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Abstract: Existing researches about unsupervised cross-domain bearing fault diagnosis mostly 

consider global alignment of feature distributions in various domains, and focus on relatively ideal 

diagnosis scenario under the steady speeds. Therefore, unsupervised feature adaptation between all the 

corresponding subdomains under speed fluctuation remains great challenges. This paper proposes a 

modified deep subdomain adaptation network (MDSAN) for more practical and challenging 

cross-domain diagnostic scenarios from the fluctuating speeds to steady speeds. Firstly, to extract the 

representative features and effectively suppress negative transfer, a novel shared feature extraction 

module guided by multi-headed self-attention mechanism is constructed. Then, a new trade-off factor is 

designed to improve the convergence performance and optimization process of MDSAN. The proposed 

method is used for analyzing experimental bearing vibration data, and the results show that it has 

higher diagnostic accuracy, faster convergence, better distribution alignment, and is more suitable for 

unsupervised cross-domain fault diagnosis under speed fluctuation scenario compared with the existing 

methods. 

Keywords: modified deep subdomain adaptation network; cross-domain bearing fault diagnosis; speed 

fluctuation; multi-headed self-attention mechanism; new trade-off factor 

1. Introduction

Health status of bearings directly affects the stable and reliable operation of rotating machinery. It 

is of vital significance to determine their status using intelligent diagnostic methods [1-4]. In recent 

years, because of its excellent feature extraction and learning capability, deep learning has been widely 

adopted to intelligent fault diagnosis of bearings and other mechanical components [5-11]. However, 

these intelligent diagnosis studies based on deep learning assume that the training and test samples 

should be independently and identically distributed, and the training samples should contain abundant 

label information. In practical tasks, it is difficult to ensure that the collected data samples have the 

same distribution characteristics due to the change of rotational speed, working load, and other factors. 
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In addition, the cost of obtaining large number of labeled samples under various fault modes is high. 

Therefore, it is more practical to investigate cross-domain unsupervised fault diagnosis [12-18].  

Unsupervised domain adaptation aims to narrow the gap between the labeled source-domain 

samples and unlabeled target-domain samples through feature transformation [19-21]. In the past 

several years, unsupervised domain adaptation has gained an increasing attention in cross-domain 

mechanical fault diagnosis. In 2018, Li et al. [22] used a domain adaptation network built on multi 

kernels maximum mean discrepancy (MK-MMD) to improve the robustness for bearing fault diagnosis 

against noise and variable operating conditions. In 2019, Han et al. [23] adopted domain adversarial 

neural network (DANN) to learn domain invariant features and avoid overfitting for fault detection. 

The approach was applied for fault diagnosis of a wind turbine under different wind speeds and a 

generic gearbox under different rotational speeds, respectively. In 2020, a multi-task learning model 

with joint maximum mean discrepancy (JMMD) was utilized by Chen et al. [24] to narrow differences 

of marginal and conditional distribution for diagnostic scenarios of different planetary gearbox under 

two sun gear rotation frequencies and two loads. In 2020, to achieve classification of bearings and 

gears under various rotating speeds, Li et al. [25] constructed new domain adversarial transfer network, 

handling remarkable distribution discrepancy across rotating speeds. In 2021, Qin et al. [26] added the 

CORAL loss into parameter sharing adversarial domain adaptation networks to promote domain 

confusion when state identification was required for one-stage planetary gearboxes under different 

speed conditions. In 2022, an interactive dual adversarial network was designed by Mao et al. [27], 

which could distinguish the unseen states precisely and report the known health states concurrently of 

rolling bearing and the planetary gearbox under different loads and speeds, respectively. In 2022, in 

presence of imbalanced bearing fault diagnosis for rolling bearings under different speeds, Wu et al. 

[28] developed a cost-sensitive domain adaptation network, aiming at solving the domain variance and 

class imbalance problems.  

However, challenges still exist in spite of the above researches, detailed as follows. (1) The above 

studies are all based on the global alignment strategy, while ignoring the respective alignment of each 

individual subdomain, which may influence local alignment of source and target domains and 

classification performance [29]. (2) The feature extraction modules constructed in the above studies fail 

to evaluate and select the representative features of each class according to their importance, which 

may degrade suppression of negative transfer. As a result, the knowledge learned on the source domain 

may have a negative effect on learning of the target domain [30]. (3) All of the above studies focus on 

the relatively ideal fault diagnosis scenario under the steady rotational speed. However, speed 

fluctuations will inevitably occur during practical production process, in which the acquired original 

signals represent strong non-stationary characteristics and include interference [31]. Thus, unsupervised 

cross-domain feature adaptation and fault diagnosis under speed fluctuation is a meaningful yet 

challenging study, which demands more advanced techniques. 

In this article, a novel approach using modified deep subdomain adaptation network (MDSAN) is 

put forward for unsupervised cross-domain bearing fault diagnosis under speed fluctuation. A series of 
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experimental datasets of bearing and comparative tests are used for demonstrating the feasibility and 

superiority of the proposed approach. Our contributions are described as follows. 

(1) In order to extract the representative features hidden in the complex signals corresponding to 

each fault mode and effectively suppress negative transfer, a novel shared feature extraction module 

guided by multi-headed self-attention mechanism is constructed.  

(2) A new trade-off factor is designed to improve the convergence performance and optimization 

process. 

(3) A new method based on MDSAN is proposed for more practical and challenging cross-domain 

diagnostic scenarios from the fluctuating speeds to steady speeds, through aligning the local 

distribution of corresponding subdomains.  

The framework of this article can be organized as follows. Section 2 introduces the concepts 

related to subdomain adaptation. Section 3 describes the proposed approach in this paper. In Section 4, 

validation cases are then performed with unsupervised cross-domain bearing fault diagnosis under 

speed fluctuation. At last, conclusions and follow-up research are given in Section 5. 

 

2. Unsupervised subdomain adaptation  

Fig. 1 shows that subdomain adaption exploits the distribution relationship between two 

subdomains belonging to source and target domains respectively. It avoids mere global alignment, 

which leads to the reduction of the distances between samples of different classes, accompanied by 

inaccurate classification. 
 

 Domain Adaptation Subdomain Adaptation
Source Source

Target
Target

Adapted AdaptedBefore Adaptation Before Adaptation
Classifier Classifier

 
Fig. 1. Domain adaptation and subdomain adaptation  

 
Relevant definitions of unsupervised subdomain adaptation are given as follows [32-34]. Let 

1,{( )} sns s

s i i i== x y  be the source domain, in which s

ix  is the ith source-domain labeled sample with 

the label of s

iy , and ns is the number of source-domain samples. Let 1{ } tnt

t j j== x  be the target domain, 

in which t

jx  represents the jth target-domain unlabeled sample with the pseudo label of ˆ t

jy , and nt 
represents the number of target-domain samples. All samples belonging to the same class in each 
domain are assumed to be a subdomain. Let C denote the number of classes, and then s  and t  are 

both divided into C subdomains: ( )c

s  and ( )c

t , respectively, where c indicates the class label 

( {1, 2, , }c C ).  

The goal of unsupervised subdomain adaptation is to train a deep network ( )f=y x  which can 
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capture transferable features and then align distributions of related subdomains. Thus, the total loss 

function of unsupervised subdomain adaptation is 

( ) ( )

1

1 ˆm ])in ( ( )[), ( ,
sn

s s c c
i i cf is

J f d p q
n


=

+ x y E                  (1) 

in which J(.,.) refers to the cross-entropy loss, [.]cE  is mathematical expectation, ˆ(., .)d  is the 

subdomain adaptation loss, p(c) and q(c) refer to distributions of ( )c

s
 and ( )c

t
, respectively, and   is 

used as a positive trade-off factor between the above two loss functions.  

 

3. The proposed method 

3.1. Design of novel shared feature extraction module 

For signals under speed fluctuation, in order to extract the representative features hidden in the 

complex signals corresponding to each fault mode and effectively suppress negative transfer, this paper 

constructs a novel shared feature extraction module guided by multi-headed self-attention mechanism. 

The attention mechanism can highlight faulty features with important information and suppress 

invalid features [35-37]. Self-attention mechanism is an improvement of the attention mechanism, 

which pays more attention to the internal correlation of sample data. Its structure can be found in Fig 2 

and the mathematical expressions are 

( , , )

q

k

v

T

kd

 =


=
 =
  
 =  

 
 

Q W I
K W I
V W I

QKQ K V VAttention Softmax

               (2) 

in which I denotes a time-series vector representing input vibration data, Wq, Wk, and Wv are the three 

different weight matrices required for the linear mapping of I, respectively, Q and K are the 

information mapping of the data at the current moment and at other times, respectively, V denotes the 

feature mapping of the input vector itself, the dot product of Q and K can be used to characterize the 

correlation between data, dk refers to the dimension of the input vector, Softmax is the normalization 

function, and Attention denotes the final calculated result.  

I

Q

K

V

Softmax
qW

kW

vW

More 
Attention

Less 
Attention

 

Fig. 2. Principle diagram of self-attention mechanism  
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In order to capture richer features and information, multiple Q, K, V are used for each data for 

information and feature mapping, which is called multi-headed self-attention mechanism (MHSAM). 

MHSAM establishes a content view of global relationships for bearing fault signals under speed 

fluctuation from multiple perspectives, allowing selective aggregation of global features. Its 

mathematical expression is provided as follows. 

( , , )
( , , ) ( , , )

q k v
i i i =


= 1

QW KW VW
Q K V

i

n

head Attention
MultiHead Concat head head

            (3) 

where each headi will compute the respective self-attention score, and the information learned from 

different heads is combined by Concat. 

Fig. 3 shows the framework details of the designed novel shared feature extraction module, 

including one input layer, four 1D convolutional layers (Conv), two 1D max pooling layers, one 

MHSAM layer, and a fully connected layer (FC). Each Conv is followed by a 1D batch normalization 

(BN) [38] and a ReLU activation function. Furthermore, the second ReLU is connected to a max 

pooling layer. The fourth ReLU is linked to a adaptive max pooling layer to achieve input length 

adaptation. It is then followed by a MHSAM layer to excavate deeply into the timing relationships 

inherent in bearing vibration signals under speed fluctuation. The output is thereafter flattened and 

passed through a FC, a ReLU and a dropout layer. Both the source and target domains use this feature 

extraction module. Table 1 shows the specific parameters. 

Input

Conv1
BN

ReLU

Conv2
BN

ReLU

Conv3
BN

ReLU

Conv4
BN

ReLU

Max pooling
Adaptive

max
pooling MHSAM

Flatten

FC
ReLU

Dropout
 

Fig. 3. Structure of the novel shared feature extraction module  
 

Table 1 
Parameters of the novel shared feature extraction module 

Layers Parameters 

Conv1 Out channels=16, Kernel size=15 
Conv2 Out channels=32, Kernel size=3 
Max pooling Kernel size=2, Stride=2 
Conv3 Out channels=64, Kernel size=3 
Conv4 Out channels=128, Kernel size=3 
Adaptive max pooling Output size=4 
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MHSAM Hidden size = 128, Heads = 8 
FC Out features=256 
Dropout  0.5 

 

3.2. Construction and training of MDSAN 

In order to align the relevant subdomains, local maximum mean discrepancy (LMMD) [29] is 

adopted to measure the difference between two subdomains, defined as follows. 

( ) ( )

2
( , ) ( ) ( )[ ] [ ]c c

s t
c p q

d p q  −E E x E x                  (4) 

in which xs and xt denote instances of s  and t , respectively,  represents the reproducing 

kernel Hilbert space assigned with a characteristic kernel k, and (.)  denotes a mapping from the 

initial space to the Hilbert space [39]. Through minimizing Eq. (4), the distributions of subdomains 

belonging to the same class are then closer. 

The weights cw  are assigned to the samples of each class. Thus, the LMMD can then be 

acquired by 

2

1

1ˆ ( , ) ( ) ( )
s t
i s j t

C
sc s tc t
i i j j

c
d p q w w

C
 

=  

= −  
x x

x x                (5) 

where sc

iw  and tc

jw  indicate the weights of s

ix  and t

jx  belonging to class c, respectively, and 

( )
i

c

i iw 



x

x  is the weighted sum of class c. For the specific calculation of sc

iw  and tc

jw , one can refer 

to [29]. 
Let zs and zt denote the output features of the samples from two different domains after passing 

through the novel shared feature extraction module, respectively. Then the following expression can be 
directly used as the LMMD: 

1 1 1

1 1 1 1

1ˆ ( , ) ( , )

  ( , ) 2 ( , )

s s

t t s t

n nC
sc sc s s
i j i j

c i j

n n n n
tc tc t t sc tc s t
i j i j i j i j

i j i j

d p q w w k
C

w w k w w k

= = =

= = = =


= 




+ − 



 

 

z z

z z z z

         (6) 

in which ( , )s t

i jk z z  is the kernel function using linear combinations of multiple Gaussian kernels [40]. 

MDSAN uses the LMMD of Eq. (7) as the subdomain adaptation loss function. Then the overall 

training objective function are calculated similarly to Eq. (1) as follows.  

1

1 ˆmin ( ( ), ) ( , )
sn

s s
i if is

J f d p q
n


=

+ x y                     (7) 

in which the former is the cross-entropy classification loss, the latter is LMMD loss, and   is a 

trade-off factor of the two terms. 

Throughout the training process, standard mini-batch stochastic gradient descent (mini-batch SGD) 
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algorithm is employed to compute MDSAN. In the existing DSAN [29, 41], the trade-off factor is 

expressed in the form of: 

1 10  exp
 

2

( )
 

 = −
− epoch

max_epoch

                          (8) 

where epoch is the current training epoch, and max_epoch is the maximum epoch. 

In this paper, to enhance the training performance of the model and the transferability of extracted 

features, we structure a new trade-off factor between classification loss and LMMD loss in following 

dynamic form:  

* 4 4
  1

 +1 


−

= +

+
epoch

max_epoch

                      (9) 

To better learn the basic fault feature knowledge, *
  is set as 0 initially. With the increase of 

training epoches, for better learning transferable features given the learned fault features of source 

domain, *
  starts to increase monotonically, gradually activating the LMMD loss. 

In summary, as shown in Fig. 4, MDSAN is constructed with the novel shared feature extraction 

module, subdomain adaptation module based on LMMD and the classifier module. Algorithm 1 

presents the training optimization process of MDSAN. 
 

Samples (S)
(Fluctuation)

Samples (T)
(Steady)

Novel shared feature 
extraction module

 Classifier module
Predicted labels (S) True labels (S) 

Cross-entropy 

Subdomain adaptation 
module

Features (S) Features (T)

LMMD

1
2
3

C

1
2
3

C
*

MHSAM

Forward propagation Backward propagation
 

Fig. 4. The framework of the MDSAN 
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Algorithm 1.Training process of MDSAN 

Inputs: Labeled source domain s , unlabeled target domain t , network architecture, new 

trade-off factor *
 , batch size, mini-batch SGD optimizer, max_epoch  

Outputs: The trained MDSAN and diagnosis results for target domain samples 

Begin: Initialize the training parameter set at random 

While not converged do 

For epoch =1 to max_epoch 

For i=0,…,m do   

Sample a batch { , }s s

i ix y
 

from source domain s  

Sample a batch { }t

ix  from target domain t  

Extract adaptable features: s

iz  and t

iz  by novel shared feature extraction module 

Calculate pseudo label of t

ix : ˆ t

iy
 

 

Compute ˆ ), ,( ,s t s t

i i i iLMMD z z y y  by Eq. (6) 

Compute classification loss by the first term Eq. (7) 

Compute *
  by Eq. (9) 

Optimize total loss according to Eq. (7) 

End for 

End for 
 

3.3. The main procedure of the proposed method 

The overall procedure can be found in Fig. 5, and the main steps can be laconically described as 

follows. 

(1) Acquire vibration acceleration signals of rolling bearings under various operating conditions. 

Specifically, signals under fluctuating speeds with labels are considered as the source domain and 

signals under steady speed without labels are considered as the target domain.  

(2) Construct the MDSAN model based on a novel shared feature extraction module, a subdomain 

adaptation module, and a classifier module, in which 

(2.1) MHSAM is embedded in the shared feature extraction module to guide to capture the 

representative features and suppress negative transfer. 

(2.2) A new trade-off factor is designed to improve the convergence performance and optimization 

process for MDSAN. 

(3) Input labeled source-domain samples and unlabeled target-domain samples into the 

constructed MDSAN model for training, and implement fault diagnosis tests. 

(4) Compare the proposed method with other popular methods to verify the effectiveness. 
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Construction and training of the MDSAN model 

Verify the effectiveness of the proposed method

Collect vibration signals of rolling bearings at different speeds

Source
(Fluctuation) 

Target
(Steady)

Cross-
domain

Cross-entropy 

Subdomain adaptation module

LMMD

1
2
3

C

1
2
3

C
*

MHSAM

 Classifier moduleNovel shared feature 
extraction module

Target

Source

 

Fig. 5. The overall procedure of the proposed method 
 

4. Case study 

4.1. Data description 

The bearing test device is given in Fig. 6. The rated power of the drive motor is 0.75 kW and the 

bearing type is QPZZ-II NU205EM cylindrical roller bearing. Fault is indicated by the bearing surface 

square groove cut by wire cutting technique, with the thresholds: groove width 0.5 mm, depth 0.5 mm 

wide and 0.5 mm deep. A total of five health conditions of the bearing were simulated: normal (N), 

outer ring fault (OF), inner ring fault (IF), rolling element fault (RF), and outer ring & rolling element 

compound fault (ORF). The faulty bearings are shown in Fig. 7. The vibration was mounted at the 

upper side of the bearing housing. The sample frequency was 25.6 kHz [31].  
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Fig. 6. Test rig of bearing fault diagnosis: ① Controllable speed motor; ② Transmission Belt; ③ 
Shaft coupling; ④ Rotational shaft; ⑤ Piezoelectric acceleration sensor; ⑥ Tested bearing 

   

    

(a)                   (b)                  (c)                  (d) 
Fig. 7. Photos of four types of faulty bearings: (a) OF; (b) IF; (c) RF; (d) ORF 

 

The source domain data set was collected from the vibration signal with the bearing speed 

fluctuating irregularly between 800 rpm and 1500 rpm. The target domain data set was collected under 

the steady speed condition. Five steady speed levels were considered: 1000 rpm, 1100 rpm, 1200 rpm, 

1400 rpm, and 1500 rpm. The vibration signals acquired in each of the above conditions are regarded 

as a separate target domain. A total of 870400 points were collected during the operation of each type 

of bearing with each health condition under each working condition, and every 1024 points were used 

as a group as a sample. Hence, 850 samples were divided, i.e., each subdomain contains 850 samples. 

The vibration signals of five conditions collected in the two domains are shown in Fig. 8, and more 

information about the transfer dataset is shown in Table 2. 

Table 2  
Introduction to the source-domain and target-domain datasets 
 

Domain Rotational speed Total sample 
quantity 

Totals of dots 
per sample 

Source domain (S) Fluctuates irregularly between 
800 rpm and 1500 rpm 5×850=4250 1024 

Target domain 1 (T1) 1000 rpm (steady) 5×850=4250 1024 
Target domain 2 (T2) 1100 rpm (steady) 5×850=4250 1024 
Target domain 3 (T3) 1200 rpm (steady) 5×850=4250 1024 
Target domain 4 (T4) 1300 rpm (steady) 5×850=4250 1024 

1 

2 3 4 

5 

5 

6 
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(b) 

(d) 

(e) 

Target domain 5 (T5) 1400 rpm (steady) 5×850=4250 1024 
 

 

 

 

 

 
 
 

Fig. 8. The original vibrational signals of five bearing health states: (a) N; (b) OF; (c) IF; (d) RF; (e) 
ORF 

 

4.2. Accuracy comparison with several state-of-the-art methods 

To test the capabilities of the proposed method, following state-of-the-art methods are used for 

comparison: (1) BN-CNN (batch normalization-convolution neural network) [42], (2) AdaBN 

(adaptive batch normalization) [42-43], (3) MK-MMD (multi kernels maximum mean miscrepancy) 

[22], (4) JMMD (joint maximum mean discrepancy) [24], (5) DANN (domain adversarial neural 

network) [23], (6) CDAN (conditional domain adversarial network) [44], and (7) DSAN (deep 

subdomain adaptation network) [41]. Both MDSAN and comparison methods were tested under 

pytorch1.12, with batchsize set to 256, max_epoch set to 200, learning rate as 0.001. momentum as 0.9, 

and weight for adaptation loss as 0.5.  

The classified accuracies gained by the above methods are presented in Table 3 and Fig. 9. The 

proposed method possesses the highest accuracies under all unsupervised cross-domain scenarios 

containing rotational speed fluctuations, which are 90.08%, 94.50%, 95.97%, 98.73%, and 99.10%, 

respectively, demonstrating the advantage of MDSAN. The subdomain adaptation strategy endows 

DSAN and MDSAN with higher classification accuracies than those of the other methods. The 

accuracy rate given by MDSAN is higher than DSAN in each cross-domain scenario by 1.08%, 2.74%, 

A
m

pl
itu

de
 (𝒎

/𝒔
𝟐
) 

(a)

) 

(c) 

Time 

Source domain (S) 

 

Time 

Target domain (T2) 
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2.74%, 1.49%, and 1.30%, respectively, indicating that the MDSAN is more suitable for the speed 

fluctuation scenario compared to DSAN. 

 

 
Table 3  
Accuracies of different methods under multiple unsupervised cross-domain scenarios 

Methods 
Unsupervised cross-domain scenarios 

Average 
S→T1 S→T2 S→T3 S→T4 S→T5 

BN-CNN 58.86% 71.87% 75.41% 84.18% 77.94% 73.65% 
AdaBN 81.81% 85.08% 91.97% 86.68% 96.46% 88.40% 
MK-MMD 86.98% 90.23% 93.23% 93.88% 95.57% 91.98% 
JMMD 83.72% 86.20% 92.32% 93.36% 95.44% 90.21% 
DANN 83.85% 89.19% 92.19% 96.09% 96.48% 91.56% 
CDAN 85.55% 88.80% 91.54% 96.22% 97.40% 91.90% 
DSAN 89.00% 91.76% 93.23% 97.24% 97.80% 93.81% 
MDSAN 90.08% 94.50% 95.97% 98.73% 99.10% 95.68% 
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Fig. 9. Accuracies statistics chart of different methods under multiple unsupervised cross-domain 

scenarios 
 

Fig. 10 shows the accuracies of MDSAN for each class under multiple unsupervised 

cross-domain scenarios. To have a more straightforward sense of the performance on bearing fault 

classification under various conditions, taking S→T2 as an example, the 5-classification confusion 

matrices of the six methods with the highest overall accuracy were drawn in Fig. 11, which tells us the 

proposed approach obtains accuracies higher than 90% in all categories and has good performance on 

the diagnosis of each class of bearing faults. The proposed approach does not show the phenomenon of 
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unbalanced diagnostic capability for different classes of faults as exhibited by other methods. 

ORFRF

IF
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N

S T1
S T2
S T3
S T4
S T5100%
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Fig. 10. Diagnosis accuracies of MDSAN for each class under multiple unsupervised cross-domain 

scenarios 
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Fig. 11. Confusion matrices of six approaches under unsupervised cross-domain scenario S→T2: (a) 
MK-MMD; (b) JMMD; (c) DANN; (d) CDAN; (e) DSAN; (f) MDSAN 

4.3. Visualization of the extracted features 

To compare the transfer behavior of six kinds of methods visually, taking S→T2 for instance, 

t-distribution Stochastic Neighbor Embedding (t-SNE) [45] is used to visualize the extracted features. 

The high-dimensional features extracted by the six models are mapped to a two-dimensional plane, as 

given in Fig. 12. It is obvious that DSAN is aligned better than the first four methods because of its 

strategy of subdomain alignment. However, DSAN have excessive distance between the same class 

(circled by orange circle in Fig. 12. (e)) and non-negligible overlapping areas of subdomains of 

different classes (circled by blue circle in Fig. 12. (e)), which can lead to inaccurate alignment and 

category confusion. In contrast, MDSAN does not have the above-mentioned drawback. Its feature 

distribution has smaller distance between the same class (circled by orange circle in Fig. 12. (f)) and 

larger distance between different classes, which is more favorable for transfer learning and fault 

classification. 
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(c)                                  (d) 

 

(e)                                  (f) 
Fig. 12. 2D visualizations of the transferable features: (a) MK-MMD; (b) JMMD; (c) DANN; (d) 

CDAN; (e) DSAN; (f) MDSAN 
 

4.4. Evolution trends of diagnosis accuracy, LMMD loss and total loss 

To further illustrate the performance of MDSAN compared with DSAN, taking S-T2 as an 

example, the accuracy rate, LMMD loss and total loss of 200 epochs are recorded in turn. As shown in 

Fig. 13, we can find the accuracies of MDSAN rise faster than DSAN, and the LMMD loss and total 

loss decrease faster, which further illustrates the advanced domain adaptation ability of MDSAN. 
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Fig. 13. Evolution trends of diagnosis accuracy, LMMD loss and total loss for DSAN and MDSAN 
within 200 epochs  

5 Conclusions 

With the aim of solving problems about unsupervised cross-domain bearing fault diagnosis under 

speed fluctuation, MDSAN is proposed in this paper, which focuses more on fine features and has 

stronger feature extraction capability as well as better learning and training capability. In detail, a novel 

shared feature extraction module guided by multi-headed self-attention mechanism is constructed, and 

a new trade-off factor is designed for the session of optimizing the objective function.  

The presented method was carried out for analyzing the vibrational data of bearings collected 

under speed fluctuation. The results show that it has higher accuracy, better distribution alignment and 

faster convergence, in comparison to the existing popular approaches. Subdomain adaptation is a good 

direction that deserves to be explored in depth. In the future, we will further investigate the topic in the 

following three aspects. First, when computing the subdomain distribution discrepancy, we can 

compare the effectiveness of different kernel functions and design a kernel function which is more 
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suitable for subdomain adaptation. Second, considering inconsistent cross-domain labels in practice, 

we explore how to use subdomain adaptation methods to implement transfer diagnosis under above 

scenes. Furthermore, to fully utilize the existing data, we will use multiple source domains containing 

fluctuating speeds to perform multi-source subdomain adaptation with the unlabeled target domain. 
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