sin θMOID

(1− e)
(2 + e cos θMOID) δe+ r cos iδΩ

δzh ≈ r (sin θ∗MOIDδi− cos θ∗MOID sin iδΩ)

(18)

where δr = [δxr, δyθ, δzh]
T is the displacement vector

in a radial, transversal, out-of-plane reference frame attached
to the undeflected asteroid. The deflection vector x̃b in the
B-plane coordinates can be expressed as

x̃b (tMOID) =
[
ξ̂ η̂ ζ̂

]T [
r̂ θ̂ ĥ

]
δr (δv; ∆æ) (19)

where

η̂ =
U (tMOID)

∥U (tMOID) ∥
, ξ̂ =

vE (tMOID)× ξ̂

∥vE (tMOID)× ξ̂∥
, ζ̂ =

ξ̂ × η̂

∥ξ̂ × η̂∥
(20)

r̂ =
rAst (tMOID)

∥rAst (tMOID) ∥
, ĥ =

rAst (tMOID)× vAst (tMOID)

∥rAst (tMOID)× vAst (tMOID) ∥
,

θ̂ =
ĥ× r̂

∥ĥ× r̂∥
(21)

2) Slow-push methods: In the general case of slow-push
strategies, the variation of the orbital parameters is calculated
by integration of equinoctial form of Gauss equations from
the time td when the deflection action starts until the time
te when the deflection action stops, which is performed by
a Runge-Kutta-Fehlberg 7(8) numerical method. The position
of the deflected asteroid with respect to the undeflected one
at the true anomaly θMOID along the orbit of the undeflected
asteroid is calculated by (18)-(21).

da

dt
=

2

B

√
ã3

µ

[(
P̃2 sin L̃− P̃1 cos L̃

)
ar +Φ(L̃)aθ

]
dP1

dt
= B

√
ã

µ

[
−ar cos L̃+

(
P̃1 + sin L̃

Φ(L̃)
+ sin L̃

)
aθ−

P̃2
Q̃1 cos L̃− Q̃2 sin L̃

Φ(L̃)
ah

dP2

dt
= B

√
ã

µ

[
ar sin L̃+

(
P̃2 + cos L̃

Φ(L̃)
+ cos L̃

)
aθ+

P̃1
Q̃1 cos L̃− Q̃2 sin L̃

Φ(L̃)
ah

dQ1

dt
=

B

2

√
ã

µ

(
1 + Q̃2

1 + Q̃2
2

) sin L̃

Φ(L̃)
ah

dQ2

dt
=

B

2

√
ã

µ

(
1 + Q̃2

1 + Q̃2
2

) cos L̃

Φ(L̃)
ah

(22)

where L is the true longitude, B =
√
1 + P̃ 2

1 + P̃ 2
2 , Φ(L̃) =

1 + P̃1 sin L̃+ P̃2 cos L̃, and

D. Evidence-based Robust Optimisation

This paper uses the change of Probability of Collision
after and before deflection (∆Pc) to quantify the deflection
efficiency:

f (d,u) = P ′
c − Pc = ∆Pc (23)

where decision vector d ∈ D and uncertain vector u ∈ U .
For NED, KI, LA missions, the decision vector consists of
two elements: the epoch of launch and the time of transfer.
For GT and IBS mission, the decision vector consists of
three elements: the epoch of launch, the time of transfer and
oversising coefficient [12]. For impulsive methods, the state
and system parameters of the spacecraft before deflecting the
asteroid are obtained by solving Lambert’s problem. For slow-
push methods, the state and system parameters of the space-
craft before deflecting the asteroid are obtained by spherical
shaping method [18]. The launched performance of Delta IV
Heavy-RS-68A upgrade version, which is shown in Figure 2,
is considered in the robust optimisation process.

Then, the following multi-objective optimisation problem
can be formed in order to maximise the Belief (Bel) in the
optimal value of ∆Pc:

max
d∈D

Bel (−f (d,u) < ν)

min
u∈U

ν
(24)

The optimal design vector and thresholds that yield a Bel = 1
for all possible u ∈ U can be computed solving the following
classic min-max problem [10]:

min
d∈D

max
u∈U

f (d,u) (25)
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Figure 2. Launch performance of Delta IV Heavy-RS-68A upgrade version.

Because the focal elements in U can be overlapping or
disconnected, the calculation of f (d,u) needs to explore each
focal element independently and therefore face an exponential
number of optimisation problems. The exponential complexity
can be avoid by collecting all focal elements, through an
affine transformation [19], into a compact unit hypercube
U that all focal elements are adjacent and not overlapping.
Finally, the Adaptive Multi-Population Inflationary Differen-
tial Evolution Algorithm (MP-AIDEA) [20] and Sequential
Quadratic Programming (SQP) are used to optimise the outer-
loop and inner-loop of the min-max problem. The number of
agents per population used by MP-AIDEA to search for the
global optimum is 10, the number of populations is 4 and
total number of calls to the objective function is 60. SQP
is performed by fmincon function in MATLAB with the
tolerance of 1e−6.

III. DATASET GENERATION

This section explains how we select the asteroids to form
the set of virtual impact scenarios, and how we set the
classification criterion and generate the dataset for training
Asteroid Impact Scenarios Identifier and Asteroid Deflection
Strategies Selector.

A. Virtual impact scenarios generation

Due to the fact that no asteroid that we know of that
poses a significant threat to Earth, the virtual impact scenarios
should be generated for training the IDSS. The procedure of
generating virtual impact scenarios mainly includes two steps:
step1 is to generate virtual impactors, and step2 is to apply
uncertainties on virtual impactors to form the virtual impact
scenarios.

Step1 (generate virtual impactors): we assume the Earth
orbit is circular, therefore, two necessary but not sufficient
conditions on the semi-major axis a, eccentricity e for virtual
impactors are {

a (1− e) < 1AU
a (1 + e) > 1AU

(26)

Fixing the semi-major axis a, eccentricity e and inclination i
with their actual value from the JPL Small-Body Database

Figure 3. Distribution of Virtual Impactors.

Table I
UNCERTAINTY INTERVALS OF σæ AND σH

Parameters Uncertainty Interval
(Source1)

Uncertainty Interval
(Source2)

σa [AU] [1e-10, 1e-6] [1e-6, 1e-1]
σe [1e-8, 1e-6] [1e-4, 1e-2]

σi [◦] [1e-6, 1e-4] [1e-3, 1e-1]
σΩ [◦] [1e-5, 1e-3] [1e-3,1e-1]
σw [◦] [1e-5, 1e-3] [1e-3, 1e0]
σM [◦] [1e-5, 1e-3] [1e-2, 1e0]
σH [0.1, 0.5] [0.5, 0.8]

Browser, one independent element remaining to fix is the
longitude of the ascending node node Ω of the asteroid’s
orbital plane with respect to the ecliptic plane. However,
since the assumption of circular Earth orbit, the expected
impact epoch tMOID (time of Minimum Orbit Intersection
Distance, MOID) is arbitrary and we can choose to fix Ω = 0.
The argument of perihelion ω and the true anomaly θ are
determined by [12] {

1AU =
a(1−e2)
1+e cosω

θ = 2π − ω
(27)

11,619 asteroids pass the above filters and form the virtual
impactors. We randomly select 5000 of them to apply the
uncertainties on orbital elements æ and absolute visual mag-
nitude H , which further form the virtual impact scenarios.
Figure 3 shows the distribution of 5000 virtual impactors.

Step2 (apply uncertainties on virtual impactors): To get the
reasonable uncertainties intervals ([σ,σ]) of σæ and σH , we
count the distribution of real σæ and σH from the JPL Small-
Body Database Browser, then the two reasonable uncertainty
intervals for σæ and σH are summarized in Table III-A.

The warning time are randomly collected from [1, 10]years
and uncertainty Intervals [σ,σ] of σæ and σH are randomly
sampled from two sources listed in Table III-A. Finally,
we generated a total of 15,000 virtual impact scenarios.
Among these, one third using two equally reliable sources
of uncertainty interval (bpaSource1 = bpaSource2 = 0.5),
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Table II
DESCRIPTION OF THE CLASSES IN THE IDENTIFIER

Class Description Decision

1 Short-term high risk or
short-term high uncerainty Deflection

2 mid-term or long-term
high risk

3 mid-term or long-term
high ucertainty More measurements

required4 long-term low risk

5 short-term or mid-term
low risk No Deflection

one third using sources that Source1 is more reliable than
Source2 (bpaSource1 = 0.9, bpaSource2 = 0.1), one third
using sources that Source2 is more reliable than Source1
(bpaSource1 = 0.1, bpaSource2 = 0.9).

B. Classification Criterion

1) Asteroid Impact Scenarios Identifier: For each virtual
impact scenario, by using the UT technique under the frame-
work of DSt, the Belief & Plausibility curves of Pc at the
expected impact epoch can be obtained. Based on the Belief
& Plausibility curves of Pc, the virtual impact scenarios are
classified by 5 classes. Table III-B1 shows the description and
corresponding decision of each class, among these only the
Class 1 and Class 2 can activate Asteroid Deflection Strategies
Selector.

The classification criterion use the warning time (twarn),
Belief (Bel) & Plausibility (Pl) and the Degree of Uncertainty
(DoU ) of PC being greater than a certain value. The warning
time is divided in to 3 types: short-term (twarn < T1), mid-
term (T1 < twarn < T2) and long-term (twarn > T2). The
Bel and DoU supporting the value of PC greater than a
threshold PC0 can be described as Bel|Pc0

and (DoU |Pc0
=

Pl|Pc0 −Bel|Pc0 ). Table III-B1 shows the classification crite-
rion of Asteroid Impact Scenario Identifier, while the threshold
parameters are setting as Pc0 = 10−4, Bel0 = 0.6, ∆ = 0.3,
T1 = 5 years and T2 = 10 years. Figure 4 shows the
unbalanced and balanced dataset of Asteroid Impact Scenarios
Identifier. From the left side of Figure 4, it can be seen that
Class 1 and Class 3 are underrepresented. Simulation test
results show that the performance of Asteroid Impact Sce-
narios Identifier was negatively affected by unbalanced class
distribution. Finally a new balanced dataset which contains
about 600 samples per class (right side of Figure 4) was
generated for training Asteroid Impact Scenarios Identifier.

2) Asteroid Deflection Strategies Selector: For each virtual
impact scenario, we perform a robust optimisation, under
mixed aleatory/epistemic uncertainties, of the deflection sce-
nario with five different deflection strategies. The deflection
efficiency (calculated by robust solution) is used to rank the de-
flection strategies. KI, LA, GT and IBS is applied first, if none
of them provides sufficient deflection then NED is applied.
The ’sufficient deflection’ is defined as ∆Pc > 10−12. Table
III-B2 shows the definition of Selector’s 4 classes. Finally,
the dataset used for training Asteroid Deflection Strategies
Selector is shown in Figure 5.

Table III
CLASSIFICATION CRITERION OF THE IDENTIFIER

Warning time Belief at Pc0
Degree of Uncertainty

(DoU) at Pc0
Class

twarn < T1

Bel|Pc0 ≥ Bel0 1

Bel|Pc0
< Bel0

DoU |Pc0
≤ ∆ 5

DoU |Pc0
> ∆ 1

T1 < twarn < T2

Bel|Pc0
≥ Bel0 2

Bel|Pc0 < Bel0
DoU |Pc0 ≤ ∆ 5
DoU |Pc0

> ∆ 3

twarn > T2

Bel|Pc0
≥ Bel0 2

Bel|Pc0
< Bel0

DoU |Pc0
≤ ∆ 4

DoU |Pc0 > ∆ 3

Figure 4. Unbalanced & Balanced dataset of Identifier.

Figure 5. Dataset of Selector.

Table IV
DESCRIPTION OF THE CLASSES IN THE SELECTOR

Class Description
NED Nothing available but NED

KI Except NED, KI’s performance is the best
LA Except NED, LA’s performance is the best

GT/IBS Except NED, GT or IBS’s performance is the best
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Table V
CLASSIFICATION RESULTS OF IDENTIFIER

Technique Class Accuracy Precision Recall F1

RF

Overall 82.34 82.27
1 89.51 91.43 90.46
2 74.21 96.58 83.93
3 79.33 80.95 80.13
4 86.61 73.33 79.42
5 85.71 70.59 77.42

DNN

Overall 84.1 84.12
1 90.21 92.14 91.17
2 75.27 93.84 83.54
3 82.89 85.71 84.28
4 90.7 78 83.87
5 84.62 71.9 77.74

CNN

Overall 82.72 82.51
1 90.26 96.17 93.12
2 74.01 95.45 83.37
3 78.53 82.87 80.65
4 83.23 73.54 78.09
5 91.43 67.02 77.34

IV. PERFORMANCE OF INTELLIGENT DECISION SUPPORT
SYSTEM

This section we will discuss the performance of Asteroid
Impact Scenarios Identifier and Asteroid Deflection Strategies
Selector. The performance of RF, DNN, CNN are obtained
by predicting the labels of samples in the validation set. The
metrics employed to assess the model are: the overall accuracy,
the precision by class, the recall by class, the F1-score by class,
and the mean F1-score. The hyperparameters refer to the Ref.
[21]. For each classifier, Asteroid Impact Scenarios Identifier
and Asteroid Deflection Strategies Selector, we use 80% of
the samples for training and 20% for testing.

F1 = 2
recall ∗ precision
recall + precision

(28)

A. Asteroid Impact Scenarios Identifier

Table IV-A shows the classification results of Asteroid
Impact Scenarios Identifier. It can be seen that DNN technique
performs better than RF and CNN, both in total accuracy
and mean F1-score. The mean F1-score of Asteroid Impact
Scenarios Identifier based on DNN is 84.12. The high recall
of Class 1 and Class 2 indicate that some ’More measurements
required’ or ’No deflection’ samples are mis-labeled as ’De-
flection’ (some false negative Class 3, 4, 5 tend to be classified
as Class 1 or Class 2). This means Asteroid Impact Scenarios
Identifier is currently rather conservative that shows the high
recognition for dangerous asteroid impact scenarios.

B. Asteroid Deflection Strategies Selector

Table IV-B shows the classification results of Asteroid
Deflection Strategies Selector. It can be seen that RF technique
performs better than DNN and CNN, both in total accuracy
and mean F1-score. The mean F1-score of Asteroid Deflection
Strategies Selector based on RF is 90.27. The F1-score of
KI and LA reach to 94. Due to the limited number of
samples labeled with Class GT/IBS in the dataset (as shown
in Figure 5), more false negative samples exist in the Class
GT/IBS. However, with the consideration of longer warning

Table VI
CLASSIFICATION RESULTS OF SELECTOR

Technique Class Accuracy Precision Recall F1

RF

Overall 93.27 90.27
NED 93.53 84.68 88.89

KI 91.65 96.92 94.21
LA 96.57 92.04 94.25

GT/IBS 100 72 83.72

DNN

Overall 91.81 88.33
NED 88.29 88.29 88.29

KI 92.62 93.27 92.95
LA 92.42 91.76 92.09

GT/IBS 90 72 80

CNN

Overall 89.08 84.61
NED 85.91 80.18 82.95

KI 89.71 91.69 90.69
LA 89.6 90.01 89.81

GT/IBS 87.5 65.63 75

Table VII
INFORMATION OF A VIRTUAL IMPACT SCENARIO

Item Nominal σ Interval (Source1) σ Interval (Source2)
a [AU] 1.006 [3.013e-07, 8.467e-07] [0.005, 0.006]

e 0.23 [3.947e-07, 6.336e-07] [0.003, 0.004]
i [°] 1.5994 [3.716e-05, 6.285e-05] [0.093, 0.095]
Ω [°] 0 [8.403e-05, 9.983e-04] [0.042, 0.083]
ω [°] 101.86 [9.603e-04, 9.777e-04] [0.687, 0.780]
M [°] -75.35 [9.781e-04, 9.933e-04] [0.042, 0.167]
H 22.7 [0.205, 0.467] [0.758, 0.785]

time (twarn > 10 years) in the future work, more and more
samples labeled with Class GT/IBS will be included in the
dataset, therefore the classification performance of the Class
GT/IBS will be improved.

C. Example: Virtual impact scenario (asteroid 54509 YORP)

To intuitively show the performance of IDSS (consists of
Asteroid Impact Scenarios Identifier and Asteroid Deflection
Strategies Selector), in this section we test IDSS under a
virtual impact scenario of asteroid 54509 YORP (2000 PH5).
The diameter of asteroid YORP is about 97.67 m, and its
corresponding virtual impact scenario’s information is listed
in Table IV-C with assumptions of twarn = 8 years and
bpaSource1 = bpasource2 = 0.5. Figure 6 shows the Belief
and Plausibility curves of Pc at the time of MOID. As its
Bel|Pc0 = 0.8581 and DoU |Pc0 = 0.1419, this virtual impact
scenario belongs to Class 2 according to the criterion in Table
III-B1. The computation time of Belief and Plausibility curves
is totally 47.35s. Class 2 indicates the virtual impact scenario
is dangerous enough to perform the deflection. Table IV-C
shows robust optimisation results of 5 different deflection
strategies, and LA is suggested to be the most efficient and
robust strategy. The computation time of robust optimisation
for 5 deflection strategies is totally 321.72s.

The IDSS is then tested on this virtual impact scenario,
simulation results show that both of the Asteroid Impact Sce-
narios Identifier and the Asteroid Deflection Strategy Selector
can predict the classes correctly with the total computation
time less than 5s.

Intelligent decision support system for planetary defense under mixed aleatory/epistemic uncertainties



Figure 6. Belief and Plausibility curves of Pc.

Table VIII
ROBUST OPTIMISATION RESULTS FOR 5 DEFLECTION STRATEGIES

Strategy Optimal worst cases (∆Pc)
NED -7.49E-05

KI -2.46E-05
LA -4.47E-04
GT -1.20E-06
IBS -6.93E-05

V. CONCLUSION

This paper proposes the Intelligent Decision Support System
(IDSS) that consists of The Asteroid Impact Scenarios Identi-
fier and Asteroid Deflection Strategies Selector. The Asteroid
Impact Scenarios Identifier is designed to automatically decide
if a further deflection action is necessary to respond to an
asteroid impact scenario. The Asteroid Deflection Strategies
Selector is designed to automatically assess the most efficient
and robust deflection strategy to respond to an asteroid impact
scenario. The capabilities of Random Forest, Deep Neural
Networks and Convolutional Neural Networks at classifying
impact scenarios and deflection strategies are shown in this
paper. Simulation results suggest that the proposed system can
quickly provide decisions to respond to an asteroid impact
scenario.
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