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1. Abstract 14 
Field development and control optimization aim to maximize the economic profit of oil and gas 15 
production while considering several sources of uncertainty. This results in a high-dimensional 16 
optimization problem with a computationally demanding and uncertain objective function based on 17 
the simulated reservoir model. The limitations of many current robust optimization methods are: 1) it 18 
is single-level optimization (e.g. optimization of well locations/placement only; or of well 19 
production/injection control variables only) that ignores interference between the control variables 20 
from different levels; and 2) they provide a single optimal solution, whereas operational problems 21 
often add unexpected constraints likely to reduce that optimal, inflexible solution to a sub-optimal 22 
scenario.  23 

This paper presents a robust, multi-solution framework based on sequential iterative optimization of 24 
control variables at multiple levels using the Simultaneous Perturbation Stochastic Approximation 25 
(SPSA) optimization algorithm. A systematic realization selection process, tailored to the objective of 26 
the subsequent optimization stage, is used to select a small representative ensemble of reservoir 27 
model realizations to be used for calculating the expected objective value. The estimated gradients 28 
are calculated using a 1:1 ratio mapping ensemble of control variables perturbations at each iteration 29 
onto the ensemble of selected reservoir model realizations to reduce the computational cost. An 30 
ensemble of close-to-optimum solutions is then chosen from each level (e.g. from the well placement 31 
optimization level) and transferred to the next level of optimization (e.g. where the control settings 32 
are optimized), and this loop continues until no significant improvement is observed in the expected 33 
objective value. Fit-for-purpose clustering techniques are developed to systematically select an 34 
ensemble of solutions, with maximum differences in control variables but close-to-optimum objective 35 
values, at each optimization level.  36 

The proposed framework has been tested on a benchmark case study (Brugge field). Multiple solutions 37 
are obtained with different well locations and control settings but close-to-optimum objective values. 38 
We show that suboptimal solutions from an early optimization level can approach and even outdo the 39 
optimal one at the next level(s). Results demonstrate the advantage of the developed framework in 40 
more efficient exploration of the search space and providing the much-needed operational flexibility 41 
to field operators. 42 

Keywords: robust optimization, well placement, optimal control, SPSA, geological uncertainty  43 

2. Introduction 44 
Optimal field development and management process operates critical decision variables (a.k.a. control 45 
variables), such as well locations and control settings, to maximize the economic profit from oil and 46 
gas production. However, mathematically this often results in a high-dimensional, constrained 47 
optimization problem with computationally demanding and uncertain objective function (i.e. the 48 
production forecast model and field performance estimation based on it). The control variables in this 49 
optimization problem can be grouped based on their type (e.g. integer, model grid cell number-based 50 
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well locations; continuous well production/injection pressure or rate control settings, etc.). In this 51 
paper we refer to optimization of different variable types as different ‘optimization levels’, e.g. the 52 
well location optimization is one level, and the well production/injection control optimization is 53 
another level. 54 

Single-level optimization frameworks have been developed to optimize only one type of control 55 
variables, such as well locations [1-7] or well control settings like flow rate or pressure [8-18]. These 56 
methods may not be appropriate where the optimization problem involves multiple levels, as they do 57 
not capture the potential correlations or interference among control variables at different levels. In 58 
contrast, multi-level frameworks aim to simultaneously optimize multiple types of variables at 59 
different levels to account for the correlation among control variables. Current multi-level approaches 60 
can be classified into two groups: (1) Joint optimization [19-21]: this approach optimizes a single 61 
augmented vector containing all control variables at different levels. Although the obtained solution 62 
using this approach is theoretically optimal, however, a sub-optimal performance as a result of 63 
convergence to a local optima is expected when using this approach in reasonable-scale full-field 64 
applications due to the optimization algorithm’s high demand for computational resources because 65 
of the large number of simultaneous control variables [22]. (2) sequential optimization [22-24]: in this 66 
approach, the main problem is divided into sub-problems with reduced number of control variables. 67 
Each sub-problem is a single-level optimization (with a single type of control variable); an iterative 68 
approach is then employed to account for the correlations among control variables at different levels. 69 

Current field development/control optimization frameworks can further be classified into three main 70 
groups based on the employed optimization algorithm: (1) stochastic derivative-free and 71 
metaheuristic algorithms such as genetic algorithm (GA) [25, 26] or particle swarm optimization (PSO) 72 
algorithm [27], (2) adjoint gradient-based algorithms [28-32], and (3) stochastic approximated 73 
gradient-based algorithms such as Simultaneous Perturbation Stochastic Approximation (SPSA) [23] 74 
or Stochastic Simplex Approximate Gradient (StoSAG) method [33]. Stochastic derivative-free and 75 
metaheuristic algorithms can globally search for the optimal solution of all types of control variables 76 
(e.g. categorical, integer, continuous), however, they typically have a slower convergence rate than 77 
gradient-based algorithms and their performance decreases rapidly when the number of control 78 
variables increase [34]. Adjoint gradient-based methods are computationally efficient; however,  most 79 
of the commercial simulators either do not have a fully developed adjoint code or do not allow access 80 
to the source code for efficient calculation of the gradient [35]. Approximate gradient-based 81 
algorithms are developed to address this issue by stochastically estimating the gradient of a black-box 82 
objective function using an ensemble of simultaneous perturbation of all control variables. The 83 
approximate gradient-based algorithms have been successfully employed to solve large-scale well 84 
placement (e.g. using SPSA [36]) and well control problems (e.g. using SPSA [37] and StoSAG [38]). 85 

The reservoir model is never perfect, nor the production forecast based on it. Hundreds of reservoir 86 
model realizations are generally developed to quantify the underlying uncertainty due to limited 87 
reservoir description knowledge. A robust, optimal well placement/control solution can then be 88 
achieved by optimizing the expected value of the objective function over the ensemble of model 89 
realizations. A variety of techniques have been developed to select a relatively small ensemble of 90 
model realizations, as the sufficient representatives of all possible realizations for the problem at 91 
hand, to reduce the computation time associated with the robust optimization process. Random 92 
sampling of realizations has previously been employed by Guyaguler and Horne [39] and Chen, Li [40], 93 
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however, random sampling approaches in general cannot guarantee to capture the underlying 94 
uncertainty. Iteratively updating the randomly selected samples during the optimization process (e.g. 95 
[22, 41]) can potentially improve the performance especially with a large number of iterations. A 96 
systematic selection technique [2, 37, 42] is preferred to select a subset of realizations as the 97 
representative of all realizations, tailored to the objective of the subsequent optimization.  98 

Current single/multi-level optimization frameworks provide a single solution as the output, while in 99 
practice, operational problems often impose unexpected constraints that result in operators having 100 
to adjust the optimal solution degrading its value. For instance, the provided optimal well location 101 
solution could be impractical (or difficult) to drill, due to the deviation of the well trajectory from the 102 
planned trajectory, caused by operational/tool errors. Hence, operational flexibility is an outstanding 103 
challenge to be addressed for practical application of the optimization frameworks. This paper 104 
presents a multi-solution optimization framework (MSOF) to solve well placement and control 105 
problems under geological uncertainty, based on a multi-level sequential (iterative) approach [3]. 106 
SPSA is used as the optimizer following previous works proving its efficiency in large-scale problems 107 
[23, 43-45]. The gradients at each iteration are stochastically estimated using a 1:1 ratio between the 108 
ensemble of control variables perturbations and the ensemble of selected model realizations. An 109 
ensemble of close-to-optimum solutions is then chosen from each level (e.g. from the well placement 110 
optimization level), transferred to the next level of optimization (e.g. where the well controls are 111 
optimized), and this loop continues until no significant improvement is observed in the expected 112 
objective value. Fit-for-purpose clustering procedures are developed to systematically select an 113 
ensemble of realizations to capture the underlying model uncertainties, as well as an ensemble of 114 
solutions with adequate differences in control variables but close-to-optimum objective values, at 115 
each optimization level.  116 

Multi-objective optimization approaches, such as bi-objective (pareto front) [16, 18, 46] and 117 
hierarchical approaches [29, 35, 40], have been initially used to achieve a secondary objective (usually 118 
a short-term gain, e.g. highly discounted cash flow) while maintaining a long-term, primary objective 119 
(e.g. undiscounted cash flow). The pareto front approach follows a similar concept to provide a 120 
reasonable degree of freedom to the decision maker to choose the optimal solution based on the 121 
relative importance of each of the two objectives [16]. The focus of this work is to develop a 122 
framework to provide the required operational flexibility in single-objective optimization problems. 123 

This paper is organized as follows: First, problem formulation for robust well placement/control 124 
optimization, with an uncertain reservoir model, is presented; followed by a brief description of the 125 
SPSA algorithm. Next, the developed techniques for reservoir model realization selection are 126 
presented and compared with the alternative realization selection strategies. The MSOF along with 127 
the developed techniques for selecting representative solutions at each optimization level are 128 
presented. The MSOF is then applied to a benchmark case study (Brugge oil field model). The 129 
numerical results are compared with single solution optimization approach and the previous approach 130 
of using all the selected realizations for gradient estimation (instead of the proposed 1:1 approach), 131 
and the conclusions are drawn. 132 

3. Problem statement 133 
In this work, the objective is to find the optimal set(s) of control variables (i.e. well locations and 134 
control settings) to maximize an objective function. Net Present Value (NPV), considering only oil and 135 
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water production/injection over the presumed life of the reservoir, is the selected objective function, 136 
defined as:  137 

𝐽(𝑥, 𝑚) = ∑ {[∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 )

𝑁𝑃

𝑗=1

− ∑(𝑐𝑤𝑖𝑞𝑤𝑖,𝑘
𝑛 )

𝑁𝐼

𝑘=1

] ×
𝛿𝑡𝑛

(1 + 𝑏)𝑡𝑛
}

𝑆

𝑛=1

 (1) 

where 𝑥 is the 𝑁𝑥  dimensional vector of the control variables, 𝑚 is the 𝑁𝑚 dimensional vector of the 138 
uncertain reservoir description properties (e.g. porosity and permeability fields, fault transmissibility, 139 
oil-water contacts) quantified as the reservoir model realizations, 𝑛 is the 𝑛th time step of the reservoir 140 
simulation, 𝑆 is the total number of simulation steps, 𝛿𝑡𝑛 is the length of 𝑛th simulation step, 𝑡𝑛 is the 141 
simulation time at the end of the 𝑛th time step, 𝑏 is the annual discount rate  in decimal, and 𝑁𝑃 and 142 
𝑁𝐼 are the number of producers and injectors, respectively. The cost coefficients 𝑟𝑜, 𝑟𝑝𝑤, and 𝑐𝑤𝑖 143 
denote the oil price, the water handling cost, and the water injection cost respectively; all in 144 
(USD/STB). 𝑞𝑜,𝑗

𝑛  and 𝑞𝑤,𝑗
𝑛  are the oil and water production rates of well 𝑗 at time step 𝑛 in STB/day. 145 

𝑞𝑤𝑖,𝑘
𝑛  is the water injection rate of well 𝑘 at time step 𝑛 in STB/day. The expected value of the objective 146 

function (𝐽𝐸) over an ensemble of reservoir model realizations is maximized in order to account for 147 
the reservoir description uncertainties. Hence the robust optimization problem is defined as 148 

max
𝑥∈ℝ𝑁𝑥

𝐽𝐸(𝑥) =
1

𝑁𝑟
∑ 𝐽(𝑥, 𝑚𝑘)

𝑁𝑟

𝑘=1

 
(2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥 , 𝑖 = 1 , 2 , … , 𝑁𝑥  (3) 

where 𝑁𝑟  denotes the number of representative reservoir model realizations, 𝑚𝑘 represents the 𝑁𝑚 149 
dimensional vector of the uncertain reservoir description properties (e.g. porosity and permeability 150 
fields, fault transmissibility, oil-water contacts) for the realization 𝑘 and 𝑥𝑖

𝑚𝑖𝑛 and 𝑥𝑖
𝑚𝑎𝑥 are the lower 151 

and upper bound for the 𝑖𝑡ℎ component of the control variable vector 𝑥, respectively. In this study, 152 
control variables 𝑥 are scaled from the original domain [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] to [0,1] (Eq. (4)) to eliminate the 153 
impact of different ranges of control variables at different optimization levels. 154 

𝑢𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛,𝑖

𝑥𝑚𝑎𝑥,𝑖 − 𝑥𝑚𝑖𝑛,𝑖
 (4) 

 155 

Simulation runs are conducted using a commercial reservoir simulator (ECLIPSE-100) [47] to calculate 156 
the objective function for the specified set of control variables and model realizations. 157 

3.1. Optimization methodology 158 

SPSA is a stochastic optimization algorithm based on the steepest ascent (or descent) while gradient 159 
is approximated using a randomly selected stencil [48]. Consider 𝐽(𝑢𝑘) to be the objective value, 160 
where  𝑢𝑘 is the 𝑁𝑥  dimensional vector of the scaled control variables at iteration 𝑘. The gradient 161 

𝑔𝑘(𝑢) is defined as the partial derivatives of the objective function 𝑔𝑘(𝑢) =
𝜕𝐽

𝜕𝑢
=162 

[
𝜕𝐽

𝜕𝑢1
,

𝜕𝐽

𝜕𝑢2
, … ,

𝜕𝐽

𝜕𝑢𝑁𝑥

]
𝑇

, where [. ]𝑇 represents a column vector [49]. SPSA iteratively maximizes the 163 

objective function 𝐽(𝑢) using: 164 

𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘𝑔̂𝑘(𝑢𝑘) (5) 
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where 𝑔𝑘(𝑢𝑘) is the stochastically estimated gradient of the objective function and 𝛼𝑘 > 0 is the step 165 

size at iteration 𝑘. To calculate 𝑔𝑘(𝑢𝑘), ∆𝑘= {∆𝑘1
, ∆𝑘2

, . . . , ∆𝑘𝑁𝑥
} is defined as a random vector of 166 

symmetrically distributed ±1 values, satisfying the conditions defined by Spall [48]. The stochastic 167 
gradient 𝑔𝑘(𝑢𝑘) is then calculated using ∆𝑘 and a positive scalar 𝑐𝑘: 168 

𝑔𝑘(𝑢𝑘) =
𝐽(𝑢𝑘 + 𝑐𝑘∆𝑘) − 𝐽(𝑢𝑘 − 𝑐𝑘∆𝑘)

2𝑐𝑘  
× [

1

∆𝑘1

,
1

∆𝑘2

, … ,
1

∆𝑘𝑁𝑥

]

𝑇

 (6) 

The convergence of the SPSA algorithm depends on the tuning parameters 𝛼𝑘 and 𝑐𝑘. Spall [49] 169 
suggested the following decaying sequences to calculate 𝛼𝑘 and 𝑐𝑘 to ensure a gradually refining 170 
search: 171 

𝛼𝑘 =
𝑎

(𝔸 + 𝑘 + 1)𝜗
 (7) 

𝑐𝑘 =
𝑐

(𝑘 + 1)𝛾
 (8) 

where 𝑎, 𝑐, 𝔸, 𝜗, and 𝛾 are positive, real numbers. The values of 𝜗 and 𝛾 are recommended to be 172 
0.602 and 0.101 [48]. The stability constant 𝔸 is recommended to be 5-10% of the expected, or 173 
allowed, number of iterations when optimizing continuous variables [50]. Jesmani, Jafarpour [41] 174 
recommended using a larger 𝔸 (e.g. 𝔸 was set to 100 that is 33.3% of the 300 iterations) to achieve a 175 
more refined search in order to enhance the convergence of the algorithm in well placement 176 
optimization problems with discrete control variables. In this work, 𝔸 = 100 and 𝔸 = 10 is used for 177 
well placement and well control optimization levels, respectively. Haghighat Sefat, Elsheikh [37] 178 
recommended setting  0.1 ≤ 𝛼0 ≤ 0.5 and 𝑐𝑚𝑖𝑛 (i.e. when 𝑘 = 𝑘𝑚𝑎𝑥)  between 0.025 and 0.1 based 179 
on the complexity/noise of the search space. Initial sensitivity analysis in this work showed that faster 180 
convergence and more stable search process is achieved when 𝛼0 = 0.5 and 𝑐𝑚𝑖𝑛 = 0.08 for both 181 
well location and control optimization. 182 

Average SPSA: The expectation of the stochastically estimated gradient (𝑔𝑘(𝑢𝑘)) is the true gradient 183 
due to the random nature of ∆𝑘 [48]. Wang, Li [51], therefore, suggested using an averaged stochastic 184 
gradient calculated by use of an ensemble of perturbation vectors to improve the estimation of the 185 
search direction. Using the central difference formulation for gradient estimation, 𝑛𝑒 independent 186 
samples of ∆𝑘 are generated at each iteration, which results in 2 × 𝑛𝑒 objective function evaluations 187 
(Eq.(6)). The average stochastic gradient is then calculated by arithmetic averaging of the ensemble of 188 
𝑛𝑝 estimated gradients using the following equation: 189 

𝑔𝑘(𝑢𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

𝑛𝑒
∑ 𝑔𝑖(𝑢𝑘)

𝑛𝑒

𝑖=1

 (9) 

where 𝑔𝑘(𝑢𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average stochastic gradient substituted for 𝑔𝑘(𝑢𝑘) in Eq. (5). Note that developed 190 
framework is independent of the choice of the objective function. Variance or standard deviation can 191 
be added as an extra term to Eq. (9) to form a utility function if the objective is to reduce the risk while 192 
maximizing the objective value [37]. We observed that setting 𝑛𝑒 between 3 to 5 provided a good 193 
quality of the estimated gradient at both the well placement and the well control levels.  194 

1:1 perturbation allocation method: Uncertainty in reservoir description is generally captured by 195 
creating an ensemble (usually hundreds) of equally probable model realizations [2, 52]. Therefore, a 196 
fixed control vector (𝑥) will produce different objective function values (𝐽) when applied to different 197 
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model realizations. Assuming 𝑛𝑐 is a small subset of model realizations, selected as the representative 198 
of all available realizations, 2 × 𝑛𝑒 × 𝑛𝑐 function evaluations are generally required at each iteration 199 
to estimate 𝑔𝑘(𝑢𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅ using 𝑛𝑝 estimated gradients (Eq. (9)), which is referred to as all-to-all approach 200 
(Figure 1-Left) in this paper. Chen, Oliver [53] and Fonseca, Leeuwenburgh [35] showed that a 1:1 201 
approach (Figure 1-Right), by mapping one member of the ensemble of control variables perturbations 202 
to one member of the ensemble of selected model realizations, can still provide a good estimate of 203 
the search direction at a significantly lower computation time while StoSAG [33] is used as the 204 
optimization algorithm (Note: StoSAG is an ensemble based optimization algorithm based on the 205 
EnOpt [53], where a smooth, stochastic approximated gradient is calculated using a temporal 206 
covariance matrix and an approximated simplex gradient over a number of perturbations of control 207 
variables). Assuming both ensembles of selected model realizations and control variables 208 
perturbations have an equal number of members (𝑛𝑐 = 𝑛𝑒) and considering that mean of the selected 209 
realizations is the objective function, a 1:1 approach can be used to reduce the number of function 210 
evaluations to 2 × 𝑛𝑒 in SPSA. Section 4.3 provides a comparison between all-to-all and 1:1 approach 211 
before employing the 1:1 approach in MSOF.  212 

 213 

Figure 1-A schematic example for Left: all-to-all perturbation allocation method (2 × 𝑛𝑒 × 𝑛𝑐 214 
function evaluations are required at each iteration) Right: 1:1 method (2 × 𝑛𝑒 function evaluations 215 

are required at each iteration). Note that central difference formulation is used for gradient 216 
estimation and both positive and negative perturbations are calculated using a particular realization. 217 

3.2. Reservoir model realization selection  218 

Selecting a small ensemble of model realizations as the representative of all available realizations can 219 
significantly reduce the computation time of robust optimization. A systematic approach is to tailor 220 
the realization selection process to the objective of the subsequent optimization stage. Wang, 221 
Echeverría-Ciaurri [2] proposed projecting all model realizations to 2D space while each dimension 222 
attributes to a time-varying (e.g. cumulative oil production) or static (e.g. permeability, oil-water 223 
contact, original oil in place) property of the model, followed by clustering and selecting 224 
representative realizations from each cluster. They used the normalized oil-water contact and the 225 
cumulative oil production as the model attributes when selecting representative realizations for well 226 
location optimization with the objective of maximizing NPV by enhancing reservoir sweep efficiency. 227 
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Haghighat Sefat, Elsheikh [37] proposed using the pairwise distance between water cut curves of all 228 
model realizations as similarity/dissimilarity measure when selecting realizations for well production 229 
optimization with the objective of increasing oil production by delaying water-breakthrough. Shirangi 230 
and Durlofsky [42] also proposed to measure similarity/dissimilarity between model realizations using 231 
a low-dimensional feature vector containing a combination of static and dynamic (varying with time) 232 
model properties, tailored to the optimization objectives. They found that both static and dynamic 233 
model properties need to be considered when selecting realizations for well location optimization 234 
while dynamic properties become especially important in realization selection for well control 235 
optimization.  236 

Well placement optimization: Optimal well locations are often functions of both static (geological) 237 
and dynamic (flow properties) features of the reservoir, hence at the well placement optimization 238 
level, the realization selection is performed by creating a two-dimensional map where each model 239 
realization is characterized by its normalized permeability distance and the area under the field 240 
cumulative oil production curve. The permeability distance is defined as the Euclidean distance 241 
between the permeability field of a particular realization (𝑚𝑖) and the average permeability field over 242 
all available realizations (𝑚̅) (i.e., 𝑑𝑖 =  ‖𝑚𝑖 − 𝑚̅‖2 where ‖. ‖ represents the l2-norm), which 243 
identifies the realizations showing different spatial permeability distribution compared to others. K-244 
means clustering [54] is then performed to group all available realizations (𝑛𝑟) into a small number of 245 
clusters (𝑛𝑐) by iteratively finding the optimal cluster centers, i.e. 𝜏𝑜𝑝𝑡 = {𝜏1, 𝜏2, … , 𝜏𝑛𝑐

}, such that the 246 
summation of the distances of all 𝑛𝑟 realizations from the nearest cluster center is minimized. 247 

𝜏𝑜𝑝𝑡 = ∑ min
𝑗=1,2,…,𝑛𝑐

‖𝑢𝑖 − 𝜏𝑗‖
2

𝑛𝑟

𝑖=1

 (10) 

where 𝜏𝑗 is the center for cluster 𝑗, and 𝑢𝑖 denotes the mapped realization. Each realization is then 248 
assigned to the nearest cluster center. Determining the optimum number of clusters is an ill-posed 249 
problem and mostly involves some form of intuition supported by a performance measure. The 250 
Silhouette value [55] evaluates how well a data point is assigned to a particular cluster and is used as 251 
the clustering performance measure in this work. Assuming 𝑛𝑐 clusters, the optimum number of 252 
clusters (𝑛𝑐𝑜𝑝𝑡

) is determined by comparing the average silhouette value (𝑆𝑖𝑙̅̅̅̅ (𝑛𝑐)) for different 253 

numbers of clusters (𝑛𝑐), where the maximum silhouette value indicates the best quality of clustering. 254 
Detailed information about the standard procedure of calculating average silhouette value can be 255 
found in Salehian, Sefat [12] and Haghighat Sefat, Elsheikh [37]. 256 

Well control optimization: The objective of the well control optimization level in this study is to 257 
improve oil recovery, which is typically achieved by delaying early water breakthrough in wells. Hence, 258 
following Haghighat Sefat, Elsheikh [37], the realization selection at the well control optimization level 259 
is performed by calculating the pairwise distance between model realizations as the summation of 260 
area between the well water cut versus production time curves of those realizations, given by: 261 

𝐷(𝑚𝑖, 𝑚𝑗) = ∑ ∫ (𝑓𝑤𝑐𝑔
(𝑚𝑖, 𝑡) − 𝑓𝑤𝑐𝑔

(𝑚𝑗, 𝑡)) 𝑑𝑡
𝑡𝑓

𝑡=0

𝑛𝑝

𝑔=1

 (11) 

where 𝑓𝑤𝑐𝑔
(𝑚𝑖, 𝑡) is the water cut in the 𝑔th production well as a response of model 𝑖 (𝑚𝑖) at time 𝑡, 262 

𝑛𝑝 is the total number of production wells, and 𝑡𝑓 is the final production time. The 𝑛𝑟 × 𝑛𝑟 dissimilarity 263 
matrix is then projected into two-dimensional space using multidimensional scaling (MDS) [56], 264 
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preserving the Euclidean distance between data points in 2D as close as possible to the distance 265 
measured in the original space (Eq. (11)). K-means clustering followed by average silhouette value 266 
analysis is performed to group model realizations into 𝑛𝑐𝑜𝑝𝑡

 clusters, similar to the routine followed 267 

at the well placement optimization level. At both optimization levels, the realization closest to the 268 
center of each cluster is selected as the representative of that cluster (following Scheidt and Caers 269 
[57] and Haghighat Sefat, Elsheikh [37]). Note that if the number of selected realizations is larger than 270 
the number of clusters, then a weighted averaging approach should be used [37]. Section 4.2 271 
compares the performance of the developed realization selection approach with the common 272 
alternatives. 273 

3.3. Multi-Solution Optimization Framework (MSOF) for well placement and control 274 

Fonseca, Leeuwenburgh [35] and Haghighat Sefat [9] showed that in optimization problems with a 275 
large number of control variables, the search space is characterized by several local optima with 276 
objective values close to each other. These local optima may form a multi-dimensional subspace 277 
where a minor change in the objective value is observed by varying control variables (similar to 278 
“mountain ridges”) [9]. Although some of these solutions could be sub-optimal, they provide an 279 
acceptable level of improvement from operational point of view. Moreover the provided continuous, 280 
level of freedom, to achieve similar objective values using different sets of control variables, offers the 281 
much-needed operational flexibility. The developed MSOF explores the search space to identify 282 
multiple sets of solutions with distinctly different control variables but close-to-optimum objective 283 
values. The multiple sets of solutions can be considered as realizations of the (uncertain) control 284 
variables. A similar realization selection approach, as the one explained in section 3.2, can then be 285 
employed to select an ensemble of representative optimal solutions from each optimization level. 286 

Solutions with low objective function values (𝐸(𝑁𝑃𝑉)) or with control variables values close to the 287 
optimal solution already selected are not good for the representative ensemble of optimal solutions 288 
from each optimization level. Hence, only the representative solutions with distinct differences in 289 
decision variables are selected from the top cases with objective values greater than a specified 290 
threshold, defined as 𝑝% of the maximum objective value (𝐽𝑚𝑎𝑥) achieved. The optimal value of 𝑝 291 
(𝑝𝑜𝑝𝑡%) depends on two competing criteria: distinct dissimilarity of the selected solutions, and 292 
proximity of the objective value of the selected cases to the maximum objective value. Selecting a 293 
large percentage of cases at each level (e.g. the extreme case of all cases) captures the maximum 294 
diversity between optimization scenarios. However, the selected cases do not all have the potential 295 
to achieve a close-to-optimum objective value after the next level of optimization and therefore do 296 
not qualify as an acceptable final solution. In this study, a sensitivity analysis followed by Salehian, 297 
Haghighat Sefat [45] showed that selecting 𝑝𝑜𝑝𝑡 = 0.8 at each optimization level (i.e. all cases with 298 
objective values in the range of  [𝑝𝑜𝑝𝑡 × 𝐽𝑚𝑎𝑥 , 𝐽𝑚𝑎𝑥] are selected, where 𝐽𝑚𝑎𝑥 denotes the maximum 299 
objective value achieved) provides the best performance in both sufficiently capturing the ensemble 300 
diversity and providing close-to-optimum objective values. 301 

The similarity/dissimilarity of the selected solutions is measured as a pairwise distance between their 302 
corresponding control variable vectors, normalized into [0,1] using Eq. (4). At well placement 303 
optimization level, the employed approach calculates distances between reservoir grids with active 304 
wells irrespective of well names [45] while conventional Euclidean distance is used at the well control 305 
optimization level. The selected solutions are then projected onto two-dimensional space using MDS 306 
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[Note that the choice of the projection into 2-dimensional space is validated by performing the 307 
principal component analysis (PCA) [58] as explained in the results section] followed by k-means 308 
clustering, accompanied by average Silhouette analysis to identify the optimum number of clusters. 309 
One representative solution is then selected from each cluster, to be transferred to the next 310 
optimization level. Figure 2 shows the flow diagram of the robust multi-solution framework with well 311 
placement and control settings as the optimization levels. 312 

 313 

Figure 2-Flow diagram of the proposed robust, multi-solution optimization framework. 314 
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4. Case study – Brugge model 315 
4.1. Model description and optimization settings 316 

The Brugge (model) is a benchmark reservoir model based on a North Sea field [52]. The model 317 
consists of 139 × 48 × 9 (total of 60,048) grid blocks of which approximately 45,000 are active. The 318 
original model consists of 20 producers and 10 injectors. In this test case, five vertical producers and 319 
five vertical injectors are kept from the original model, due to the limited computational resources. 320 
The total production time is 30 years. Figure 3 shows the top structure of the model with the base 321 
case well locations. The uncertainty in the model description is quantified by 104 equiprobable 322 
realizations of the permeability, porosity, and net-to-gross (NTG) value distribution [59].  323 

 324 

 325 

Figure 3-Top structure of the Brugge model. 326 

The objective function, NPV (Eq. (1)), is calculated using the economic parameters provided in Table 327 
1. 150 and 300 iterations are performed at well placement and control optimization levels, 328 
respectively. The top (𝑖, 𝑗) location coordinates of the wells are optimized during the well location 329 
optimization level, which results in 10 × 2 = 20 control variables. A minimum inter-well distance 330 
constraint of 200 𝑚 (equivalent to 2 grid blocks) is imposed during the well placement optimization 331 
level using a penalty method following Lu, Forouzanfar [22]. Well locations are maintained within the 332 
actual, irregular reservoir boundary limits, represented by a binary matrix with 0 and 1 elements 333 
indicating null and active reservoir grids, respectively. Following Salehian, Haghighat Sefat [45] each 334 
well is moved to the nearest active grid if it appears outside the reservoir boundaries during location 335 
optimization. The producers are all controlled by the Bottom Hole Pressure (BHP) varying between 336 
725 and 1595 𝑝𝑠𝑖, while the injectors are each controlled by the water injection rate varying between 337 
0 and 6289 𝑆𝑇𝐵/𝑑𝑎𝑦. The producers are shut when their water cut exceeds the economic value of 338 
90% calculated using Table 1 economic parameters. 30 control steps (of 1 year each) are considered 339 
during the well production/injection (control) optimization level resulting in the total of 30 × 10 =340 
300 control variables.  341 
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Table 1-Economic parameters for calculating NPV 342 

Parameter Value 
Oil price 50 USD/STB 
Water production cost 6 USD/STB 
Water injection cost 3 USD/STB 
Yearly discount rate 10% 

 343 

4.2. Comparison of realization selection strategies 344 

An ideal realization selection strategy should select the minimum number of realizations, as the 345 
representative of all realizations, which have the potential to provide a robust well placement and 346 
control scenario with optimal global performance during the subsequent optimization. The following 347 
realization selection strategies are compared in the context of the single-solution iterative sequential 348 
optimization approach:  349 

1. No selections: optimization over full ensemble (104 in here) of model realizations. 350 
2. The earlier-proposed systematic clustering approach tailored to the objective of subsequent 351 

optimization level. 352 
3. The Reduced Random Sampling Strategy (RRSS), i.e. random selection of an ensemble of 353 

model realizations at each iteration proposed by Jesmani, Jafarpour [41]. 354 
4. A single realization corresponding to the P50 of NPV with the base case locations and control 355 

settings [60, 61]. 356 
5. A randomly selected single realization [39, 40]. 357 

Table 2 compares the global performance of different realization selection strategies while all other 358 
settings such as the number of iterations and the initial starting point of the optimization remain the 359 
same. Due to the stochastic nature of the SPSA algorithm, the comparison has been repeated with 360 
seven different random seeds and Figure 4 compares the average of the 7 runs. The full ensemble 361 
optimization (approach 1) delivers the maximum improvement at a significantly high computation 362 
cost, previously reported by e.g. van Essen, Zandvliet [18]. The systematic clustering (approach 2) and 363 
the RRSS (approach 3) both outperform the single realization optimization, but the global performance 364 
reduces as compared to the full-ensemble due to selecting a limited number of realizations. This is in 365 
line with Park [62] and Haghighat Sefat, Elsheikh [37], who showed that the mean value of a quantity 366 
over a subset of realizations is not exactly equal to the mean value over all realizations, however, the 367 
selected subset of realizations shows a similar behavior to the full ensemble and the optimal solution 368 
calculated using that subset provides close objective value as compared to the full ensemble 369 
optimization. The systematic clustering achieves greater global performance confirming that random 370 
sampling cannot completely capture the underlying uncertainty, even after randomly selected 371 
realizations are updated at each iteration in RRSS. Note that an ensemble of 4 and 5 model realizations 372 
was selected at the well placement and control optimization levels, respectively, when using the 373 
systematic clustering (See Figure 6 and Figure 12 in section 4.4). Following the recommendation by 374 
Jesmani, Jafarpour [41], RRSS was performed with 5 randomly selected model realizations at each 375 
iteration. Hence in this case, systematic clustering resulted in a lower computational cost at the well 376 
placement optimization level377 

A robust, multi-solution framework for well placement and control optimization



 
 

13 
 

 378 

Table 2- Global optimization performance (i.e. expected objective value and standard deviation over all realizations) using different realization selection 379 
strategies. 380 

   No selection (full ensemble) Proposed systematic clustering 
approach 

Reduced Random Sampling 
Strategy (RRSS) Single realization selection (P50) Random selected single 

realization 

W
el

l P
la

ce
m

en
t O

pt
im

iza
tio

n 

Number of 
simulations 31200 1350 1650 1650 1650 

  𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

Seed 1 2.39 0.71 2.30 3.64 2.30 3.23 2.24 10.07 2.21 11.55 

Seed 2 2.36 0.73 2.29 3.63 2.28 3.36 2.21 10.11 2.19 11.49 

Seed 3 2.40 0.73 2.32 3.67 2.29 3.12 2.21 10.18 2.18 11.74 

Seed 4 2.37 0.77 2.33 3.54 2.25 3.48 2.20 10.10 2.15 11.6 

Seed 5 2.36 0.72 2.31 3.70 2.24 3.25 2.19 10.11 2.22 11.63 

Seed 6 2.36 0.73 2.28 3.66 2.25 3.24 2.22 10.06 2.16 11.59 

Seed 7 2.41 0.71 2.32 3.49 2.27 3.14 2.21 10.03 2.14 11.31 

Average 2.38 0.73 2.31 3.62 2.27 3.26 2.21 10.09 2.18 11.56 

W
el

l C
on

tr
ol

 O
pt

im
iza

tio
n 

Number of 
simulations 62400 3300 3300 3300 3300 

  𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

𝐸(𝑁𝑃𝑉)
× 10^9 

𝜎(𝐸(𝑁𝑃𝑉))
× 10^8 

Seed 1 3.11 0.22 3.03 2.6 2.96 1.77 2.94 10.97 2.77 12.29 

Seed 2 3.09 0.17 3.01 2.64 2.95 1.9 2.92 10.92 2.73 12.76 

Seed 3 3.21 0.35 3.04 2.43 2.86 1.93 2.94 10.85 2.72 12.64 

Seed 4 3.05 0.20 2.99 2.48 2.97 2.03 2.84 10.87 2.73 12.76 

Seed 5 3.13 0.24 3.03 2.55 2.91 1.87 2.89 10.84 2.70 12.51 

Seed 6 3.12 0.29 2.99 2.6 2.96 1.86 2.88 11.00 2.68 12.58 

Seed 7 3.15 0.38 3.00 2.66 2.96 1.79 2.90 10.93 2.70 12.52 

Average 3.12 0.26 3.01 2.57 2.94 1.88 2.90 10.91 2.72 12.58 

 381 
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 382 

 383 

 384 

Figure 4-Average improvement in the expected objective value (over all realizations) as a result of 385 
well placement and control optimization using different realization selection strategies. 386 

4.3. Comparison of 1:1 with all-to-all perturbation allocation in SPSA  387 

As discussed in section 3.1, the following two approaches can be used when estimating the gradient 388 
of the expected objective value over an ensemble of model realizations using SPSA  389 

• All-to-all: mapping each member of the ensemble of control variables’ perturbations to all 390 
members of the ensemble of selected model realizations 391 

• 1:1 method:  mapping each member of the ensemble of control variables’ perturbations to its 392 
single counterpart in the ensemble of selected model realizations. 393 

Table 3 compares the performance of the two approaches at the well placement and control 394 
optimization level while all other settings, the number of iterations, selected realizations (using the 395 
systematic clustering approach), etc. remain the same. The lower improvement in the objective value 396 
is due to the lower quality of the estimated gradient using the 1:1 approach. However, a significant 397 
reduction in the computation time is achieved (4650 vs 20250 simulations required). Hence, the 1:1 398 
approach is employed in the MSOF due to the limited computational resources.   399 
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Table 3-Global optimization performance (i.e. over all realizations) using 1:1 and all-to-all 400 
perturbation allocation approaches. 401 

  1:1 method All-to-all method 

Base case 𝐸(𝑁𝑃𝑉) × 109 1.93 

well 
placement 

optimization 

𝐸(𝑁𝑃𝑉) × 109 2.30 2.42 

Number of simulations 1350 4950 

Well control 
optimization 

𝐸(𝑁𝑃𝑉) × 109 3.03 3.09 

Number of simulations 3300 15300 

 402 

4.4. Application of MSOF for well placement and control optimization in the Brugge model 403 

The MSOF along with the developed reservoir model realization selection techniques and 1:1 404 
perturbation allocation method is applied to the Brugge model. Figure 5 shows the projection of all 405 
model realizations in 2D based on the normalized permeability distance and cumulative oil production. 406 
Note that the cumulative oil production is calculated based on the base case well locations and fully 407 
open control scenario (i.e. producers are set at minimum BHP and injectors are set at maximum rate). 408 
The optimum number of clusters is identified to be 4 (𝑛𝑐𝑜𝑝𝑡

= 4) based on the average Silhouette 409 

analysis as the max value is achieved with four clusters (Figure 6).  The realization closest to the center 410 
of each cluster is selected as the cluster representative (Figure 7) and the selected realizations are 411 
employed during the robust, well location optimization level.  412 

 413 

Figure 5-Two-dimensional map of all realizations based on permeability distance and cumulative oil 414 
production. 415 
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 416 

Figure 6-Average Silhouette value of all data points for different number of clusters in k-means. 417 

 418 

Figure 7-K-means clustering of reservoir model realizations considering four clusters, at well 419 
placement optimization level. Red points show the cluster representatives. 420 

Figure 8 shows the improvement in the expected NPV (𝐸(𝑁𝑃𝑉)) of the selected realizations during 421 
well placement optimization iterations. The oscillations in the 𝐸(𝑁𝑃𝑉) are due to the minimum inter-422 
well distance constraint imposed as a penalty term in the objective function definition (see Lu, 423 
Forouzanfar [22] for penalty term formulation). The dissimilarities between the top selected well 424 
location solutions, within an 𝐸(𝑁𝑃𝑉)  shortfall of 20% as compared to the max case, are measured 425 
followed by projection on 2D using MDS (Figure 6).  Note that PCA performed on the dissimilarity 426 
matrix of the selected well placement solutions showed that the first two dimensions account for 427 
approximately 70% of the variance in the original dataset of 𝑁𝑥 = 20 dimensions. Hence, the relative 428 
distance between points in 2D space roughly represents the dissimilarity of the solution scenarios in 429 
the original space. 430 

Each data point in Figure 9 represents a well location solution, with the color showing 𝐸(𝑁𝑃𝑉) over 431 
the selected realizations, confirming that a close to maximum objective value can be achieved by 432 
different well location solutions. The optimum number of clusters is identified to be 4 (Figure 10-left). 433 
The solution with the maximum NPV is selected as the representative of each cluster (shown by red 434 
points in Figure 10-right), considering the objective of choosing different solutions with highest 435 
objective values.  436 
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 437 

Figure 8-Expected objective value of the selected ensemble of realizations during well placement 438 
optimization. 439 

 440 

Figure 9-Projection of selected well location solutions, within an 𝐸(𝑁𝑃𝑉)  shortfall of 20% as 441 
compared to the max case, into a two-dimensional space using MDS (color shows the objective value 442 

of each solution). 443 

 444 

Figure 10- (Left)Mean Silhouette value analysis for the selected well placement solutions within an 445 
𝐸(𝑁𝑃𝑉)  shortfall of 20% as compared to the max case (Right) K-means clustering of the selected 446 
well placement solutions considering four clusters. Red points show the cluster representatives. 447 
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Figure 11 shows the representative well placement solutions, named 𝐿1, 𝐿3, 𝐿4, and 𝐿64, where the 448 
subscripts denote ranking of the solutions based on their 𝐸(𝑁𝑃𝑉) over the selected ensemble of 449 
realizations. Note that the case with the maximum objective value (𝐿1), i.e. the obtained optimal 450 
solution using the classic single-solution approach, is automatically selected as a representative 451 
solution. Table 4 shows the corresponding expected objective value and standard deviation of the 452 
selected well placement solutions when applied to the full ensemble of model realizations. A very 453 
similar global performance is observed by the selected ensemble of solutions (Table 4) while they 454 
provide a reasonable degree of flexibility in the well locations (Figure 11). It should be noted that a 455 
suboptimal member of the selected ensemble of solutions (e.g. 𝐿4 here) can potentially provide a 456 
better global performance over all realizations, showing the robustness of the developed multi-457 
solution framework by more efficient exploration of the search space. 458 

 459 

 460 

Figure 11-Four optimal well placement solutions obtained by MSOF. 461 

Table 4-Mean and standard deviation of the optimal well placement solutions over all realizations. 462 

Solution 𝐸(𝑁𝑃𝑉) × 109 𝜎(𝐸(𝑁𝑃𝑉)) × 108 

Base Case 1.93 4.55 

𝐿1 2.30 3.64 

𝐿3 2.26 3.66 

𝐿4 2.31 3.42 

𝐿64 2.15 3.45 

 463 

A new set of reservoir model realizations are selected, based on the distance measure described 464 
before (Eq. (11)), for each member of the ensemble of optimal well location solutions prior to well 465 
control optimization. Figure 12 shows the clustering performance, where the optimal number of 466 
clusters is determined using average Silhouette value analysis for each case. Note that the well water 467 
cut variation over time is a function of well location, resulting in different subsets of representative 468 
realizations to be selected for each optimal well location scenario (Figure 12). The control settings for 469 
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each optimal well location solutions are then individually optimized at the next optimization level. 470 
Figure 13 shows improvement in the 𝐸(𝑁𝑃𝑉) of the corresponding ensemble of reservoir model 471 
realizations during 300 iterations of well control optimization for each optimal well location solution.  472 

 473 

Figure 12- K-means clustering for reservoir model realization selection for each member of the 474 
ensemble of optimal well location solutions prior to well control optimization. Red points show the 475 

cluster representatives. 476 

 477 
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Figure 13- E(NPV) of the corresponding ensemble of reservoir model realizations during well control 478 
optimization for each optimal well placement scenario. 479 

A similar clustering approach is applied to the control solutions where an ensemble of representative 480 
solutions is selected from the top cases within the 𝐸(𝑁𝑃𝑉) shortfall of less than 20% w.r.t. the max 481 
case. Conventional Euclidean distance is used to measure the dissimilarity between control scenarios 482 
followed by MDS to map them into two-dimensional space (Figure 14). Figure 15 shows the k-means 483 
clustering where the optimum number of clusters is determined by average Silhouette value analysis. 484 
The control scenario with the maximum NPV is then selected from each cluster as the representative 485 
of that cluster, resulting in a total of twelve optimal well control scenarios for all four well placement 486 
strategies.  487 

The optimization trajectory as a result of using a gradient-based algorithm for optimizing well control 488 
settings (which are continuous variables) is clearly shown in Figure 14 while a more scattered search 489 
is performed during the well location optimization level with discrete variables (Figure 9). This feature 490 
of the optimization algorithm provides a level of freedom by exploring solutions around the optimal 491 
solution with limited exploration of new regions in the search space (i.e. capturing significantly 492 
different solutions). Further research is currently ongoing to achieve the maximum level of diversity 493 
in close-to-optimum solutions by enhancing the exploration of the search space, especially at the well 494 
location optimization level.  At the well control optimization level a lower diversity of the selectable 495 
solutions is generally accepted due to the flexible nature of the well control operations.  496 

 497 

 498 

Figure 14- Projection of selected well control solutions (within an 𝐸(𝑁𝑃𝑉)  shortfall of 20% as 499 
compared to the max case) corresponding to four optimal well locations into a two-dimensional 500 

space using MDS. 501 
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 502 

Figure 15 - K-means clustering followed by selection of the representative well control solutions, for 503 
each optimal well location. The optimal number of clusters for each ensemble is identified by 504 

average Silhouette value analysis. 505 

Table 5 shows the mean of the final ensemble of close-to-optimum scenarios over all realizations, 506 
where e.g. 𝐿3. 𝐶268 denotes the 268th control scenario, ranked based on 𝐸(𝑁𝑃𝑉) during the well 507 
control optimization, using well location solution 𝐿3. It can be seen that 𝐿4. 𝐶231 delivers the greatest 508 
global performance (over all reservoir model realizations) while only 𝐿1. 𝐶1 would be obtained as the 509 
single optimal solution using traditional, single-solution-transfer optimization frameworks. Moreover, 510 
a sub-optimal control scenario (i.e. with lower expected objective function value over the selected 511 
ensemble of realizations) could deliver higher global performance (over the full ensemble of 512 
realizations) (e.g. 𝐸(𝑁𝑃𝑉)𝐿1.𝐶154

> 𝐸(𝑁𝑃𝑉)𝐿1.𝐶1
 and 𝐸(𝑁𝑃𝑉)𝐿4.𝐶231

> 𝐸(𝑁𝑃𝑉)𝐿4.𝐶1
), demonstrating 513 

the robustness of the developed MSOF and its efficiency in the exploration of the search space. 514 

The sequential optimization loop was terminated since no further improvements in the expected 515 
objective value were achieved at the second loop. 𝐿1. 𝐶154, 𝐿3. 𝐶150, 𝐿4. 𝐶231, and 𝐿64. 𝐶1 are selected 516 
as the optimal control scenarios with the highest 𝐸(𝑁𝑃𝑉) for each well location solution. A realistic 517 
level of variability in the optimal location and control is observed while the objective value varies in a 518 
relatively small range [2.80×109 - 3.08×109 USD], indicating the possibility of achieving a close-to-519 
optimum objective value via different field development/control scenarios.  520 

Table 5- Mean and standard deviation of the optimal solutions over all realizations. 521 

Solution 𝐸(𝑁𝑃𝑉) × 109 𝜎(𝐸(𝑁𝑃𝑉)) × 108 

𝐿1. 𝐶1 3.03 2.60 

𝐿1. 𝐶154 3.00 2.59 
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𝐿1. 𝐶265 2.78 2.42 

𝐿3. 𝐶1 2.84 2.56 

𝐿3. 𝐶150 2.93 2.71 

𝐿3. 𝐶268 2.70 2.39 

𝐿4. 𝐶1 2.88 2.71 

𝐿4. 𝐶231 3.08 2.76 

𝐿4. 𝐶246 2.85 2.45 

𝐿64. 𝐶1 2.80 2.61 

𝐿64. 𝐶126 2.76 2.57 

𝐿64. 𝐶263 2.58 2.32 

 522 

5. Conclusions 523 
The operational flexibility is a significant challenge, which needs to be expanded for practical 524 
applications of the optimization frameworks. Multi-objective (pareto) optimization is recommended 525 
when the optimal solution is decided based on the relative importance of each of the objectives. 526 
However, for a single-objective optimization problem with multiple types of variables at different 527 
levels, this paper presents a robust multi-solution optimization framework to offer multiple, distinct 528 
robust field development and control scenarios through an efficient exploration of the search space. 529 
Systematic clustering techniques were developed to select an ensemble of realizations to capture the 530 
underlying model uncertainties, as well as an ensemble of solutions with enough differences in control 531 
variables but close-to-optimum objective values, at each optimization level. SPSA was employed in a 532 
multi-level, sequential, iterative approach to find optimal well placement and control scenarios. The 533 
proposed framework was applied to a representative benchmark case study. 534 

• The systematic realization selection process, tailored to the objective of the subsequent 535 
optimization stage, outperformed the Reduced Random Sampling Strategy (RRSS) and single 536 
realization selection approaches in efficiently representing the characteristics of the full 537 
ensemble of realizations while significantly reducing the computation time of robust 538 
optimization. The distance measure needs to be redefined for other optimization problems 539 
with a different objective. 540 

• Estimation of the stochastic gradients at each iteration using a 1:1 ratio between the ensemble 541 
of control variables perturbations and the ensemble of selected model realizations 542 
substantially reduced the computation time while providing similar objective values.  543 

• Multiple optimal well placement and control solutions with close-to-optimum objective values 544 
but different decision variables were obtained. Moreover, it was found that selected 545 
suboptimal location/control solutions over a small subset of realizations can outdo the 546 
optimal one when applied to all realizations, highlighting the significance of here-developed 547 
MSOF in order to provide a more robust solution and the much-needed operational flexibility 548 
in the field development optimization problems. 549 
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