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AUTONOMOUS NAVIGATION AROUND DIDYMOS USING
CNN-BASED IMAGE PROCESSING

Aurelio Kaluthantrige*, Iosto Fodde†, Jinglang Feng‡, and Jesús
Gil-Fernández§

HERA is an asteroid rendezvous mission of the European Space Agency (ESA)
that will investigate the binary asteroid system (65803) Didymos. The proximity
operations of HERA’s spacecraft around the target body rely on an autonomous
optical navigation system that collects on-board visual information to estimate the
relative position and attitude of the spacecraft with respect to the asteroid. The core
component of this navigation method is the Image Processing (IP) algorithm that
extracts optical observables from images captured by the spacecraft’s on-board
Asteroid Framing Camera (AFC). The Early Characterization Phase (ECP) is a
proximity operation of HERA with the objective of conducting physical and dy-
namical characterizations of Didymos. This paper develops a pipeline to estimate
the position of HERA spacecraft around binary asteroid system Didymos during
the ECP using a Convolutional Neural Networks (CNN)-based IP algorithm. The
proposed algorithm uses the images captured with the AFC camera to estimate
the pixel position of the centroid of Didymos and the pixel position of a set of
keypoints on the visible border of Didymos. With these points, the algorithm eval-
uates the apparent radius of the primary, which is used to measure the pseudorange
by applying the pinhole camera model. Subsequently, the algorithm combines the
measured centroid and pseudorange with an Unscented Kalman Filter (UKF) to
estimate the relative position of the spacecraft. The training, validation and testing
datasets are generated with the software Planet and Asteroid Natural scene Gen-
eration Utility (PANGU). The High-Resolution Network (HRNet) is used as CNN
architecture as it represents the state-of-the-art technology in keypoint detection.
The HRNet-based IP algorithm measures the pseudorange and estimates the posi-
tion of the centroid with high accuracy. The UKF is able to process the centroid
and pseudorange measurements to produce an accurate state estimate with an error
of around 300 m and 2 cm/s.

INTRODUCTION

The Asteroid Impact Deflection Assessment (AIDA) is an international collaboration between the
National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA),
with the primary objective of investigating a binary asteroid system and to demonstrate its deflection
by kinetic impact. The NASA contribution to this mission is the Double Asteroid Redirection
Test (DART), a kinetic impactor launched on the 24th of November 2021 that will perform the
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deflection in September 2022.1 ESA’s segment of the AIDA mission is represented by HERA,
whose objectives are to research the properties of the binary asteroid system, to observe the results
of DART’s impact and to assess the feasibility of the deflection technique.2 HERA falls under ESA’s
Space Situational Awareness (SSA) initiative, which enables ESA to detect, predict and assess the
risk of Near Earth Objects.

The target of this mission is the near-Earth asteroid (65803) Didymos and its moon Dimorphos.
Table 1 illustrates relevant properties of Didymos and Dimorphos. The spin axis of both bodies is
orthogonal to the binary’s orbital plane. Dimorphos is tidally locked with Didymos, i.e. its rotation
period is equal to its revolution period around the primary.3 The proximity operations of HERA

Table 1: Didymos’ system properties3

Parameter Didymos Dimorphos

Gravitational parameter (km3/s2) 3.5225 · 10−8 2 · 10−10

Diameter (m) 780 164

Rotation period (hours) 2.26 11.92

Obliquity of the binary orbit with Ecliptic plane 169.2◦ 169.2◦

consist of different phases that depend on the mission objectives. The focus of this work is the Early
Characterization Phase (ECP), with the spacecraft at a distance of around 30 km from the target
with the objective of conducting physical and dynamical characterizations of Didymos.4

Observing a binary asteroid system from such a short distance is unprecedented. A vision based
Guidance, Navigation and Control (GNC) system is designed to improve the mission autonomy.
This system comprises an on-board camera taking images of the asteroid, an Image Processing (IP)
algorithm that extracts information from these images, and a navigation filter that is able to process
the visual data to estimate the spacecraft position, velocity and attitude with respect to the binary
system. The camera used for the vision based navigation system is the Asteroid Framing Camera
(AFC). For the ECP, the navigation strategy is centroid-based, meaning that the IP algorithm is de-
signed to extract the Center of Mass (COM) of the primary body, thus estimating the Line Of Sight
of the spacecraft, with the purpose of enabling autonomous attitude navigation.5 Nevertheless, stan-
dard IP algorithms’ performances are highly depending on the intrinsic properties of the captured
images. Factors such as the Signal-to-Noise ratio, illumination conditions, the presence of other
bodies in the image and the irregular shape of the asteroid can affect the accuracy of the extracted
visual information.

To estimate the relative position of the spacecraft, range measurements with the asteroid are
required. The on-board instrument to measure the range with Didymos is the Planet ALTimeter
(PALT), a lidar experiment that determines the distance to the asteroids with an accuracy of 0.5
m by measuring the time of flight of a laser beam at 1.5 µm wavelength. PALT is operational
at a distance ranging from 500 m to 14 km, hence it cannot be used to determine the range with
Didymos during the ECP.6

In this work, we develop an autonomous optical navigation strategy which relies on a Convolu-
tional Neural Network (CNN)-based IP algorithm that estimates the position of the COM of Didy-
mos and the range with it, limiting the errors introduced by the irregular shape of the asteroid, the
illumination conditions and the presence of Dimorphos in the images. Since it is not a direct mea-
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Figure 1: Overall pipeline of optical navigation algorithm

surement but it is derived from the images, the estimated range is a pseudorange measurement. An
Unscented Kalman Filter (UKF) is then used to estimate the relative position of the spacecraft, by
combining the range and the COM measurements together with the information given by the dy-
namics. The goal of this paper is to assess the performances of the navigation strategy by examining
the accuracy of the provided measurements and by investigating the effectiveness of the navigation
filter.

Recent years have seen an increase of the implementation of CNNs in space image processing.
One of the main advantages of CNNs with respect to standard IP algorithms is the robustness over
disturbances and adverse characteristics of the images. Most of the CNNs process the input image
with a network typically consisting of a series of high-to-low resolution subnetworks. This process
reduces the input’s resolution, which is then recovered through a low-to-high process. With this pro-
cedure, extracted visual data have low spatial precision and accuracy that are important aspects for
an autonomous attitude navigation system. Therefore, this works adopts the High-Resolution Net-
work (HRNet) architecture to maintain a high-resolution representation through the whole network.7

This process leads to a keypoints regression with superior spatial precision and higher accuracy.

This paper is structured as follows. The next section describes the framework of our methodology.
The section after performs the numerical simulations and analyze the results obtained. Finally, the
conclusion and the directions for future work are presented.

METHODOLOGY

In this Section, the methodology of this research is described. Figure 1 shows the main steps of the
undertaken pipeline. With the ECP reference trajectory and the software Planet and Asteroid Natural
scene Generation Utility (PANGU), two sets of images are generated, one without the presence of
Dimorphos and one with both bodies. The former set is processed to retrieve the Ground Truth (GT)
keypoints which are used to supervise the training and validation of the HRNet. The GT keypoints
are 25 points selected from the projected surface of the primary on the image plane which includes
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Figure 2: ECP trajectory

Figure 3: Range of the ECP trajectory

the COM and 24 points on the border. The second set of images is used for the training, validation
and testing of the HRNet. The trained HRNet is applied to estimate the position of the keypoints
of the testing dataset with both bodies. Then, the pinhole camera model is used with the estimated
keypoints to measure the pseudorange. The latter is then coupled with the COM measurement to
estimate the relative state of the spacecraft with respect to the binary asteroid system. Details of the
main steps are described in the rest of this section.

Reference trajectory

The adopted reference frame is the Target Body Equatorial Inertial (TBEqI), which has the origin
located on Didymos, the X-axis pointing towards the vernal equinox, and the XY plane coplanar to
the equatorial plane of Didymos. The relative motion of the Sun around Didymos is retrograde as
the binary system’s orbit obliquity with respect to the Ecliptic plane is higher than 90◦, as shown in
Table 1.

The ECP trajectory data is provided by ESA. Figure 2 represents the trajectory of the spacecraft,
together with the position of the Sun (scaled down in the illustration) and the orbit of the secondary.
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Figure 4: PANGU viewer with two sample images captured at different points of the ECP trajectory

Figure 5: Camera pointing with error

The position of the Sun is calculated using the Jet Propulsion Laboratory Small Body Database.8

The trajectory consists of 4 hyperbolic arcs, with an initial epoch of tin = 9012 days and a final
epoch of tfin = 9026 days, calculated in the Modified Julian Date 2000. The only forces considered
for each arc are the point mass gravitational attractions of both the primary and the secondary.
Orbital manoeuvres are performed at the joint of two arcs. The duration of the 1st and 3rd arcs is
4 days while the duration of the 2nd and 4th arcs is 3 days. The range with respect to the primary
varies between a minimum of 20 km and a maximum of 30 km as shown in Figure 3. It can be
seen from Figure 2 that the ECP trajectory is interposed between the Sun and Didymos, in order to
provide the AFC camera with bright images for the centroiding navigation.4

Generation of images

The software PANGU is used to generate the database of images for this work. PANGU is a
simulation tool that models planet and asteroids surfaces and provides a high degree of realism in the
visualization of images while operating at near real-time speeds. The software has been developed
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by the STAR-Dundee engineering company.9 The models of Didymos, Dimorphos and the camera
are provided by GMV Aerospace and Defence, in charge of the GNC system of the HERA mission.
Didymos’ shape is near-spherical, and it is a spinning top with an elevated ridge along the equator.
The shape of Dimorphos is not well known and it is approximated by scaling down the shape model
of Itokawa that was the target asteroid of the Hayabusa mission. The software generates the images
detected by the camera and shows them on the PANGU viewer, a plane with the size of the image
(shown in Table 2) and the origin of the coordinated frame set to the top left corner. The horizontal
and the vertical axes of the plane are referred as i-direction and j-direction respectively.

In order to visualize the binary system of asteroids on PANGU, the flight file system is operated.
These files control the PANGU viewer and generate images taken at selected points of the reference
trajectory in the TBEqI reference system, considering the position of the Sun (range, Azimuth and
Elevation) and the positions and the orientations (quaternions) of both the binary asteroid system
and of the AFC camera (joined with the spacecraft).9

During asteroid imaging, the AFC has its boresight pointing towards the primary and the vertical
axis of the camera is perpendicular to the direction of the Sun with respect to HERA.4 PANGU
adopts the boresight, the vertical and the horizontal axis of the camera respectively as the Z- the
Y- and the X-axis of the camera reference frame.9 Therefore, the position vector of the Sun with
respect to HERA lies on the XZ plane of the camera frame. As a result, the images generated on the
PANGU viewer always represent the binary system illuminated from the right side. Figure 4 shows
two sample images generated at different points of the ECP trajectories, together with the i- and the
j-directions of the PANGU viewer.

When the camera is pointing perfectly towards the primary, the latter is displayed in the middle
of the PANGU viewer. With these conditions, the Geometrical Center (GC) of the PANGU model
of the primary, that is the arithmetic mean position of all the points belonging to the body, is located
at the central pixel with the coordinates (i, j) = (512, 512) pixels in the PANGU viewer. Because
of its near-spherical shape, the COM of the primary almost coincides with its GC. Since the images
used in this work are all generated with PANGU, it is assumed that the GC of Didymos is its
centroid. If the camera’s boresight is always pointing perfectly towards the GC of the asteroid, its
position on the PANGU viewer will always be (i, j) = (512, 512) pixels for each image. Training
the CNN algorithm with a set of images with these characteristics will result in an issue of lacking
label variability. To overcome this issue a pointing error represented by spherical coordinates and
defined by two angles α and β is introduced at each point of the trajectory in the boresight direction
of the camera reference system, as shown in Figure 5, so that the generated images are shifted from
the central position of the PANGU viewer. In order to make sure that the asteroid is within the Field
of View (FOV) of the AFC camera, random values within an interval of [−1, 1]◦ are considered for
both α and β at each epoch. With these values, the primary location is shifted around the viewer.

Pinhole camera model

The pinhole camera model is implemented in PANGU using the properties of the AFC camera,
shown in Table 2.11, 12 In the pinhole camera model, also called perspective camera model, the
camera aperture is considered as a point rather than a lens. Therefore, this model is used to achieve
a first-order approximation of the relationship between the coordinates of a point X in the 3D space
and its projection x onto the 2D image plane of the camera,13 given by Eq. 1:

x = K[R|t]X (1)
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Figure 6: Pinhole camera model geometry10

Table 2: AFC properties11, 12

FOV Focal Length: f Aperture Image size Pixel Size: ν

5.5◦ 10.6 cm 2.5 cm 1024× 1024 pixels 14 µm

where K is the calibration matrix that depends on the intrinsic properties of the AFC camera and
R and t are respectively the rotation matrix and the translation vector from TBEqI to the camera
reference frame. Figure 6 shows the geometry of a pinhole camera model. In this model the centre
of projection C is the origin of the camera reference frame and the image plane is located at the
focal length f = 10.6 cm (Table 2). It can be seen from Figure 6, that a point in space P with
coordinates (X,Y, Z) is mapped to a point on the image plane with the coordinates (fXZ , fYZ , Z).12

The units conversion from meters to pixels for an object of length l on the image plane is given by
n ·ν pixels, where n is the number of pixels representing the object and ν is the pixel size (Table 2).
Therefore, an object of length L in meters on a plane of the 3D space at distance Z from the camera
and parallel to the image plane is projected onto the latter with the dimensions in pixels defined by
Eq. 2.

n · ν =
f · L
Z

(2)

Keypoints for the pseudorange

In order to apply the pinhole camera model to measure the pseudorange of the spacecraft with
respect to Didymos, the shape of Didymos is approximated as a sphere of radius R = 390 m
(Table 1). Given that on the image plane the length of the asteroid radius has a value of nR pixels,
Eq. 2 can be solved for Z, which is the distance from the centre of projection C and the COM of
Didymos, i.e. the range. Therefore, once nR of an image captured by the camera is obtained, the
range can be calculated with Eq. 3.

Pseudorange =
f ·R
nR · ν

(3)

Figure 7a shows how nR is calculated for a generic synthetic image of the asteroid, which is mea-
sured by the number of pixels from the COM to the point P on the asteroid’s border along the
i-direction. Dimorphos is hidden from the images as its presence in front of Didymos or near its
border would disturb the evaluation of nR.

Nevertheless, this calculation of nR is highly dependant on the relative attitude of Didymos with
respect to the spacecraft because of the asteroid’s irregular shape. To reduce the error introduced
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(a) Two points (b) Multiple points

Figure 7: Keypoints selected from the visible border of the asteroid

Figure 8: HRNet architecture

by the irregularity of the shape, multiple points Pi on the border within an arc of angular aperture
2θ are considered, as shown in Figure 7b. The distance ni

R is evaluated for each point Pi and the
average value n̄R is calculated and used in Eq. 3 to measure the pseudorange. In this study we select
24 points Pi on the border within an arc of aperture 2θ with θ = 87◦.

HRNet

The HRNet architecture is shown in Figure 8. The network maintains the high resolution rep-
resentations of the input images by connecting multiple subnetworks in parallel. The first stage
is a high-resolution subnetwork. New stages are formed from the gradual introduction of high-
to-low subnetworks. To maintain the high-resolution representation, repeated multiscale fusions
are performed using low-resolution representation of the same depth and similar level. The last
high-resolution representation is then used for the regression of the selected visual data.7

The keypoints to regress for each image are 25 points on the surface of Didymos, which are the
COM and the 24 points on the visible border of the asteroid. Each input image of the HRNet is
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coupled with the 25 corresponding keypoints that are used to supervise the training to regress the
keypoints locations on the testing dataset. In this work, the pose-hrnet-w32 is used, where 32 rep-
resent the widths of the high-resolution subnetwork in the last three stages. During training, the
validation dataset is used beside the training one to compute the validation losses and avoid over-
fitting. The Adam optimizer is used with a cosine decaying learning rate with initial value of 10−3

and decaying factor of 0.1. The total parameters involved in the training process are 28, 536, 377.

The input dataset consists of 12104 (61.53%) images for training, 1513 (7.69%) for validation
and 6052 (30.78%) for testing that are obtained by sampling the ECP trajectory respectively every
100, 800 and 200 seconds. Each image show both bodies, so that the HRNet is trained to regress
the location of the keypoints despite the disturbance introduced by the presence of Dimorphos. The
network is trained for 210 epochs.

Navigation filter

To combine the measurements produced by the image processing algorithm and form an accurate
estimate of the state of the spacecraft, a navigation filter needs to be implemented. In this work, an
Unscented Kalman Filter (UKF) is used for this purpose.14 Compared with the Extended Kalman
Filter (EKF), the UKF allows the full non-linear dynamics and measurement equations to be used,
which results in an estimate of the posterior mean and covariance accurate up to the third order.15

The following section discusses the implementation of this filter, the dynamics and measurement
equations used, and the tuning of the filter for the specific problem of the ECP trajectory.

The UKF is based on a non-linear uncertainty propagation technique called the Unscented Trans-
form (UT). Consider a non-linear function y = g(x), where x is a random variable with mean x̄
and covariance Px. The UT forms a matrix X consisting of a set of 2n + 1 sigma points, where n
is the size of the state vector x, constructed as follows:

X0 = x̄

Xi = x̄+ (
√
(n+ λ)Px)i, i = 1, ..., n

Xi = x̄− (
√
(n+ λ)Px)i, i = n+ 1, ..., 2n.

Here, λ = α2(n + κ) − n is a tuning factor, and (
√
(n+ λ)Px)i is the i-th row of the matrix

X . For the square root, the Cholesky decomposition technique is used. A set of sigma points are
constructed from X and propagated through g(X i) to obtain a set of propagated sigma points Yi.
The mean and covariance can be formed from these points using the weights Wi as follows:

ȳ ≈
2n∑
i=0

Wm
i Yi

Py ≈
2n∑
i=0

W c
i (Yi − ȳ) · (Yi − ȳ)T

Wm
0 = λ/(n+ λ)

W c
0 = λ/(n+ λ) + (1− α2 + β)

Wm
i = W c

i = 1/(2n+ λ), i = 1, ..., 2n.

The benefit of this approach is the guarantee of accuracy up to third-order for the case of a Gaussian
random variable, while minimizing the number of samples that need to be propagated through the
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non-linear equations. The UKF implements the UT and changes the definition of the state x to the
augmented state xa = [xT ,wT ,vT ], where w is the process noise and v is the measurement noise.

Compared to the UKF, the EKF is more computationally efficient as no samples need to be prop-
agated and the linearized equations are used to propagate the estimated state. As the sampling rate
of the measurements considered here is relatively slow, the accuracy of the UKF outweighs the nu-
merical efficiency of the EKF, therefore the UKF is used for this case. The individual steps of the
UKF are shown in algorithm 1.

Algorithm 1 The Unscented Kalman Filter
Initialize:
x̂0 = E[x0]
P0 = E[(x0 − x̂0) · (x0 − x̂0)

T ]
x̂a
0 = E[xa

0] = [x̂0,0,0]

P a
0 =

P0 0
Pw

0 Pv


for Each measurement zk at time k = 1, . . . , tf do

Calculate sigma points from rows X a
k−1

Update Step:
X x
k|k−1 = f(X x

k−1,Xw
k−1)

x̂−
k =

∑2n
i=0W

m
i X x

i,k|k−1

P−
k =

∑2n
i=0W

c
i (X x

i,k|k−1 − x̂−
k ) · (X

x
i,k|k−1 − x̂−

k )
T

Zk|k−1 = h(X x
k−1,X v

k−1)

ẑ−
k =

∑2n
i=0W

m
i Zi,k|k−1

Measurement Step:
Pzk,zk =

∑2n
i=0W

c
i (Zi,k|k−1 − ẑ−

k ) · (Zi,k|k−1 − ẑ−
k )

T

Pxk,zk =
∑2n

i=0W
c
i (X x

i,k|k−1 − x̂−
k ) · (Zi,k|k−1 − ẑ−

k )
T

K = Pxk,zkP
−1
zk,zk

x̂k = x̂−1
k +K(zk − ẑ−

k )
Pk = P−

k −KPzk,zkK
T

end for

State and Measurement Dynamics

There are various options in terms of modelling the dynamics of the spacecraft. The main forces
acting on the spacecraft are the gravitational forces from both Didymos and Dimorphos, the solar
radiation pressure (SRP), and the third body gravitation of the Sun. To reduce the computational
complexity, the main force to be included will be the gravitational attraction of the two bodies. At
the distance of the ECP, it was found that for accurate modelling the point mass model is sufficient.16

This setup does neglect certain unmodelled forces and thus it is important to reflect this in the design
of the process noise. A technique called Dynamic Model Compensation (DMC)17 is used, where an
exponentially correlated bias acceleration is added to the dynamics. This acceleration is then used
as a new parameter to be estimated at each time step by the navigation filter. As, in reality, most of
the unmodelled accelerations are correlated in time, the dynamics of this parameter is modelled as
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Figure 9: Accuracy of the keypoints regression

a first-order Gauss Markov process:

ak+1 = e−
dt
τ ak + ω(t), (4)

where a is the bias acceleration, dt the filter time step, τ the autocorrelation parameter which
determines the ”smoothness” of the process, and ω is a zero-mean Gaussian noise. The maneuvers
to change the arcs of the ECP are not added into the dynamics, as the acceleration bias of Eq. (4) is
expected to capture this as well. Future work will look more into different setups to include these
maneuvers and improve the filter’s performance.

For the measurement equation z = h(x), the sensor model of the camera for the COM and
the range needs to be implemented. For the COM, the pinhole model discussed previously is used
(Eq. 1). The rotation matrix R between the Didymos reference frame and the spacecraft frame at
each point in time is assumed to be given by the attitude determination system. The range measure-
ment equation is simply the norm of the spacecraft position vector given in:

ρ =
√
x2 + y2 + z2 (5)

RESULTS

In this section, the results of the HRNet-based IP algorithm for the measurement of the pseudor-
ange and the estimation of the COM position are presented. Firstly, the accuracy of the HRNet on
the estimation of the positions of the 25 keypoints is analyzed with the metric defined as follows:

RMSEm =

√∑N
n=1(P

GT
mn − PEst

mn )2

N
(6)

where Pmn represents the m-th 25 keypoint; the index n refers to the n-th image of the N = 6052
images of the testing dataset; RMSEm is the Root Mean Squared Error (RMSE) between the GT
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Figure 10: Keypoints regression results for two images of the 1st and the 3rd arc

position of the m-th keypoint PGT
mn and the estimation PEst

mn made by the HRNet. Eq. 6 is applied
to all the 25 keypoints. To determine the accuracy of the keypoint regression, the RMSE value
obtained by the Maximum Correlation with a Lambertian Sphere (MCLS) IP algorithm developed
by GMV Aerospace and Defence to estimate the position of the centroid of Didymos during the
ECP of the HERA mission is given as a reference: RMSEGMV = 7.746 pixels. This result is
obtained by applying the algorithm over a set of 243 images generated during the ECP.

The accuracy of the results of the pseudorange is assessed through a metric defined by the percent
error between the GT value and its estimation. The distribution of the percent error is also analyzed,
since the optimality of navigation filters assumes the errors having a Gaussian distribution.

Accuracy of keypoints regression

Figure 9 is a bar chart of the RMSE values obtained for the 25 keypoints regressed by the
HRNet. The first bar represents the RMSE for the COM position estimation. The other 24 points
are located on the border of the asteroid. It can be seen that the worst performance of the HRNet is
reached for the first point (θ = 87◦) of the border of the asteroid and the best performance for the
11th point, with values of the RMSE equal to 13.161 pixels and 2.973 pixels respectively.

The difference on the estimation accuracy for each point is depending on the different lighting
conditions and on the shape of the asteroid. Nevertheless, the RMSE values are very close to the
ones obtained by the MCLS IP algorithm. Therefore, the HRNet is able to estimate the position of
the keypoints with high accuracy independently from the presence of Dimorphos and the irregular
shape of the asteroid. Figure 10 shows 2 images generated by PANGU during the first and the third
arc, together with the keypoints estimated by the HRNet.

Pseudorange measurement

Figure 11 shows the results obtained for the pseudorange estimation with the HRNet-based IP
algorithm. The plot above shows that the estimation is similar to the ground truth illustrated in
Figure 3. The plot below in Figure 11 shows that the absolute percent error is lower than 10% and
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Figure 11: Pseudorange estimation

Figure 12: Pseudorange percent error distribution

it oscillates around a mean value of 2.1385%. It can be seen that when the range reaches its local
minima in the 1st and 3rd arcs, the absolute percent error is higher, due to the fact that the images
of the asteroid are appearing larger in the image plane. As a consequence, the non-spherical shape
becomes more predominant and the approximation as a sphere is less accurate.

Figure 12 represents the distribution of the percent error of the pseudorange estimation, which is
similar to a white noise with the mean value of µ = 0.1298% near 0. It means that the designed
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Figure 13: The difference between the true ECP trajectory and the estimated one.

algorithm does not suffer from any systematic errors. The value of the error that occurs the most,
which is represented by the highest peak of the histogram, is 0.4695%. The standard deviation of the
error is σ = 2.6888% which means that 68.27% of the pseudorange measurements have a percent
error ranging between −2.559%and 2.8186% with respect to the ground truth. The distribution of
the error is symmetrical (skewness = 0.0176) and light-tailed (kurtosis = 3.0067) which means
that the percent error distribution is similar to a Gaussian distribution.

Navigation Filter

An error of 10 km and 0.1 m/s is introduced in the initial estimate of the state, while the initial
estimate of the acceleration bias is 0 m/s2. The settings of the filter matrices is given in Table 3.
The estimated trajectory resulting from the navigation filter is shown in Figure 13, and the errors in
the state variables are shown in Figure 15 in the TBEqI. The initial error in the state estimate quickly
decreases in the 1st arc and results in final estimates below around 300 m for the position and 0.5
cm/s for the velocity. As the second arc starts, the error increases quickly as the acceleration bias
estimate, seen in Figure 15c, needs to correct for the unmodelled ∆V acceleration before the filter
corrects it again. This happens again for the 3rd and 4th arcs. The effect of the spacecraft maneuvers
can be seen more significantly in the velocity error in Figure 15b, as the velocity estimate is mainly
determined through the dynamics update of the filter and less by the input of the measurements.
However, for both the position and velocity, the filter is able to quickly decrease the errors to the
values mentioned before as more measurements come in. This shows the capability of the filter to
react to unmodelled accelerations like the maneuvers of the spacecraft and keep the navigation error
low.
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Table 3: The settings of the navigation filter

Variable Value Unit

P0,r 10002 m

P0,v 0.12 m/s

P0,a 0.00012 m/s2

Qr 0 m

Qv 1e− 6 m/s

Qa 1e− 8 m/s2

Ru,cam 152 pixels
Rv,cam 102 pixels
Rρ 5002 m

Figure 14: The difference between the true ECP trajectory and the estimated one in the camera
reference frame

The main component that is affecting the overall accuracy of the position estimate is the measure-
ment of the range with respect to Didymos. Figure 15a shows in the 3rd arc a large region where the
error increases, which is caused by the decrease in accuracy of the range error shown in Figure 11.
The state errors are transformed to the camera reference frame, where the z-axis points towards the
center of Didymos, as is shown in Figure 14. This shows more clearly that the majority of the error
comes from the radial direction, as the x- and y-direction have significantly smaller errors compared
to the z-direction. Therefore, improving the measurement of the range will have a large impact on
the general accuracy of the navigation system.
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(a) Position errors in TBEqI

(b) Velocity errors in TBEqI

(c) Acceleration bias estimates.

Figure 15: The results for the navigation filter using the HRNet-based image processing measure-
ments
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CONCLUSION

This paper develops a CNN-based IP algorithm addressing the state estimation problem for au-
tonomous optical navigation around a binary asteroid system. The ECP proximity operation of the
HERA mission to Didymos system is studied as case scenario. The main objective of the developed
methodology is to provide the navigation algorithm with the asteroid COM and pseudorange mea-
surements that support the state (position and velocity) estimation of the spacecraft and increase
the robustness of the navigation algorithm. The training, validation and testing datasets of images
are generated using the software PANGU with the ECP reference trajectory. The chosen CNN ar-
chitecture is the HRNet, that is the state of the art in keypoint detection and that has been already
exploited for space applications. The navigation filter we used is a UKF.

The results show that the HRNet-based IP algorithm is able to measure the COM position and
the pseudorange with high accuracy and the methodology is robust to the disturbances caused by
the irregular shape of the asteroid and the presence of Dimorphos. In particular the percent error of
the range has a near-Gaussian distribution, which is ideal for navigation filters. The UKF performs
well by estimating the state with high accuracy. Future work would go into the direction of other
utilizations for the HRNet-based IP algorithm. For instance, and additional estimated output that
is useful for the navigation algorithm of the GNC system during the proximity operations with the
asteroid is the pose estimation of Didymos.
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