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Abstract—Interpretable Machine Learning (IML) is expected
to remove significant barriers for the application of Machine
Learning (ML) algorithms in power systems. This letter first
seeks to showcase the benefits of SHapley Additive exPlanations
(SHAP) for understanding the outcomes of ML models, which
are increasingly being used. Second, we seek to demonstrate that
SHAP explanations are able to capture the underlying physics
of the power system. To do so, we demonstrate that the Power
Transfer Distribution Factors (PTDF)—a physics-based linear
sensitivity index—can be derived from the SHAP values. To do so,
we take the derivatives of SHAP values from a ML model trained
to learn line flows from generator power injections, using a simple
DC power flow case in the 9-bus 3-generator test network. In
demonstrating that SHAP values can be related back to the
physics that underpin the power system, we build confidence
in the explanations SHAP can offer.

Index Terms—Interpretable machine learning, machine learn-
ing, power systems, sensitivity analysis.

I. INTRODUCTION

POWER systems are extremely complex high dimensional
systems, the complexity of which is only set to increase

with the connection of renewable energy sources and inclusion
of other energy vectors such as heating and transportation.
Understanding complex power system phenomena in this
context is crucial for ensuring continued reliable power supply.
In recent years, many Machine Learning (ML) applications to
predict the behaviour of various aspects of power systems have
been developed—some of which are summarised in [1]. While
these black-box ML algorithms have shown good accuracy and
computational savings, their applicability to mission-critical
infrastructure such as power systems is limited due to absence
of trustworthy explanations.

The premise of interpretable ML—an emerging area of
research—is to provide detailed explanations of ML model
predictions in order to enhance confidence in the model predic-
tions. Among the post-hoc ML model interpretability methods,
which [2] presents concisely, SHapley Additive exPlanations
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(SHAP) has gained some initial traction in power systems, as
[3] reviews. The focus of the limited number of applications
in literature, however, usually centre around applying SHAP,
rather than analysing the method itself.

SHAP [4] is model agnostic (i.e., can be applied to different
types of ML models) and is of the class of additive feature
attribution methods; meaning that it attributes an effect of a
feature xi on the prediction of a model f(x).

Such methods construct a simple additive explanation
model, g—which is a linear function of binary variables—to
represent the complex original model, f . In the SHAP frame-
work, the explanation model is expressed as a “conditional
expectation function of the original model” [4]. Simplified
inputs x′ are used to map to the original input through mapping
function hx, where x = hx(x′); ensuring g(z′) ≈ g(hx(z′)),
whenever z′ ≈ x′ and where z′ ∈ {0, 1}M and M is the
number of simplified input features. Thus an effect φi (where
φi ∈ R) is attributed to each feature, the sum of which
approximates f(x) as per (1).

g(z′) = φ0 +
∑M

i=1 φiz
′
i (1)

This quantification is based on Shapley values [5], which stems
from game theory and describes the average marginal contribu-
tion of a player to all coalitions in which the player contributes.
The SHAP framework often incorporates approximate SHAP
values for computational efficiency [4]. SHAP offers local
explanations for a single point, which can be repeated for
multiple points to achieve global interpretations. For more
details, the interested reader can refer to [6].

This letter initially showcases SHAP interpretations as a
tool for understanding power system ML models using a
simple case study (Section II), and then establishes the ca-
pability of SHAP explanations to capture underlying physics
of the power system—thus enhancing confidence in SHAP
as an interpretability method (Section III). We achieve this
by deriving Power Transfer Distribution Factors (PTDF) (i.e.,
the sensitivity of line flows to power injections) from SHAP
values. In doing so, we seek to build confidence in SHAP as
a tool for interpreting ML models.

II. USING SHAP VALUES TO INTERPRET ML MODELS
FOR LINE FLOW PREDICTION: 9-BUS CASE STUDY

Individual eXtreme Gradient Boosting (XGBoost) [7] re-
gression models fline,i−j(x) are trained to predict the active
power flow (Fline,i−j) on each line of the the 9-bus 3-
generator test network (Fig. 1). This is achieved using a set
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Fig. 1. 9-bus 3-generator test network with line 4-5 highlighted for analysis.

of input features x, x ∈ P for a simple DC power flow
case, with a 75-25% train-test split. The parameters of the test
network are taken from Matpower [8]. For the trained models,
SHAP values are calculated (using the framework set out in
[4], implemented in Python).

A. Database Creation
To generate the database upon which the ML models are

trained, samples of PG2 and PG3 are drawn independently
from a uniform distribution in the range [0, 500] MW for
a total of 1001 generation scenarios. For the sake of this
case study, but without loss of generality, demand is assumed
constant at 315 MW. PG1 acts as the slack bus. Following
the execution of a DC power flow, the active power flow on
each line is recorded (Fline,i−j) in the database. Since PG1 is
the slack generator (and therefore not an independent feature),
it is excluded from the database. The final database contains
PG2 and PG3 as training features and Fline,i−j as targets for
all 1001 operational scenarios. Database available in [9].

B. SHAP Insights: Analysis of fline,4−5(x)

To gain insights into each ML model, the Tree SHAP
algorithm (a polynomial time algorithm that leverages the
tree structure [6]) is applied to each model. Analysis of a
single local explanation and a global model interpretation
of fline,4−5(x) is presented below. Similar analysis can be
extracted for the remaining ML models fline,i−j(x).

1) Local Explanation: Local explanations provide the con-
tributions of features (i.e. SHAP values, φi) in shifting the
model prediction from the model expectation (E[f(x)])—that
would be predicted if we had no feature information—to
the final prediction (f(x)) for a single operational scenario.
Therefore the SHAP values (φi) are given in the units of the
variable being predicted. In this study, features are the PG2
and PG3 injections. An example of a local SHAP explanation
for the model fline,4−5(x) is given in Fig. 2. For this particular
operational scenario, the baseline model expectation (E[f(x)])
for Fline,4−5 is −102.3 MW. PG3 setpoint is 267.8 MW,
which decreases the prediction by −10.2 MW (φPG3)) from
E[f(x)] to −112.5 MW. The setpoint for PG2 is 15.0 MW,
which increases the model prediction by 82.6 MW (φPG2).
This results in the final prediction of f(x) = −29.9 MW.
This is consistent with (1). Since |φPG2| > |φPG3|, PG2 has
a greater effect in this scenario and thus is placed higher on
the y-axis.

2) Global Interpretation: Global interpretations comprise
of the local explanations for the entire training database, mak-
ing them consistent. Analysis of SHAP values in the global
frame assists in understanding the global model structure.

E[f(x)] = −102.3 f(x) = −29.9

-40-60-80-100

-10.2

+82.6

PG3 = 267.8

PG2 = 15.0

Fig. 2. Local SHAP explanation for Fline,4−5 showing how SHAP values of
feature φi impact the move from model expectation E[f(x)] to final prediction
f(x) for a single operational scenario.

The global SHAP plot (Fig. 3) gives the SHAP value
for each feature (x-axis) with respect to the feature value
(color-axis). Features are ordered on the y-axis based on
importance (defined here as the mean of all SHAP values for
all operational scenarios). In this case, PG3 is found to have
a higher importance than PG2 (note: this is the inverse to
the local explanation given in Fig. 2 for that particular case,
indicating how local sensitivity vs. global importance need
not necessarily be the same). It can be seen that as PG3
increases, the SHAP values (φPG3) decrease from positive
to negative. This means that as PG3 increases the impact it
has on Fline,4−5 goes from increasing the baseline prediction,
to decreasing it. This is consistent with the theory of power
flow when observing Fig. 1—where one would expect a higher
PG3 setpoint to decrease Fline,4−5 in this simple DC power
flow example. A similar trend can be seen for the SHAP
values for PG2 (φPG2)—although the impact is smaller than
PG3, indicated by a smaller spread of SHAP values on the
x-axis. The feature value is given on the color axis and is
normalised based on the min/maximum feature value for trend
identification, however the actual feature value (in MW) can
also be extracted. This showcases how SHAP values can give
some interesting insights about how power system features,
here the power injections, affect our outputs of interest, here
the line flows. This can be especially useful in more complex
cases, where analytical relationships are difficult to extract.

Fig. 3. Global SHAP interpretation for Fline,4−5. Each point for each feature
is an operational scenario in the training dataset.

III. DERIVATION OF PTDF FROM SHAP VALUES

To show the link between SHAP values and the PTDF,
we consider fline,i−j(x) to be a linear statistical model
f(x) = w>x + b whose features (x ∈ P ) are assumed to be
independent. Here the features are the power injections PG2
and PG3.

Theorem 1. The derivatives of the SHAP values φi(f,x),
i 6= 0, associated with f(x) yield exactly the PTDF of this
network.
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Proof. Using Corollary 1 from [4], the SHAP values φi(f,x)
associated with f(x) are given by

φ0(f,x) = b (2)
φi(f,x) = wi(xi − E[Xi]), i 6= 0 (3)

where Xi is the training data associated with the ith feature.
Perturbing the ith feature (i.e., continuous regressor) yields

∂φi
∂xi

= wi. (4)

Since wi relates the sensitivity of line flow to the ith injection,
the SHAP derivative is equivalent to a PTDF.

For a definition and analytical derivation of the PTDF, the
interested reader can refer to [10]. Strictly speaking, the result
of Theorem 1 is only valid when the underlying statistical
model is linear (or affine). However, ML practitioners often
use models which have the capacity to be aggressively non-
linear. SHAP can be applied in either case and as the trained
models effectively still behave like linear models, (3)-(4) will
remain approximately valid. To show this experimentally, we
note that the sum across all SHAP values should yield a model
with linear sensitivity to power injections, i.e., an approximate
PTDF vector D̂, and a constant offset term ε:∑

i

φi(f, x) = w>(x− E[X]) + b ≈ D̂>P + ε. (5)

By collecting a library of SHAP values Φ associated with a
library of sampled injection values P, a regression procedure
can yield the PTDF approximation D̂:[

D̂
ε

]
= P+Φ, (6)

where (·)+ denotes Moore–Penrose pseudoinversion.
Table I presents the analytical PTDF and the SHAP-based

PTDF D̂ for the relevant buses for the case study in Section II.
These experimental results support Theorem 1, showing that
the derivatives of the SHAP values are equivalent to the PTDF
for this network.

TABLE I
9-BUS 3-GENERATOR TEST NETWORK PTDF & SHAP.

True physical PTDF, D SHAP-based PTDF, D̂

Line Bus 2 Bus 3 Bus 2 Bus 3

Line 1-4 -1.0000 -1.0000 -0.9999 -0.9999
Line 4-5 -0.3613 -0.6152 -0.3613 -0.6151
Line 5-6 -0.3613 -0.6152 -0.3613 -0.6151
Line 3-6 0 1.0000 0.0000 0.9999
Line 6-7 -0.3613 0.3848 -0.3613 0.3848
Line 7-8 -0.3613 0.3848 -0.3613 0.3848
Line 8-2 -1.0000 0 -1.0000 0.0000
Line 8-9 0.6387 0.3848 0.6386 0.3848
Line 9-4 0.6387 0.3848 0.6386 0.3848

IV. POTENTIAL APPLICATIONS OF SHAP FRAMEWORK

The main motivations for using ML are its capacity to
provide explicit mappings of complex functions and accel-
erate computationally heavy tasks. One could use such a
ML model directly, however they are often black-box and
therefore difficult to interpret. To build confidence in the ML

model and foster widespread use in the power system domain,
understanding how the model makes predictions and identify
potential relationships with power system physics is essential.
Model interpretability techniques can be used to achieve this
to either bolster existing knowledge, or infer new information
about the power system. Ideally this should be standardised
across the industry.

We believe that SHAP has the potential to be such a
technique. This arises from the ability to look at local ex-
planations, e.g., for a specific operating point, as well as
global explanations, i.e., ranking feature importance for a
model. Based on these explanations, we could (i) compare the
performance of different ML models beyond pure accuracy as
well as investigate their implicit biases, (ii) search for simpler
operational rules derived from a ML model, (iii) improve the
dataset generation by focusing on contradicting explanations.

For these processes to be effective, it is important to
understand the characteristics of the explanation method,
i.e., SHAP, itself. In this context, the ability to link SHAP
and its explanations to physics (e.g., PTDF) is a desirable
property. For a more complex case than the presented one,
such links could reveal interesting insights and also help to
gain confidence in both ML models and indeed SHAP as an
interpretability method for power systems.

V. CONCLUSION

Interpretable Machine Learning (IML) in power systems
will become necessary to understand increasingly complex
Machine Learning (ML) models used in academia and indus-
try. For wide-spread adoption, confidence must be built in the
interpretation method. Physical equivalence is one such way of
developing confidence, which we have shown in this letter for
SHapley Additive exPlanations (SHAP) and Power Transfer
Distribution Factors (PTDF) in a simple DC power flow case.
Extending from this linear case to more complex nonlinear
problems will likely be a fruitful avenue of future research.
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