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Abstract 

In order to analyse the deformation response of materials and structures, various continuum mechanics 
theories have been proposed. Peridynamics is a new non-local continuum mechanics formulation which has 
governing equations in integro-differential equation form. Analytical solution of these integro-differential 
equations is limited in the literature. In this study, analytical solution of the peridynamic equation of motion 
for a 2-dimensional membrane is presented. Analytical solutions are obtained for both static and dynamic 
conditions. Various numerical cases are considered to validate the derived analytical solution by comparing 
peridynamic results against classical continuum mechanics results. For both static and dynamic cases, both 
solutions agree very well with each other. Moreover, the influence of the size of the length scale parameter in 
peridynamics, horizon, is investigated. According to the numerical results, it is concluded that as the horizon 
size becomes larger, peridynamic solution captures nonlocal characteristics and peridynamic results deviate 
from classical continuum mechanics results. 
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1. Introduction 

In order to analyse the deformation response of materials and structures, various continuum mechanics 
formulations have been proposed such as classical continuum mechanics (CCM), strain gradient elasticity, etc. 
CCM has been successfully utilised for the solution of many challenging problems. However, it also has 
certain limitations especially due to the type of equations that it is based on, i.e. partial differential equations. 
Since spatial derivatives do not exist along crack surfaces, governing equations of CCM cannot be directly 
utilised for the analysis of problems including discontinuities in the displacement field which mainly occurs 
in fracture problems. To overcome this limitation, a new nonlocal continuum mechanics approach, 
peridynamics (PD) [1, 2] was introduced without using spatial derivatives in the formulation and having 
integro-differential equations as the governing equation. Due to its nonlocal characteristic, it also has a length 
scale parameter named as horizon. PD is fundamentally different than some other approaches such as 
Smoothed Particle (SPH) Hydrodynamics and Element-free Galerkin approach (EFG). As opposed to 
peridynamics, SPH is based on curve fitting to approximate spatial derivatives of partial differential equations 
[3] and EFG is utilised for solving partial differential equations with moving least squares interpolants [4].    

Since the introduction of peridynamics in 2000, there has been a significant progress in PD research and quite 
a large number of papers have been published especially during the last few years. Amongst these, Wu and 
Ren [5] utilised peridynamics for failure analysis of metal machining process. Diyaroglu et. al. [6] investigated 
the response of composite structures subjected to extreme loading by using peridynamics. Sun and Huang [7] 
performed peridynamic simulations to model impact damage in composite structures. In another study, 
Oterkus et. al. [8] used peridynamics for the investigation of impact damage in reinforced concrete. Gerstle et. 
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al. [9] also used peridynamics for modelling concrete material. Fracture analysis of functionally graded 
materials was explored by using peridynamics in Ozdemir et. al. [10] and Cheng et. al. [11]. Liu et. al. [12] 
utilised peridynamics for fracture analysis of graphene sheets whereas Silling et. al. [13] developed a 
peridynamic model for single-layer graphene based on coarse-grained bond forces. Ice fracture was also 
analysed in different studies such as Vazic et. al. [14] and Liu et. al. [15]. Madenci and Oterkus [16] presented 
how plasticity can be incorporated in peridynamic framework. Moreover, Huang et. al. [17] and Amani et. al. 
[18] provided peridynamic formulations suitable for viscoelastic and viscoplastic analyses. Various 
peridynamic beam and plate formulations have also been proposed such as refined zigzag beam and plate 
formulations by Dorduncu [19, 20], higher order beam and Kirchoff plate formulations by Yang et. al. [21, 
22]. In addition, Naumenko and Eremeyev [23] presented a non-linear direct peridynamics plate theory and 
Chowdhury et. al. [24] developed a linear elastic peridynamic shell formulation. Peridynamics has also been 
used for predicting fatigue damage as presented in Nguyen et. al. [25] and Jung and Seok [26]. Kefal et. al. 
[27] and Heo et. al. [28] performed topology optimisation analysis and buckling analysis of cracked structures, 
respectively. Vazic et. al. [29] utilised peridynamics for the analysis of macrocrack and microcrack 
interactions. On the other hand, Imachi et. al. [30] performed dynamic crack arrest analysis by using 
peridynamics. Peridynamics has also been used in analysing other physical fields such as moisture diffusion 
as in Diyaroglu et. al. [31]. Corrosion damage and pit-to-crack phenomenon were also simulated within 
peridynamic framework by Shi et. al. [32] and De Meo et. al. [33], respectively.  

In addition to these studies, there are also various studies in the literature focusing on peridynamic analysis of 
membranes. For example, Silling and Bobaru [34] utilised a constitutive model suitable for rubbery sheets 
that can form cracks to perform simulations of stretching and dynamic tearing of membranes. Oterkus et. al. 
[35] introduced a new peridynamic shell membrane formulation by using Euler-Lagrange equations. Li et. al. 
[36] used an implicit bond-based peridynamic formulation to analyse quasi-static large deformation, wrinkling 
and fracture of membranes. Bang and Madenci [37] developed peridynamic strain energy functions for a Non-
Hookean type membrane under equibiaxial, planar, and uniaxial loading conditions. Madenci et. al. [38] 
presented a new approach to investigate the effect of membrane-inclusion interactions of different geometries 
with curvature, boundary conditions, and the contact angle between the membrane and inclusion. Ozdemir et. 
al. [39] proposed a viscoelastic material model in the ordinary-state based peridynamic framework to examine 
the crack propagation in polymeric water treatment membranes. Taylor et. al. [40] simulated the formation of 
spontaneous ruptures in supported phospholipid double bilayer membranes by using peridynamics.  

Peridynamic equations are generally solved by using numerical techniques such as meshless approach. 
Although limited, analytical solutions are also available. For instance, Silling et. al. [41] provided an analytical 
solution for an infinite bar subjected to a self-equilibrated load distribution whereas Weckner and Abeyaratne 
[42] presented an analytical solution for an infinite bar by considering the effects of long-range forces. In 
another study, Weckner et. al. [43] derived peridynamic equations utilising Green’s functions, Laplace and 
Fourier transforms for three-dimensional problems. Analytical solution for a 1-Dimensional rod was provided 
by Mikata [44]. More recently, Mikata [45] derived peridynamic solution for the analysis acoustic problems.  
An extensive review about peridynamic research is given in Javili et. al. [46].  

As opposed to these aforementioned studies, this study presents analytical solution of the peridynamic 
equation of motion for 2-Dimensional membranes for the first time in the literature. Both static and dynamic 
conditions are considered. Anaytical solutions are provided for different initial conditions and peridynamic 
results are compared against results obtained from CCM for validation purposes. The influence of horizon 
size is also investigated. 

2. Analytical Solution for a 2-Dimensional Membrane: Static Condition 

Equilibrium equation for 2-Dimesional membranes can be expressed in CCM as: 

Analytical solution of the peridynamic equation of motion for a 2-dimensional rectangular membrane
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where 𝑘2 denotes the material property parameter of the membrane, w is the deflection and p is the distributed 
transverse load. In PD theory, the corresponding formulation can be expressed as 
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where the integral domain is chosen as the horizon of 𝐱, 𝐻𝒙 = 𝐵(𝐱, 𝛿), and c is the bond constant,  is the 
horizon size,  𝜉 and 𝜑 represent the distance and angle between the material point of interest and its family 
member in the horizon (see Fig. 1). The derivation of Eq. (2) is given in Appendix.  

 

 

Figure 1. The distance and angle between the material point of interest and its family member. 

Suppose that the rectangular domain is subjected to a distributed load of 𝑝(𝑥, 𝑦) (see Fig. 2) and the boundary 
condition is specified as 
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Figure 2. The rectangular domain subjected to a distributed load of 𝑝(𝑥, 𝑦). 

Applying the boundary conditions to the CCM governing equations implies 
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Performing central difference for Eq. (4) results in 
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Replacing ℎ  by PD notation parameter 𝜉  in Eq. (5), boundary conditions given in Eq. (3) yields the 
corresponding boundary conditions in PD theory as: 

PD BCs: 
( ) ( ) ( ) ( )
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To ensure that PD boundary conditions given in Eq. (6) are satisfied, we can assume the displacement field in 
the form of 
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Substituting Eq. (7) into the PD governing equation given in Eq. (2) gives 
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which can be simplified as 
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The coefficients in Eq. (9) can be determined as 
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Thus, by coupling Eq. (10) with (7), the PD analytical solution for the static condition can be written as 
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The detailed derivation of the parameter mnB is given in Appendix. 

3. Analytical Solution for a 2-Dimensional Membrane: Dynamic Condition 

PD governing equation given in Eq. (2) for static conditions can be extended to free vibrational conditions 
as: 
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where ( ), ,w x y t  is the second derivative of the displacement ( ), ,w x y t with respect to time, t. By utilising 
separation of variables approach, the displacement ( ), ,w x y t can be written as: 

( ) ( ) ( ), , ,w x y t W x y T t=                                                                                                                                (13) 

Boundary conditions (BCs) and initial conditions (ICs) can be specified as: 
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where w  is the first derivative of the displacement ( ), ,w x y t with respect to time. By substituting Eq. (13) in 
Eq. (12) yields: 
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Rearranging Eq. (16) results in: 
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which gives two separate equations: 
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and 
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Comparing Eq. (18a) to (2) and if we consider 𝑊(𝑥, 𝑦) as an analogue to 𝑤(𝑥, 𝑦) and −𝜆𝑊(𝑥, 𝑦) as to 
𝑝(𝑥, 𝑦)/𝑐, the following equation can be obtained by utilizing Eq. (7) and (9) as 
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In Eq. (19), the ‘’pseudo eigenvalue’’ can be defined as 
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Next, the general solution to Eq. (18b) can be given as 

( ) ( ) ( )cos sinmn mn mn mn mnT t A ct B ct = +                                                                                                  (21) 

Finally, according to superposition principle, the general solution to Eq. (13) can be written as the linear 
combination of each mode as 
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Since dynamic condition is considered, initial conditions can be written as: 
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in which the coefficients can be calculated based on orthogonal property as 
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By summarising the derivations above, the PD analytical solution for 2-D vibrational membrane can be 
written as 

( ) ( ) ( )
1 1

, , cos sin sin sinmn mn mn mn
m n

m x n yw x y t A ct B ct
a b
 

 
 

= =

 = +
                                                     (25a) 

Analytical solution of the peridynamic equation of motion for a 2-dimensional rectangular membrane



7 
 

( )00 0

4 , sin sin
b a

mn
m x n yA w x y dxdy

ab a b
 

=                                                                                                (25b)          

( )00 0

4 1 , sin sin
b a

mn
mn

m x n yB v x y dxdy
ab a bc

 


=                                                                                       (25c) 

2 1 2
0 0

1 1 cos cosmn
m n d d

a b
   

   


 
= − 

 
                                                                                             (25d)          

2

1 23

6 cos sinkc      


= = =                                                                                                               (25e) 

4. Numerical Results 

4.1. 2-Dimensional membrane under static condition 

In the first case, a 2-Dimensional membrane with all edges fixed subjected to a distributed load under static 
condition is considered. The dimensions of the membrane are specified as a=b=1m. The material parameter 
k2 is 1e5 Nm/kg. The horizon size is chosen as  = 0.001 m. The distributed load is exerted as 

( ) ( )( )p x xy x a y b= − − − .  

The variation of the displacement w along central x-axis and central y-axis obtained by using PD and CCM 
are shown in Fig. 3. According to these results, it can be observed that a very good agreement is obtained 
between the two solutions. 

  

                                         (a)                                                                                  (b) 

Figure 3.  Variation of the displacement w along (a) central x-axis and (b) central y-axis. 

 

The variation of the displacement w along the 2-Dimensional membrane is also demonstrated in Fig. 4. As 
can be seen in this figure, PD and CCM results agree very well with each other.  
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                                         (a)                                                                                  (b) 

Figure 4.  Variation of the displacement w along the 2-Dimensional membrane (a) PD results and (b) CCM 
results. 

 

4.2. 2-Dimensional membrane under dynamic condition 

In the second example case, the numerical case considered in the previous case is extended for a dynamic 
condition. The distributed load is removed and the initial condition is imposed as: 

ICs: 
( ) ( )( )
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w x y xy x y

v x y
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                                                                                                                                 (26) 

Variation of the displacement w at x = 0.5m and y = 0.5m as the time progresses is shown in Fig. 5. A very 
good agreement is observed between PD and CCM solutions at all times.  

 

Figure 5.  Variation of the displacement w at x = 0.5m and y = 0.5m as the time progresses. 

4.3. 2-Dimensional membrane under dynamic condition with different initial conditions 

In the third case, the initial case considered in the previous case is replaced by 
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The variation of the displacement w at three different locations, x = 0.5m and y = 1m, x = 0.25m and y = 1m, 
and x = 0.25m and y = 0.5m as the time progresses is demonstrated in Figs. 6-8. At all three locations, PD 
results agree very well with CCM results. 

 

Figure 6.  Variation of the displacement w at x = 0.5m and y = 1m as the time progresses. 

 

 

Figure 7.  Variation of the displacement w at x = 0.25m and y = 1m as the time progresses. 
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Figure 8.  Variation of the displacement w at x = 0.25m and y = 0.5m as the time progresses. 

 

4.4. Effect of variation of horizon size  

In the final numerical case, the influence of the horizon size on the results is investigated by considering the 
horizon size as 0.005m, 0.01m, 0.05m and 0.1m. For this numerical case, the following initial conditions are 
considered as: 

ICs: 
( ) ( )( )
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2
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, 0

u x y xy x y

v x y

 = − −   
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                                                                                                                             (28) 

Variation of the displacement w at two different locations, x = 0.5m and y = 0.5m, and x = 0.25m and y = 
0.25m, as the time progresses for different horizon sizes are illustrated in Figs. 9-12. As shown in these figures, 
PD and CCM results match very well for the horizon size values of 0.005m and 0.01m. However, PD results 
deviate from CCM results for the horizon size values of 0.05m and 0.1m. This is expected since for large 
horizon sizes, nonlocal characteristic of PD starts to emerge and represent a behaviour different than classical 
(local) characteristic.  
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Figure 9.  Variation of the displacement w at x = 0.5m and y = 0.5m as the time progresses for different 
horizon sizes. 

 

Figure 10.  Variation of the displacement w at x = 0.5m and y = 0.5m as the time progresses for different 
horizon sizes (zoomed view). 

 

Figure 11.  Variation of the displacement w at x = 0.25m and y = 0.25m as the time progresses for different 
horizon sizes. 
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Figure 12.  Variation of the displacement w at x = 0.25m and y = 0.25m as the time progresses for different 
horizon sizes (zoomed view). 

5. Conclusions 

In this study, analytical solution of the peridynamic equation of motion for a 2-dimensional membrane was 
presented. Several numerical cases were considered to validate the derived analytical approach. In the first 
case, a membrane subjected to distributed loading was analysed for static condition. Peridynamic results 
obtained along the central axes agree very well with the classical continuum mechanics results. In the second 
and third cases, dynamic conditions were considered by removing the distributed load and imposing two 
different initial conditions. Several points were selected and variation of peridynamic displacement results as 
the time progresses is compared with the classical continuum mechanics results. As in the static case, a very 
good agreement was obtained between peridynamic and classical continuum mechanics results. Finally, the 
influence of horizon size was investigated by considering four different horizon sizes. As the horizon sizes 
are getting bigger, it was observed that peridynamic results deviate from classical continuum mechanics results 
which show that peridynamics can represent nonlocal behaviour as the horizon size increases. The presented 
approach is not applicable for the cases with discontinuities such as cracks. Extension of the current approach 
to problems with discontinuities is a potential direction of future research.  

Data Availability 

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. 
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Appendix 

Laplacian in 2D rectangular coordinate system can be written as 
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where the suffix takes up the value of 1 (= 𝑥) and 2 (= 𝑦). Performing Taylor expansion for 𝑤 and omitting 
higher order terms yields 
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in which 𝒏 denotes the unit directional vector (see Fig. 1) such that 
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Considering (𝑥, 𝑦) as a fixed point, dividing each term in Eq. (A2) by 𝜉 and integrating over its PD domain 
results in 
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which reduces to 
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Finally, Eq. (A5) can be rewritten as 
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Moreover, the parameter mnB in Eq. (9) can be obtained by multiplying Eq. (9) by sin sinp x q y
a b
 

 and 

integrating over the domain of the body as 
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According the orthogonality of trigonometric functions, i.e. 
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Thus, Eq. (A7) becomes 
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and the parameter mnB can be obtained as: 
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