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Abstract

This paper presents a decision support system that can automatically allocate collision avoidance manoeuvres in the event of a high
risk close encounter between two space objects. Decisions are supported by an Intelligent Classification System that combines Dempster-
Shafer theory of evidence with Machine Learning to automatically classify conjunctions according to the probability of collision, the
uncertainty on the probability of collision, the time to close approach and the cost of a collision avoidance manoeuvre. We propose
a simple analytical model that allows for the fast and robust computation of both impulsive and low-thrust manoeuvres under a mix
of aleatory and epistemic uncertainty. Aleatory uncertainty is the non-reducible randomness in observation data, dynamic model and
parameters, while epistemic uncertainty is the lack of knowledge on system dynamics and observation data, including the model of alea-
tory uncertainty itself. Dempster-Shafer theory of evidence is used to model the epistemic uncertainty in the calculation of the probability
of collision. Some numerical examples are included to show the performance of the collision avoidance manoeuvre optimisation strategy
and of the intelligent decision support system.
� 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In recent years, the so called New Space movement and
more generally the rapid growth of the private space sector
have led to an increase in traffic in orbit. This increase in
traffic requires a paradigm shift in the way operators man-
age space assets Muelhaupt et al. (2019).

The growth in the number of tracked space objects, both
operational and non-operational, means an increase in the
number of conjunction alerts to be addressed by the oper-
ator. Currently, space conjunctions trigger hundreds of
alerts per year. Although the vast majority of them are
associated to non-critical events, a space environment sev-
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eral times more populated may saturate the current Space
Traffic Management (STM) capabilities, as the assessment
of high-risk events is time consuming and requires substan-
tial operational resources. Furthermore, it is expected that
the rise of the number of close encounters will translate
into a higher number of alerts accompanied by an
increased difficulty in differentiating between high and
low risk events. Ultimately, the overall safety of operations
in space Peterson et al. (2018) could be compromised.

If the event involves two operational satellites, the situ-
ation becomes even more critical because of the lack of
clear protocols, automated communications and tasks
Nag et al. (2018). Finally, even if the Collision Avoidance
Manoeuvres (CAMs) are not expensive, in comparison
with other satellite’s operations, an increase in the number
of manoeuvres will increase the total amount of propellant
on board and the cumulative disruption of nominal opera-
org/licenses/by/4.0/).
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tions. Therefore, a better assessment of collision risk and
the automation of operations have become a necessity
Nag et al. (2021). Automation can help making robust
decisions on collision risk and CAM execution, by process-
ing large volumes of data and speeding up decision tasks.
Enhancing robustness in decision making requires dealing
with both aleatory and epistemic uncertainty and manag-
ing different sources of information potentially incomplete
or conflicting.

In this paper, we address three main aspects. Firstly, the
robust assessment of collision risk by the integrated treat-
ment of both aleatory and epistemic uncertainty in the
computation of the collision risk and CAM optimisation.
Secondly, the automation of the decision-making process
by the introduction of an Intelligent Classification System
(ICS) that can provide a fast and robust classification of
conjunction events. And finally, the robust and quick opti-
misation of CAM by the development of a linear model for
computing both impulsive and Low-Thrust (LT)
manoeuvres.

This paper builds on previous work by the authors
where the ICS was introduced Sánchez et al. (2019),
Sánchez and Vasile (2021). The ICS is based on a Random
Forests (RF) algorithm for data classification. The use of
Machine Learning (ML) in the field of STM has gained
popularity in recent years. Peng and Bai Peng and Bai
(2017), Peng and Bai (2018b), Peng and Bai (2018a) used
Artificial Neural Networks (ANN) and Support Vector
Machine to reduce the error on the orbit propagation,
Vasile et al. Vasile et al. (2017) introduced a ML-based
model for analysing the collision risk and evaluating the
CAM strategy, Stevenson et al. Stevenson et al. (2021) used
a Deep Learning-based approach for assessing the many-
vs-many conjunction problem. Space agencies like NASA
and ESA have demonstrated a keen interest in this line of
developments, for example Nag et al. (2018), Mashiku
et al. (2018, 2019), or the ESA’s CREAM program
Bastida Virgili et al. (2019) and the recent ESA challenge
on collision risk prediction ESA (2019), Uriot et al.
(2022), Tulczyjew et al. (2020).

Relevant to the current paper, some works have been
also published on the use of ML for automatic CAM
Gonzalo et al. (2020), Abay et al. (2017). It is interesting
to note that those works are based on analytical or semi-
analytical approaches to compute the optimal CAM. For
the impulsive case, different analytical models have been
developed all of them based on the idea of the impulses
being small enough to be linearly approximated Vasile
et al. (2017), Sánchez and Vasile (2020), Bombardelli and
Hernando-Ayuso (2015), Abay (2017). Some of those mod-
els come from the theory of asteroid deflection Vasile and
Colombo (2008). Some efforts have been also put on devel-
oping similar semi-analytical models for the LT case
Hernando-Ayuso and Bombardelli (2020), Gonzalo et al.
(2019).

However, a common denominator of most of these pub-
lications is the lack of a specific model of epistemic uncer-
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tainty. The uncertainty is usually only modelled as purely
aleatory, even when it is not, possibly leading to the well-
known counter-intuitive phenomenon of the dilution of
probability Alfano (2004). As shown in Balch et al.
(2019), epistemic uncertainty plays an important role and
needs a dedicated treatment. In this paper, we use
Dempster-Shafer theory of evidence (DSt) Shafer (1976)
for modelling both aleatory and epistemic uncertainty.
DSt allows one to assess the risk of collision accounting
for all sources of information and pieces of evidence.

The rest of the paper is structured as follows: in Section 2
we introduce the linear models used to compute an optimal
CAM, both impulsive and low thrust, accounting for both
aleatory and epistemic uncertainty; Section 3 presents a
revised ICS that accounts for CAM execution; in Section 4,
some case studies are presented to test the linear model
under different conditions and to show the performance
of the ICS at proposing the most suitable action; finally
Section 5 contains some concluding remarks and future
recommendations.
2. Collision avoidance manoeuvre models

This section introduces the linear models that will be
used to compute the CAM both with an impulsive Dv
and with a low-thrust arc. The section will then present a
method for the optimisation of CAMs accounting for both
aleatory and epistemic uncertainty.
2.1. Linear model for impulsive manoeuvres

This section briefly presents the linear model, developed
in Sánchez and Vasile (2020) and initially proposed in
Vasile et al. (2017), to compute the impulsive manoeuvre
to achieve the desired variation of the relative position
between a manoeuvrable object (the primary) and another
object (the secondary), which may or may not have
manoeuvre capabilities (in this paper we assume that the
target is not manoeuvrable), which experience a close
encounter (Fig. 1a).

Given a manoeuvre dv, at time tm, expressed in a space-
craft centred tangential, normal, out-of-plane reference
frame, <T,N,H> (Fig. 1c), the corresponding variation
of position dxb at time tc on the target’s impact plane (or
b-plane), <n; g; f>, is:

dxb ¼ dn dg df½ �T ¼ Tdv ¼ BA tm; tcð ÞGdv ð1Þ
where matrix T is the product of three matrices: i) G relat-
ing the instantaneous change in orbital parameters due to
the change in velocity at the time of execution of the
manoeuvre, ii) A tm; tcð Þ being the transition matrix between
the variation of the Keplerian elements at manoeuvre, tm,
and the variation of the relative position at the time of
expected collision, tc, expressed in a radial, transversal,
out-of-plane reference frame, <R,T,H>, iii) and B the
rotation matrix between <R,T,H> and the impact plane



Fig. 1. (a) General configuration of the encounter. Blue: nominal primary object’s orbit, green: nominal secondary object’s orbit, purple: manoeuvre and
nominal primary object’s orbit after CAM. Red: encounter position. The encounter and manoeuvre positions are detailed on the subsequent figures. (b)
Encounter configuration. Blue: primary object (trajectory and orbital velocity, v1), green: secondary object (trajectory and orbital velocity, v2), black: miss
distance (re), orange: relative velocity, purple: impact plane and its reference frame < n; g; f >. (c) Manoeuvre position. Blue: primary object’s orbit
(trajectory and orbital velocity, v1), orange: impulsive manoeuvre (Dv), red: angles between orbital velocity and impulse (/ in plane, w out of plane), black:
primary object’s <T,N,H> reference frame.
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reference frames. More details can be found in Sánchez and
Vasile (2020) and Vasile and Colombo (2008).

The direction of the impulse can be defined by the two
angles / 2 �p; p½ � and w 2 �p=2; p=2½ � (see Fig. 1c). The
relation between /;w½ � and the components on the <T,N,
H > is:

/ ¼ arctan v1 � dvð Þ � u1h; v1 � dvð Þ
w ¼ arctan dv�u1hð Þkdv�u1hk

dv2� dv�u1hð Þ2
h i ; ð2Þ
with u1h the normal to the primary object’s orbital plane,
and the arc-tangent is computed taking care of quadrant
discrimination. Note that the model in Eq. 1 assumes Kep-
lerian motion. The orbital parameters and positions
included in the expressions of the matrices refer to the
manoeuvrable object (the chaser) while the impact plane
2629
reference frame <n; g; f> is centred at the secondary object
(the target), and is defined as:

ĝ ¼ v1 � v2

kv1 � v2k ; n̂ ¼ v2 � g

kv2 � gk ; f̂ ¼ n̂� ĝ ð3Þ

where v1 is the velocity vector of the chaser and v2 the
velocity vector of the target (see Fig. 1b).
2.2. Optimisation of impulsive manoeuvres under aleatory

uncertainty

In this section, the method to compute the optimal
CAM under uncertainty is presented. First, only aleatory

uncertainty is considered. Taking re0 ¼ n0; 0; f0½ �T , the ini-
tial unmodified relative position between both objects pro-
jected on the impact plane defined in the previous section,
with combined covariance matrix R, the optimal CAM can
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be computed so that the Probability of Collision (PoC) is
minimised. The combined covariance matrix is the sum
of both object’s position covariance matrices projected on
the impact plane of the target: R ¼ R1Bp þ R2Bp .

We assume that the manoeuvre introduces a negligible
uncertainty and that it only translates rigidly the uncertain
ellipse on the impact plane, defined by the combined
covariance matrices, not modifying its shape, size or orien-
tation. This means that the relative position of the modified
orbit will present the same covariance matrix R, with miss
distance equal to re ¼ re0 þ dxb, and dxb given by Eq. 1.
Furthermore, we introduce the short-encounter assump-
tions defined in Serra et al. (2016): i) rectilinear relative tra-
jectories, ii) no uncertainty in the velocity vector, iii) the
uncertainty in the position of the two objects is Gaussian
and uncorrelated, iv) and the shape of the two objects is
spherical. Under these conditions, the PoC computation
can be approximated as the 2D integral:

PC ¼ 1

2p
ffiffiffiffiffiffiffiffiffi
kRk

q Z
B 0;0ð Þ;Rð Þ

e�
1
2 b�reð ÞTR�1 b�reð Þð Þdndf ð4Þ

where B 0; 0ð Þ;Rð Þ is the integration region centred at the
secondary object with radius equal to the Hard-Body
Radius (HBR), the radius of the sphere enveloping the

two objects; b ¼ n; f½ �T ; the two component vector re is

equal to the first and third components of re; and R is a
2�2 matrix equal to the first and third elements of the first
and third rows of R:

R ¼ r2
n rnf

rnf r2
f

" #
:

Eq. 4 assumes that the area of the secondary object on the
impact plane is the combined radial envelope of the areas
of both objects projected on the same plane, while the com-
bined uncertainty projected on the impact plane is associ-
ated to the primary object and centred in �re. Under the
assumption that the manoeuvre does not change the shape
of the covariance, Eq. 4 is equivalent to placing the HBR
centred in �re and the combined ellipse of uncertainty cen-
tred in (0,0) on the impact plane.

Then, in order to minimise the PoC, one needs to solve
the following maximisation problem:

max
dv

dvTTdvþ 2re0R
�1QTdv

� �
s:t:

jjdvjj 6 dvmax

; ð5Þ

where T ¼ QTTR�1TQ and

Q ¼
1 0 0

0 0 0

0 0 1

2
64

3
75

In the following, however, we fix the magnitude of the
manoeuvre dv0 and solve the simplified problem:
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max
dv

dvTTdvð Þ
s:t:

re � Tdv > 0

; ð6Þ

whose solution dvopt is the vector parallel to the eigenvec-
tor, s1, conjugate to the maximum eigenvalue of the matrix
T with magnitude dv0:

dvopt ¼ dv0s1 ð7Þ
2.3. Computation of the probability of collision under

epistemic uncertainty

When the covariance matrix R or the miss distance are
not precisely known the PoC is computed accounting for
a degree of uncertainty. This uncertainty is epistemic in
nature and can come from a lack of knowledge of the sys-
tem dynamics, the distribution of measurements, the sen-
sor, the propagation method, and the observation data.
In this paper, we assumed that all these sources of uncer-
tainty concur to define the epistemic uncertainty in covari-
ance and miss distance but without entering in the details
of the origin of the lack of knowledge. As presented in
Sánchez and Vasile (2021) this epistemic uncertainty can
be modelled with DSt Shafer (1976).

The idea proposed in Sánchez and Vasile (2021), is to
use DSt to compute the level of confidence in the correct-
ness of the value of the PoC, given the available evidence
on the sources of information. Each component of the

covariance, r2
n; r

2
f ; rnf

� �
, is modelled with one or more inter-

vals and so is the mean value of the relative position

ln; lf

� �
. A basic probability assignment (bpa) is associated

to each interval. Intervals and associated bpas can be
derived, for example, from a time series of Conjunction
Data Messages (CDMs) or directly from the raw observa-
tions Greco et al. (2021). In the former case we assumed
that the values of covariance and miss distance in the series
of CDMs belonged to an unknown family of distributions.
Thus covariance and miss distance could not be modelled
with a crisp value or with a single specific distribution.

Given the intervals and associated bpas, we compute the
cross product of all the intervals, under the assumption of
epistemic independence. Each product of intervals is a
Focal Element (FE), and the associated bpa is the product
of the bpas of the individual intervals. With the FEs we can
compute the Belief (lower probability) and Plausibility (up-
per probability) that the PoC associated to a given conjunc-
tion event is correct. In the following we call the
uncertainty space, U , and the uncertain parameter vector,

u ¼ ln; lf; r
2
n; r

2
f ; rnf

� �T
. We then want to compute the

Belief and Plausibility of U ¼ PCjPC P PC0

� �
where PC0

is a desirable value. Finally, we can define the set:

Xu ¼ u 2 U jf uð Þ 2 Uf g; ð8Þ
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where f uð Þ is a quantity of interest, in this case, the prob-
ability of collision defined in Eq. 4. For more information
please refer to Sánchez and Vasile (2021).
2.4. Optimisation of impulsive collision avoidance

manoeuvres under epistemic uncertainty

When epistemic uncertainty is considered, the PoC is
not defined by a single ellipsoid but by families of ellipsoids
corresponding to families of covariances and mean values.
Thus, instead of having a single uncertain ellipse on the
impact plane one has to consider families of uncertain
ellipses each of which has to be displaced by a manoeuvre.
This means that an optimal and robust manoeuvre has to
displace all the ellipses at once.

Fig. 2 presents this situation where two families of
uncertain ellipses (red and green) are shown on the impact
plane, against a single ellipse (blue) obtained by combining
the information from both sources and considering solely
aleatory uncertainty.

The presence of families of ellipses means that the opti-
mal CAM has to be able to minimised the PoC correspond-
ing to the worst-case ellipse, which is the uncertain ellipse
leading to the highest value of the PoC. Thus the minimi-
sation problem presented in Section 2.2 needs to be refor-
mulated into the following min-max problem:

min
dv

max
u2Xu

PC

s:t:

re � dv > 0

; ð9Þ

which has to be solved over the whole set of FEs. Problem
9 is a constrained robust optimisation problem where the
optimal manoeuvre reduces the highest risk of a collision
over the whole set of ellipses.

Similarly to what proposed in Filippi Filippi and Vasile
(2019) for the solution of general min-max optimisation
Fig. 2. Encounter geometry accounting for epistemic uncertainty under DS
uncertainty is included. Source 1 (red) is nine times more reliable than Source
ellipses is: [0.3356, 0.3615] for Source 1 and [0.0, 2.1231e-256] for Source 2. The
information form both sources is shown in blue, with PC ¼ 0:00158.
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problems, we propose the following iterative process. First
we compute for each FE the value of the uncertainty vector
that gives the highest PoC. We then build the matrix

S ¼ R�1
1 þ R�1

2 þ . . . given by the sum of all the worst-
case ellipses for all FEs. From S we compute T and then
use Eq. 7 to compute the manoeuvre.

Since the implementation of a manoeuvre displaces all
the ellipses, the process has to be repeated until there is
no variation of the PoC. The pseudo-code of the min-
max algorithm can be found in Algorithm 1.

2.4.1. Optimisation of the impulse magnitude

Up to this point, the optimisation of the manoeuvre
assumed a constant magnitude, dv0. However, this can lead
to situations where the correction of the orbit is overesti-
mated, with a reduction of the PoC several orders of mag-
nitude below the minimum safety threshold. In such
situation, a smaller impulse could reduce the risk to accept-
able levels without an excessive cost of the manoeuvre.

Assuming the maximum capacity of the thruster is
defined by dvmax, the optimum value of the magnitude will
be the minimum one that allows reducing the worst-case
scenario PoC below the selected threshold, PC0:

min dvk k
s:t: PC < PC0;

ð10Þ

Once the optimal direction is computed with Eq. 7, the
minimum dv can be simply derived from the solution of
problem (10). However, since the magnitude of the impulse
affects the deflection of the orbit and, subsequently, the
worst-case scenario, the optimal magnitude computation
has to be integrated within the min-max optimisation
algorithm.

Algorithm 2 summarises the process: an outer loop com-
putes the manoeuvre direction at constant magnitude; after
computing the optimal direction, dopt, with Eq. 7, the new
worst-case ellipse is computed; if PC < PC0 an inner loop
t. Two sources of information are considered. Aleatory and epistemic
2 (green). The maximum and minimum PoC associated to each family of
HBR, is shown in black, and equal to 5m. The uncertain ellipse combining
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reduces the magnitude of the impulse with a simple bisec-
tion method till PC ¼ PC0, recalculating the worst-case
ellipse at each iteration of the inner loop.
2.5. Optimisation of low-thrust collision avoidance
manoeuvres under epistemic uncertainty

In this section, an approach to approximate the optimal
manoeuvre using LT propulsion is presented. The process
is divided in two steps. First, we define a low-thrust arc
and take the middle point of the arc. At the middle point
of the arc, hm, we use Algorithm 2 to compute an approx-
imation of the direction of the thrust along the arc. We
then apply the approximation to the thrust direction to
the whole arc with constant thrust acceleration e. (see
Fig. 3).

With the arc length, arc angular position, thrust magni-
tude and direction of the manoeuvre, we use the analytical
solution implemented in FABLE Di Carlo et al. (2018),
Zuiani and Vasile (2014), to compute the effect of the
manoeuvre on the impact plane. Given the direction and
the magnitude of the thrust, FABLE computes the varia-
tion of the orbital elements along the thrust arc. The calcu-
lation is done in non-singular equinoctial elements
E ¼ a; P 1; P 2;Q1;Q2; L½ � Zuiani and Vasile (2014) by solving
Gauss’s planetary equations:
Fig. 3. CAM strategy for the LT scenario. The encounter occurs at hc.
The manoeuvre is defined by the mid-point of the arc, hm. The arc-length is
defined by the manoeuvre starting point, hm0 and the final manoeuvre
position, hmf so that: Dhm ¼ hmf � hm0, with hmf � hm ¼ hm � hm0. The final
manoeuvre position may or may not be equal to the encounter position,
hc. The optimal manoeuvre direction in an object centred reference frame,
a and b (for simplicity in the figure only one direction angle is shown), is
computed at the mid-point position, hm, by obtaining the optimal impulse
manoeuvre at this position, dvopt (in red). A LT acceleration is performed
from hm0 to hmf with direction a (and bÞ and magnitude
e ¼ min emax; dv=Dtbð ) (in green). The deflection dxb can be computed as
the difference between the original and the deflected orbits.
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dE
dL

¼ eF E; L; a;bð Þ; ð11Þ

under the assumption that the thrust is small compared to
the magnitude of the local gravity field. L ¼ Xþ xþ h is
the true longitude, where h is the true anomaly, x the argu-
ment of the pericentre and X the right ascension of the
ascending node. In Eq. 11 a and b are the LT direction
angles in the <R,T,H> reference frame attached to the
spacecraft so that the acceleration vector is defined as:

er ¼ e cos b cos a

et ¼ e cos b sin a

eh ¼ e sin b

; ð12Þ

If E0 is the set of orbital elements at the start of the
thrust arc, an approximation of the value of the orbital ele-
ments at the end of the arc can be computed with the first
order expansion:

E ¼ E0 þ eE1 þ O e2
� � ¼

a0 þ ea1
P 10 þ eP 11

P 20 þ eP 21

Q10 þ eQ11

Q20 þ eQ21

2
6666664

3
7777775
þ O e2

� � ð13Þ

Substituting in Eq. 11 and taking only terms up to first
order, it is possible to obtain:

dE0

dL ¼ 0

e dE1

dL ¼ eF E0; L; a; bð Þ ð14Þ

Thus, the first-order term of the expansion is:

E1 ¼
Z Lmf

Lm0

F E0;L; a; bð ÞdL ð15Þ

Once the new orbital elements at the end of the thrust
arc are available, FABLE is used to propagate a coast
arc (e ¼ 0) with the variated trajectory from the end of
the manoeuvre to the nominal Time of Closest Approach
(TCA) (where the impact plane is defined) under the simpli-
fying assumption that the manoeuvre and orbit perturba-
tion do not modify the shape of the ellipsoid of
uncertainty (note that this is analogous to taking only the
first two statistical moments in a full nonlinear propagation
of uncertainty). Under this simplifying assumption the low-
thrust manoeuvre, as the impulsive one, produces a trans-
lation of the uncertain ellipse on the impact plane by the
quantity:

dxb ¼ reLT � re0 : ð16Þ
Algorithm 3 summarises the LT CAM optimisation.

2.5.1. Magnitude and Arc-length optimisation

The previous section started from the assumption that
one knows the magnitude of the thrust acceleration and
the length of the thrust arc. In fact the optimal value of
these two parameters is not known a priori. Thus we start
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from a first guess and then follow an iterative process to
find an optimal value.

Once the optimal direction, dopt, is available for a fixed
magnitude and arc length, one can look for the optimal
magnitude, the optimal arc length or both by iterating
the following process:

� Keeping the thrust-arc length constant
(DL ¼ Lmf � Lm0 ¼ Lc � Lm0), the acceleration magni-
tude is modified so that PC < PC0, and e is minimal.
Thus, similar to the impulsive case the magnitude is
reduced till PC ¼ PC0 and e > 0. Algorithm 4 includes
the pseudo-code of this optimisation.

� Keeping the acceleration magnitude and direction con-
stant, the arc-length is reduced. In this case, we keep
the mid-point of the arc fixed, and with a bisection
method reduce the arc size until PC ¼ PC0 and Dh > 0.
Algorithm 5 summarises this optimisation.

Note that in the remainder of the paper we either optimise
the magnitude or the arc-length. The simultaneous optimi-
sation of both is of course possible but in this paper we lim-
ited our attention to the effect of each individual
optimisation.
3. Intelligent classification system

In previous work by the authors, an ICS was introduced
to support operators to make informed decisions on con-
junction events Sánchez and Vasile (2021). The ICS was
trained on thousands of conjunction scenarios in order to
provide robust recommendations when a new scenario
was occurring. However, the ICS was trained without tak-
ing into account the actual execution of a CAM. Thus in
this section we assess the feasibility of including the cost
of a CAM in the training of the ICS.

As in previous developments of the ICS, the intelligence
comes from a combination of DSt, to establish the classes
from the available information, and Machine Learning, to
by-pass the computational burden required to compute
Belief and Plausibility and aggregate other decision factors,
like the TCA, for example, to return a class. From a
methodological point of view, the ICS will be trained on
a synthetic data-set containing a large variety of carefully
constructed encounter scenarios and possible CAMs. Since
the ICS is devised to provide support even in the case of
events that fall outside the currently available record of
conjunctions and collisions, it is of paramount importance
that the ICS is trained on a carefully constructed database.
For this reason, the data-set has to be composed of a suf-
ficient variety of synthetic encounter geometries and asso-
ciated uncertainties. Using existing data-sets of actual
CDMs would not be sufficient or appropriate as it would
introduce a potential bias. In fact, given the small number
of catastrophic collisions, those events with a high PC

would not be adequately represented. It is also important
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to underline that the ICS is not devised to predict CDMs,
or the uncertainty in CDMs, starting from raw data. On
the contrary, the ICS is designed to provide a class given
an available epistemic model. Thus the training of the
ML model requires only a number of well thought geome-
tries and a sufficiently large epistemic set but no real con-
junction scenarios. Indeed, the training can be integrated
with actual scenarios but paying attention to the balance
of the data-set. In the remainder of this section we will
briefly recall the two main components of the ICS: the clas-
sification system based on DSt and the Machine Learning
model used to automate the classification.
3.1. Conjunction classification criteria

The Intelligent Classification System in Sánchez and
Vasile (2021) was collecting conjunction events in 5 Classes
and associated recommendations:

� Class 1: short-term high-risk encounter or short-term
encounter with high degree of uncertainty. A CAM
should be implemented.

� Class 2: mid-term or long-term high-risk encounter. A
CAM should be considered, although more observa-
tions can be acquired before executing the CAM.

� Class 3: mid-term or long-term event affected by a high
degree of uncertainty. More measurements have to be
obtained before making any further decision.

� Class 4: mid-term or long-term low-risk event. No
action is required, although more observations may be
acquired to refine the position knowledge.

� Class 5: short-term low-risk encounter. No further
action is required.

The allocation of a conjunction event to one of the
above 5 classes was dependent on four main criteria: the
Belief and Plausibility that the PoC, computed using the

FE associated to the vector u ¼ ln; lf; r
2
n; r

2
f ; rnf

� �
, was

above a given threshold PC0, the Degree of Uncertainty
DoU jPC0

¼ PljPC0
� BeljPC0

on the PoC being greater than

that threshold, the limit probability of collision PCb above
which there is insufficient evidence supporting the correct-
ness of the PoC, BeljPC

< Bel0 for PC > PCb, and the TCA.

The TCA was used to divide conjunctions in three groups:
short-term (tTCA < T 1), mid-term (T 1 6 tTCA < T 2), and
long-term(tTCA P T 2). The other criteria were used to fur-
ther divide the events into the 5 classes defined above.
Table 1 summarises the classification in Sánchez and
Vasile (2021).

When the magnitude and effect of a CAM is available
the classification can be modified to consider whether a
manoeuvre can be executed or not and when. Classes 4
and 5 are not considering the possible execution of a
manoeuvre, thus they are not affected by the information
on the CAM. Class 1 recommends a CAM execution inde-



Table 1
Primary classification criteria.

Time to TCA PoC for BeljPC
¼ Bel0 DoU at PC0 Class

tTCA < T 1 PCb P PC0 - 1
PCb < PC0 DoU jPC0

6 D 5
DoU jPC0

> D 1
T 1 6 tTCAtTCA < T 2 PCb P PC0 - 2

PCb < PC0 DoU jPC0
6 D 5

DoU jPC0
> D 3

T 2 6 tTCA PCb P PC0 - 2
PCb < PC0 DoU jPC0

6 D 4
DoU jPC0

> D 3
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pendently of the magnitude or position, and it will not be
affected since already represents the highest degree of risk.

Once the CAM is computed Class 2 is reclassified to 1 if
a CAM is below a given threshold at any orbital position
prior to TCA, i.e. dv < dv0 8 hm 2 Hm, where Hm is the
set of angular positions where the robust optimal CAMs
are computed. If the cost of the CAM is higher than the
threshold dv0 Class 2 remains unchanged but new measure-
ments are recommended before recomputing the CAM.

Class 3 is reclassified as 1 or 2 depending on the magni-
tude of the CAM. When the CAM cost is above the thresh-
old for any orbital position the event remains as Class 3,
indicating more measurement are required to make a confi-
dent decision. However, if an earlier CAM is smaller than a
later one, the event is reclassified as Class 1 and the optimal
CAM and position provided. If the CAM is below the
threshold for every orbital position, i.e.
dv < dv0 8 hm 2 Hm, the event is reclassified as Class 2: the
low cost of the manoeuvre may justify its execution, but
the higher degree of uncertainty and the fact that a later
manoeuvre does not increase the cost supports the fact that
acquiring more measurements can lead to a better decision.
Table 2 summarises the reclassification proposed in this
paper.
3.2. Machine learning-based classification

In Sánchez and Vasile (2021) the ICS was returning a
Class and a recommended action given an input vector
containing the TCA and the lower and upper bounds on
miss distance and covariance matrix
Table 2
New epistemic classification criterion.

Class in Table 1 dv criterion New Class

Class 1 - 1
Class 2 dv < dv0 8 hm 1

else 2
Class 3 dv < dv0forhm > hm0

dv P dv0forhm < hm0

	
1

dv < dv0 8 hm 2
else 3

Class 4 - 4
Class 5 - 5
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( ln; lf; r2
n; r

2
f ;rnf

h i
; ln; lf; r2

n; r
2
f ; rnf

� �
) for each source of

information, thus, the length of the input vector was 12,
times the number of sources plus one.

When CAMs are accounted for in the classification sys-
tem, the ICS has to be retrained on the new Classes. The
input to the ICS remains unchanged but the Classes are
now the ones in Table 2. Thus, the ICS takes as inputs
the time to the encounter, the bpas and the lower and
upper bounds on mean and covariance components, and
returns one of the Classes in Table 2.

In both the case of an impulsive and a low-thrust CAM,
the ICS is trained by considering the equivalent dv. The value
of the dv for impulsive manoeuvres comes directly from
problem (9). In the case of a low-thrust manoeuvre one has
the thrust magnitude e and the length of the thrust arc Dtb.

From these two quantities it is possible to compute the
associated equivalent velocity change using: dv ¼ eDtb.
Ultimately, the LT CAM using the process in Section 2.5
starts with an impulsive dv. Thus, the same classification
criterion in Table 2 is used to classify both an event with
an impulsive manoeuvre and one for a LT manoeuvre.

In this work, two different ML techniques have been
tested: RF and ANN. We opted to use them and no others
based on the results from previous works Sánchez and
Vasile (2021). There, we tested a first version of the ICS
over several databases representatives of different encoun-
ter geometries with four different ML techniques: Random
Forests, Artificial Neural Networks, Support Vector
Machines and K-Nearest Neighbours. The two first tech-
niques provided the most accurate predictions over all
the databases.

RFs were implemented using the available packages
included in Python’s Scikit library. The number of estima-
tors and the depth of the trees were the main parameters
modified during the training. ANN’s were implemented
with the Matlab’s Deep Learning Toolbox. Only architec-
tures with one hidden layer were considered. The number
of neurons on this layer was the only tuned parameter.
Information on the set of hyperparameters employed on
this work are detailed in Section 4.4.2. More information
on these techniques can be found in Breiman (2001) and
Kubat (2017). It has to be noted that the scope of this
paper is not to propose a particular ML architecture or
to develop the best architecture to account for CAMs in
the classification of conjunction events. The experiments
in this paper are motivated by the successful classification
of conjunction events, without CAMs, published in
Sánchez and Vasile (2021). Thus in this paper we limited
ourselves to the ML architectures used in Sánchez and
Vasile (2021) and defer the analysis and development of
more advanced ML models to future work.
4. Numerical experiments

In this section, we start by putting the robust CAM
model to the test on different scenarios. Then the perfor-
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mance of the ICS will be assessed together with its ability to
produce robust recommendations.
4.1. Impulsive CAM: Minimisation of the PoC under

aleatory uncertainty

In this example, a numerical case is presented to show
the validity of the linear CAM model in Eq. 1. Only alea-
tory uncertainty is considered in this case, thus the compu-
tation of an optimal CAM reduces to problem Eq. 7 for a
given covariance matrix. The magnitude of the impulse is
kept constant and equal to dv0 ¼ 10 cm/s.

Table 3 includes the reference orbital parameters at the
encounter time of both objects and the Keplerian elements
covariance matrix, D, for the piece of debris (the secondary
object), assumed diagonal. The manoeuvrable object (the
primary) is assumed to be perfectly known. The miss dis-
tance on the b-plane before the CAM is re =

�0:143; 0:0; 0:494½ �T km, and the probability of collision

before CAM execution is PC ¼ 9:898 � 10�6.
In order to validate the solution coming from the linear

model in Eq. 6 a trivial grid search on the impulse angles
/;w (Eq. 2) was used to find a close to optimal pair of
angles. For each pair, the PoC at the encounter due to
the impulse was computed. For each hm, the optimal direc-
tion was chosen as the pair of angles providing the mini-
mum probability of collision.

In Fig. 4, the components, in the the primary object’s
<T,N,H> reference frame, of the direction of the optimal
impulse vector, dv̂opt, applied to the primary object as a
function of the angular distance between the manoeuvre
and encounter positions, Dh ¼ hc � hm, are shown. In
black, the results provided by the linear model. In red the
value from the grid search, at each manoeuvre position
hm, that optimises the PoC. The figure shows the good
agreement between both values for all the components,
with only slightly greater differences for late manoeuvres
(small Dh).

Table 4 includes the Root Mean Squared Error (RMSE)
and the Maximum Absolute Error (MAE) of each compo-
Table 3
Primary and secondary’s nominal Keplerian elements and secondary’s
diagonal covariance matrix terms at encounter time.

Variable Units Object 1 Object 2

Semi-major axis (a) [km] 7006.794 6292.553
Eccentricity (ecc) - 5.5�10�4 0.6684
Inclination (i) [rad] 1.3321 2.0291
RAAN (X) [rad] 0.1537 6.1208
Argument of perigee (x) [rad] 0.0571 3.4077
True anomaly (hÞ [rad] 5.8100 2.4224

r2a [km2] - 1.54�10�3

r2ecc - - 7.24�10�9

r2i [rad2] - 4.925�10�7

r2X [rad2] - 0
r2x [rad2] - 0
r2h [rad2] - 0
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nent of dv̂opt computed with the linear model with respect to
the grid search value.

4.2. Impulsive CAM: Minimisation of the PoC under

epistemic uncertainty

In this section, we consider a scenario in which the miss
distance and the covariance are affected by epistemic uncer-
tainty. This can be the case in which multiple CDMs are in
conflict or correspond to an unknown distribution of
covariance matrices. In this scenario the CAM needs to
be robust enough to cope with the distribution of the
covariance matrices and optimal at the same time. We con-
sider two cases: one with a non optimal impulse magnitude
and one with an optimised magnitude.

Table 5 includes the exact orbital elements at initial time
t0 of both objects. The primary object, which is the
manoeuvrable one, is assumed to be perfectly known.
The knowledge of the orbit of the secondary object is
affected by epistemic and aleatory uncertainty. Assuming
Keplerian motion, the close approach occurs when the
True Anomaly, h ¼ 0 rad for both objects, and is set at
one orbit and a quarter after t0.

The uncertainty is introduced on the secondary object’s
initial position in its <T,N,H> reference frame. The alea-
tory uncertainty is modelled as a 3D-Gaussian distribution,
with mean ltnh0

and covariance matrix Rtnh0 (see Fig. 16a).

The epistemic uncertainty is modelled with interval-valued
parameters that modify the Gaussian distribution in
Fig. 16b. Thus, the epistemic parameter kl defines the vari-
ability of the mean value, while the epistemic parameter kr,
scales he covariance matrix. As a consequence, the single-
well defined initial position uncertain ellipsoid becomes
the family of ellipsoids:

xtnh ¼ N ltnh0
;Rtnh0 ; k


 �
; ð17Þ

with k ¼ kl; kr
� �

and

ltnh ¼ ltnh0
þ kl

Rtnh ¼
r2
t0krt 0 0

0 r2
n0krn 0

0 0 r2
h0krh

2
64

3
75 ;

We also assumed that two independent sources of informa-
tion were available. Each source of information was pro-
viding one interval for each of the epistemic parameters
kl and kr. The intervals provided by each source were
assumed to be completely disjoint and each epistemic
parameter could belong to the interval provided by the cor-
responding source of information.

Table 6 includes the mean, ltnh0
and covariance matrix,

Rtnh0 for the secondary object’s initial position modelling
the aleatory uncertainty. It also includes the epistemic
parameters that defined the family of ellipsoids for each
source. The first source of information supports the
hypothesis that the position is closer to the nominal mean



Fig. 4. Components of the unit vector dv̂opt ¼ dv̂t dv̂n dv̂h½ � parallel to the optimum impulse, dvopt, as a function of the angular difference between
manoeuvre and encounter, Dh ¼ hc � hm. Black: using Linear Model; red: grid search.

Table 4
Linear model errors with respect to the grid search value for the unit
vector, dv̂opt parallel to the direction of the optimal impulse, dvopt.

Variable RMSE MAE

dv̂t 5.434�10�2 5.792�10�2

dv̂n 4.244�10�2 5.512�10�2

dv̂h 2.619�10�3 7.039�10�2

Table 5
Nominal Keplerian elements at initial time.

Variable Units Object 1 Object 2

Semi-major axis (a) [km] 7100 7100.5
Eccentricity (ecc) - 10�5 10�5

Inclination (i) [rad] p/4 2/3p
RAAN (X) [rad] 0.0 0.0
Argument of perigee (x) [rad] 0.0 0.0
True anomaly (h) [rad] 4.7148 4.7148

Table 6
Secondary object’s initial uncertainty. Aleatory uncertainty: nominal
position, ltnh0, and diagonal covariance matrix, Rtnh0, on its <T,N,H>

reference frame. Epistemic uncertainty: two sources of information
providing the interval-valued parameters, kl; kr, that modify the mean
and the covariance matrix elements.

Aleatory uncertainty

ltnh0 [km] [0, 0, 0]
r2t0 [km2] 0.252

r2n0 [km2] 0.252

r2h0 [km2] 0.252

Epistemic uncertainty Source 1 Source 2
klt ¼ kln ¼ klh [km] [0.00, 0.01] [-0.53, -0.515]
krt ¼ krn ¼ krh [1,4] [1/5, 1/2]
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(less than 10m off the nominal position) and is scaling the
covariance matrices up to 4 times. The other source of
information supports the hypothesis that the miss distance
is further away (around 500m from the nominal position)
and shrinks the covariance matrix by a factor between 2
and 5.
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The uncertainty was expressed in an Earth Centred Iner-
tial reference frame and propagated to the nominal
encounter time. The propagation was carried out by sam-
pling the initial ellipsoids defined by each source and prop-
agating each sample to the nominal TCA. Finally, the
uncertainty was projected onto the b-plane centred at the
secondary object (see Section 2.1). Since we assumed inde-
pendence of the sources the projection on the b-plane cor-
responds to two families of uncertain ellipses (see Fig. 5),
defined by the intervals in Table 7. The PoC accounting
for epistemic uncertainty varies then in the intervals

[10�21; 9:1 � 10�3] and [10�39, 1.5�10�8] for Source 1 and
Source 2, respectively, when taken independently. If one
was considering one single enveloping ellipsoid, assuming
both sources equally reliable, the PoC would be

2:571 � 10�5. When the intervals provided by the two
sources are combined, the epistemic uncertainty space U

is composed of 32 focal elements coming from the Carte-
sian product of two intervals for each of the 5 parameters
defining the mean value and covariance matrix. The CAM
has to be optimal for every value of mean and covariance
in in each focal element.

In the following figures, the optimal impulse has been
computed at each quarter of orbit for the 12 revolutions
before the TCA. Fig. 6 shows the evolution of the compo-
nents of the unit vector parallel to the optimal impulse, dv̂,
as a function of the angular distance from the TCA,
Dh ¼ hc � hm, for both cases with and without optimisation
of the impulse magnitude. For these examples, both strate-
gies present the same optimal direction at all manoeuvre
positions and it tends to a tangential impulse. They differ,
however, in the value of the magnitude for Dh > 56:5 rad
(approximately 9 orbits before TCA) when PCWC < PC0

(Fig. 7), being WC the worst-case ellipse with highest
PoC among all the FE.

Fig. 8 includes the evolution of the worst-case PoC as a
function of Dh. It can be seen how the worst-case scenario
PoC remains closer to PC0 by optimising the magnitude of
the impulse for Dh > 56:5 rad (red solid line).



Fig. 5. Encounter geometry accounting for epistemic uncertainty in two families of ellipsoids from two independent sources of information: Source 1 in
blue, Source 2 in green. The nominal miss distance is shown with a red triangle. The HBR, with solid red line (highlighted with an orange arrow to indicate
its position in the origin of coordinates). The maximum and minimum PoC associated to each family of ellipses is: [10�21; 9:1 � 10�3] for Source 1 and
[10�39, 1.5�10�8] for Source 2. The PoC corresponding to the probabilistic approach with a single bigger ellipse enclosing all the samples from both sources
would be 2:571 � 10�5.

Table 7
Bounds of the sources’ intervals for the uncertain variables on the b-plane.

Variable Units Source 1 Source 2

ln [km] [0.406, 0.572,] [0.338, 0.380]
lf [km] [-0.842, 0.625] [2.708, 2.998]
r2n [km2] [0.0316, 0.312] [0.931, 5.611]�10�3

r2f [km2] [1.452, 20.12] [0.3298, 0.0480]
rnf [km2] [0.180 , 2.422]�10�2 [0.498, 3.962]�10�2
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Finally, Fig. 9 includes the worst-case scenario uncertain
variables as a function of Dh along with the sources’ inter-
val bounds. It can be appreciated how the worst-case sce-
nario (blue and red solid lines for the non optimal
magnitude and optimal magnitude cases, respectively) is
restricted to the given intervals provided by the sources
of information (black and green dashed lines).

The results of the optimisation using the linear model
for computing the optimal impulse are compared with a
Fig. 6. Evolution of the direction of the optimal impulse, dv̂, as a function o
magnitude of the impulse, points, without optimisation of the magnitude. Bo
green: out-of-plane component.
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Monte Carlo (MC) simulation in order to prove their valid-
ity. For the MC simulation, 1,000 samples per ellipsoid and
20 ellipsoids per source were used. The initial nominal state
of the primary object (not uncertain) is propagated to the
manoeuvre position where the optimal impulse is added
to the orbital velocity. The new modified orbit is propa-
gated to the unperturbed nominal TCA. The secondary
object is propagated as indicated before: samples from a
number of uncertain ellipsoids on the initial position are
taken and individually propagated to the nominal TCA.
The relative position between the primary nominal state
and the state of each sample from the secondary object
are propagated to the b-plane defined at the TCA by the
unperturbed nominal orbits.

Fig. 10 shows the displacement of the set of ellipses
obtained using the linear model (blue and green lines are
associated to source 1 and source 2, respectively), and the
uncertain ellipses families obtained with the MC simulation
f the position of the manoeuvre, Dh: Solid line, with optimisation of the
th cases coincide. Red: tangential component, blue: normal component,



Fig. 7. Evolution of the impulse magnitude when optimised (solid red line) and without being optimised (dashed blue line) as a function of the position of
the manoeuvre, Dh.

Fig. 8. Evolution of worst-case scenario PoC with the position of the manoeuvre, Dh. Red, with optimisation of impulse magnitude. Blue, without
optimisation of impulse magnitude. Solid lines: worst-case scenario. Dashed lines: the worst-case PoC among the 20 ellipses per source randomly drawn
from the intervals defined by the sources. Horizontal dashed-dotted black line, PoC threshold, PC0 ¼ 10�6, below which bring PoC.

Fig. 9. Worst-case scenario uncertain variables evolution with respect to the difference between encounter and manoeuvre positions, Dh. From left to right
and top to bottom: ln;lf; r

2
n; r

2
f ; rnf. Red solid line: with impulse magnitude optimisation. Blue solid line: without impulse magnitude optimisation. Black

lines: Source 1’s bounds (dashed lower, dashed-pointed upper). Green lines: Source 2’s bounds (dashed lower, dashed-pointed upper).
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Fig. 10. Families of uncertain ellipses displaced by an optimal impulse applied at Dh ¼ 21:99 rad (3.5 revolutions before the encounter). Blue and green
dashed lines: uncertain ellipses displaced by the manoeuvre computed with the linear model. Purple and black solid lines: uncertain ellipses displaced with
the MC simulation. Red dashed circle centred at the origin: HBR of the combined objects. Triangles represent the deflected mean relative position: red,
displaced miss distance computed with the linear model; black, MC simulation.
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(black and purple lines are associated to source 1 and
source 2, respectively), when applying the optimal impulse
3.5 revolutions before the encounter. The figure shows a
good agreement between the two simulations to the point
that the purple and black lines are nearly completely over-
lapped to the blue and green ones. Fig. 11 illustrates the
evolution of the deflection due to the impulse (Fig. 11a)
and and the associated worst-case PoC (Fig. 11b) as a func-
tion of Dh. In red the MC simulation and with dots the lin-
ear model. The agreement between methods for all the
variables can be understood as a validation of the linear
model proposed on this work.
4.3. Low-thrust scenario

In this section, the performance of the method for com-
puting the optimal CAM for the LT case is presented. We
show a comparison between the different algorithms pre-
Fig. 11. (a) Evolution of the deflection due to the manoeuvre. Solid red line: n
Green dots: n component linear model. Blue dots: f component linear mod
simulation. Blue dots: linear model.
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sented in Section 2.5. The results of each of these algo-
rithms are then compared against the results obtained by
applying a tangential manoeuvre, as proposed by other
authors Hernando-Ayuso and Bombardelli (2020).

The same scenario as in the previous section is investi-
gated. The exact orbital parameters are included in Table 5,
the uncertainty in the initial position for the secondary
object is included in Table 6 (the primary object is assumed
to be perfectly known), and the encounter uncertain vari-
ables bounds according to the two sources of information
are included in Table 7. The parameters employed for the
LT scenario appear in Table 8. The optimal direction has
been computed at multiples of half orbit before the encoun-
ter for 10 revolutions.

In Figs. 12–15, Strategy 0 refers to the LT manoeuvre
obtained using Algorithm 3 with eopt ¼ emax and with
hmf ¼ hc, thus, maximum thruster capacity and maximum
arc-length. Strategy 1 refers to the case where the accelera-
component MC simulation, dashed red line: f components MC simulation.
el. (b) Evolution of the PoC due to the manoeuvre. Solid red line: MC



Table 8
Parameters employed for the optimal LT CAM computation.

Variable Units Value

dvmax cm/s 10
emax cm/s2 2�10�3

PC0 - 10�6
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tion magnitude is optimised, keeping the thrust until the
encounter. Strategy 2 shows the case where the thrust is
kept equal to the maximum capacity of the thruster and
the arc-length is optimised. In Figs. 12–15, a comparison
between the results obtained applied the LT in the optimal
impulsive direction (solid lines) and the results obtained
with a purely tangential thrust (dashed lines) is also
presented.

Fig. 12 includes the evolution of the PoC as a function
of the difference between the true anomalies at the manoeu-
vre mid-point and at the encounter, Dh. It can be seen the
difference between executing the manoeuvre with maxi-
mum capacity until the encounter (blue solid line) and opti-
Fig. 12. PoC evolution with respect the difference in True Anomaly between th
maximum thruster capacity and arc-length. Red: maximum arc-length and op
optimised arc-length. Solid lines: direction of the impulse according to propos

Fig. 13. Acceleration magnitude evolution with respect the difference in True
(Dh ¼ hc � hm). Blue: maximum thruster capacity and arc-length. Red: maxim
thruster capacity and optimised arc-length. Solid lines: direction of the impuls
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mising the acceleration magnitude (red solid line) or the
burning time (green solid line). For values Dh > 30 rad, if
using the maximum capacity and maximum burning time,
the PoC drops far below the threshold, PC0. However, for
the other two cases, the PoC remains close, but below the
threshold. In Figs. 13 and 14, it can be seen how the accel-
eration magnitude and the burning time are optimised,
respectively. Fig. 13 shows that for Strategy 0 and Strategy

2 the acceleration magnitude is equal to the maximum
capacity, e ¼ emax, but for Strategy 1 the acceleration is
optimised (red solid line). Similarly, Fig. 14 illustrates the
optimisation on the burning time for Strategy 2 (green
solid line), while Strategy 0 and Strategy 1 present the max-
imum burning-time. Finally, in Fig. 15, the equivalent
velocity change obtained with the LT manoeuvre, accord-
ing to dv ¼ e=Dtb, for each strategy is shown. In general,
it is different than the velocity change considered by the
impulse employed to compute the optimal direction
manoeuvre, which is shown as the horizontal black dashed
line.
e mid-point of the LT manoeuvre and the encounter (Dh ¼ hc � hm). Blue:
timised accelerations magnitude. Green: maximum thruster capacity and
ed algorithm. Dashed line: tangential manoeuvre.

Anomaly between the mid-point of the LT manoeuvre and the encounter
um arc-length and optimised accelerations magnitude. Green: maximum
e according to proposed algorithm. Dashed line: tangential manoeuvre.



Fig. 14. Burning time evolution with respect the difference in True Anomaly between the mid-point of the LT manoeuvre and the encounter
(Dh ¼ hc � hm). Blue: maximum thruster capacity and arc-length. Red: maximum arc-length and optimised accelerations magnitude. Green: maximum
thruster capacity and optimised arc-length. Solid lines: direction of the impulse according to proposed algorithm. Dashed line: tangential manoeuvre.

Fig. 15. Equivalent velocity change with respect the difference in True Anomaly between the mid-point of the LT manoeuvre and the encounter
(Dh ¼ hc � hm). Blue: maximum thruster capacity and arc-length. Red: maximum arc-length and optimised accelerations magnitude. Green: maximum
thruster capacity and optimised arc-length. Black dashed line: velocity change used on the hypothetical impulsive manoeuvre. Solid lines: direction of the
impulse according to proposed algorithm. Solid lines: direction of the impulse according to proposed algorithm. Dashed line: tangential manoeuvre.
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When comparing with the tangential control law, it can
be seen from Fig. 12 that, for all the approaches, the pro-
posed method (solid line) yields a lower worst-case PoC
than the tangential manoeuvre (dashed line) at any given
value of Dh. This implies the proposed method improves
over a purely tangential manoeuvre.

4.4. Intelligent classification system performance

This section presents the performance of the machine
learning part of the proposed Intelligence Classification
System when the execution of the manoeuvre is included
in the decision process. The performance, understood as
the capacity of the system to predict the correct Class, is
measured with the overall accuracy of the ML model and
the associated F1-score.

4.4.1. Definition of the data set
As explained in Section 3 the ICS needs to be trained on

a carefully constructed database with a variety of encoun-
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ter geometries and an inclusive uncertainty set. In order to
test the methodology proposed in this paper, we created a
synthetic database of close encounters between simulated
space objects in Low Earth Orbit whose orbit and associ-
ated covariances (or set of CDMs) are assumed to be pro-
vided by two sources. The database contains the following
features: the time to the TCA, the upper and lower bounds

of the five uncertain variables, ln; lf; r
2
n; r

2
f ; rnf

� �
, provided

by each of the two sources of information, the bpa of the
source, and the set of positions (measured as the difference
in true anomaly between execution and encounter posi-
tions) where the optimal CAM is computed along with
the value of the manoeuvre at those positions (expressed
in <T,N,H> reference frame). Finally, the Class of the
event according to the new classification criterion in Table 2
is also included.

The close encounters were obtained by propagating an
uncertain initial state from an initial position (i.e. the posi-
tion at the last observation) to the nominal TCA. One of
the objects is assumed to be perfectly known and manoeu-
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vrable (i.e. an operational satellite), while the other is
affected by uncertainty on the position and has no manoeu-
vre capabilities (i.e. piece of space debris). The close
encounters are defined using the exact nominal orbital
parameters. The values of the nominal initial Keplerian
parameters of the primary object were sampled from the
intervals defined in the upper part of Table 9. The nominal
initial state of the secondary object was obtained by prop-
agating backwards from the encounter the nominal state,
obtained from the nominal encounter geometry. This nom-
inal encounter geometry was defined by taking values from
the intervals defined in the lower part of Table 9, where,
following the procedure in Bombardelli and Hernando-
Ayuso (2015), re is the miss distance, v the ratio between
secondary’s and primary’s speeds, / the angle between
both velocities within the primary’s orbital plane and w
the out-of-plane angle.

The uncertainty is included in the secondary object’s ini-
tial position as explained in Section 4.2 (Figs. 16a and b).
Then, the initial uncertainty position can be defined as:

x
2ð Þ
tnh ¼ N 0;Rtnh0 ; k

� �
: ð18Þ

The uncertainty is then propagated to the nominal TCA
and projected on the nominal impact plane. The intervals
for the encounter uncertain variables can be then obtained.
Note that also in this case we use the simplifying and con-
servative assumption that the intervals for the miss distance
and covariance associated to the propagated ellipsoids can
be computed independently.

The data-set was generated considering two sources of
information and the associated epistemic uncertainty inter-
vals, on miss distance and the covariance matrix, were cho-
sen so that the events could be grouped according to five
families of encounter geometries. Sources were then fused
as in Sánchez and Vasile (2021). These families are defined
by the relative position of the two sources’ sets of uncertain
ellipses on the impact plane and the relative position
between them and the HBR. These configurations repre-
sent different degrees of risk and conflict between sources:
i) the two sets of ellipses overlaps between each other and
Table 9
Intervals from which the primary object’s nominal initial Keplerian
elements and the nominal encounter geometry variables were obtained.

Value Units Parameter

a [km] [7000,7100]
ecc. (e) - [10�5; 10�4]
inc. (i) [deg] [70,90]
RAAN (X) [deg] [0,20]
Arg. Per. (x) [deg] [0,20]
True An. (hÞ [deg] [0,360]

ren [m] [-5,5]
reg [m] [-5,5]
ref [m] [-5,5]
v - [0.9,1.1]
w [deg] [-90,90]
/ [deg] [0,90]
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with the HBR (high risk and low conflict), ii) the two sets
overlaps between each other but not with the HBR (low
risk and low conflict), iii) the sets do not overlap with each
other and only one overlaps with the HBR (high conflict),
iv) no overlapping between sets or with the HBR (low risk
and high conflict), v) similar to the previous case, but with
an hypothetical uncertain ellipse accounting for two
sources set overlapping the HBR (low risk and low
conflict).

The samples for each geometry were obtained as fol-
lows. The aleatory component of the uncertainty was mod-
elled in the same fashion for all the sets of geometries. The
mean of the initial position of the secondary object was set
to zero for all the samples, ltnh0

¼ 0; 0; 0½ � km. The three

diagonal terms, r2
t0; r

2
n0; r

2
h0, of the aleatory component of

the covariance matrix, Rtnh0 , were drawn from the intervals
[0.05,0.1], [0.01,0.1], [0.01,0.1] km2, respectively. The epis-
temic component was obtained, for each geometry family,
by sampling from the intervals included in Table 10. The
samples were then propagated to the impact plane.

Finally, the optimal CAM (assumed impulsive) was
computed at five positions: Hm ¼ 0:5; 1:5; 2:5; 5:5; 9:5f g
revolutions before the TCA. The linear model detailed in
Section 2 was employed to compute the optimal value.
These five angular positions were used to classify the events
according to the new classification criterion introduced in
Section 3.1. Table 11 includes the parameters employed
to create the database. The HBR was kept constant for
all the virtual encounters. Likewise the threshold in PoC,
Belief and Degree of Uncertainty (PC0;Bel0 and D, respec-
tively) were kept constant for all encounters. Two time
thresholds were considered, T 2 > T 1. The robust optimal
CAM for each encounter was computed at the five posi-
tions included in Hm, measured as the angular distance
between the manoeuvre position and the encounter posi-
tion in True Anomaly. The CAMmagnitude was optimised
so that the risk of the worst-case scenario remained just
below the PoC threshold, with a maximum capacity of
the thruster of dvmax.

We initially considered a total of 18,000 simulated
encounters, 3,600 for each of the five sets of geometries.
Each group of 3,600 encounters were evenly distributed
over the three time bins used in the classification: short-
term, mid-term and long-term. For each time bin and each
encounter configuration, one third of the PoCs was com-
puted using two equally reliable sources of information,
one third using two sources where one is nine times more
reliable than the other, and one third where the same
source is nine times less reliable than the other. We then
applied the classification criteria in Table 2. The result
can be seen in Fig. 17 where the database classified without
accounting for the execution of the manoeuvre, Fig. 17a, is
compared to the same database classified including the
CAM, Fig. 17b.

From the figure, it can be seen that Classes 2 and 3 are
underrepresented. This is mainly due to the fact that the



Fig. 16. (a) Aleatory uncertainty on the initial secondary position. Orange: initial nominal position (r20), black: initial nominal velocity (v20), green:
aleatory uncertainty modelled as a Normal distribution, N ltnh0;Rtnh0ð Þ. (b) Epistemic uncertainty on the initial secondary position. Red: displacement on
initial mean position, kl, purple: scaling on the initial covariance matrix, kr. The total uncertainty follows a parametric family of Gaussian distributions:
N ltnh0;Rtnh0; kð Þ.

Table 10
Intervals from which the bounds of the epistemic parameters kl and kr,
per each geometry configuration were obtained. The upper and lower
bounds of kl and kr are taken randomly from Kl and Kr, so that kl 2 Kl

and kr 2 Kr.

Geometry Parameter Source 1 Source 2

Geo. 1 Kl [km] [-0.01, 0.01] [-0.01, 0.01]
Kr [0.1, 0.4] [0.1, 0.4]

Geo. 2 Kl [km] [0.35, 0.45] [0.35, 0.45]
Kr [0.5, 2] [0.5, 2]

Geo. 3 Kl [km] [-0.01, 0.01] [0.35, 0.45]
Kr [0.1, 0.4] [0.5, 2]

Geo. 4 Kl [km] [-0.1, -0.05] [0.18, 0.23]
Kr [0.1, 0.4] [0.1, 0.4]

Geo. 5 Kl [km] [-0.15, -0.1] [0.1, 0.15]
Kr [0.1, 0.4] [0.1, 0.4]

Table 11
Parameters employed to obtain the database.

Parameter Units Value

HBR m 10
PC0 - 10�6

Bel0 - 0.5
D - 0.3
T 1 days 2
T 2 days 4
dvmax cm/s 10
Hm rad p; 3p; 5p; 11p; 19p½ �
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magnitude of the manoeuvre tends to classify Class 2 and 3
geometries as Class 1. Due to this unbalanced Class distri-
bution, the average performance of the ICS system was
negatively affected, with a limited ability to correctly pre-
dict Class 2 and 3 scenarios. From different tests using
more balanced databases, we observed that a less popu-
lated but more balanced database provided better predic-
tion capabilities. Thus a new database which contained
174 samples per Class (870 in total) was created for the
training of the ICS.

The features of the database are: time to TCA, sources’
bpa, and the upper and lower bounds of the uncertain
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variables. The label of the database was the Class of the
events. The database was split into two sets: 80% of the data
points formed the Training set and 20% of data points were
used as Validation set. The Training Set was used to train
each model. The Validation Set was used to evaluate the
performance of the trained models during the hyperparam-
eter tuning (see next section). Note that the data in the Val-
idation Set are not seen by the models during the training
process but are used only to assess the performance of each
model for a given combination of the hyperparameters.
4.4.2. Hyper-parameter setting

In this work, a few different RFs configurations were
trained and tested. The models differed in the number of
trees in the forest, n_estimators, (50, 100, 200, 400), the max-
imum depth of the tree, max_depth, (’None’, 50, 100), the
minimum number of samples required to be at a leaf node,

min_samples_leaf, (1; 10�4; 10�7), the minimum number of
samples to split a node ,min_samples_split, (2; 20), and the
number of features to consider when looking for the best
split,max_features, (’auto’,0.5,’log2’). For each combina-
tion of hyper-parameters, an RFmodel was re-trained using
the Training Set and then tested on the Validation Set. The
model with the combination of hyperparameters that pro-
vided the best results (the highest mean F1-score) over the
Validation Set was saved as the best model.

The ANN’s trained in this paper contain only one hid-
den layer. Since it is a classification problem, the output
layer contains five nodes, one per Class, indicating the
probability of the output of being one of them. The final
output corresponds to the Class presenting a higher prob-
ability. Ideally, when inputs of a Class k are provided, all
nodes in the output layer should take value 0 but node k

that should take value 1. The only hyperparameter modi-
fied in this study was the number of neurons in the hidden
layer: 10, 20, 50, 100. Each neuron possess a hyperbolic
tangent activation function. The optimiser is based on the
Levenberg-Marquardt method and the loss function is
the Multi-Class Cross-Entropy. For each number of neu-



Fig. 17. Histograms representing the samples distribution by Classes: (a) unbalanced database with criterion presented in Sánchez and Vasile (2021), (b)
unbalanced database with criterion in Table 2.
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rons an ANN’s model was trained iteratively 10 times with
different initialisation of the parameters (weights and bias
of the neurons) on the Training Set and then tested on
the Validation Set. The ANN model providing the best
value of the loss function on the Validation Set was selected
as the best model.

4.4.3. Performance

The performance of each technique (RF or ANN) was
obtained by predicting the results of the samples in the Val-
idation Set. The metrics employed to assess the models are:
the overall accuracy (the percentage of samples correctly
predicted over all the samples), the precision by Class
(the fraction of samples correctly predicted among the total
number of samples predicted in that Class), the recall by
Class (the fraction of samples correctly predicted in one
Class over the total number of samples actually belonging
to that Class), and the F1-score by Class and the mean F1-
score among categories:

F 1 ¼ 2
recall � precision
recallþ precision

: ð19Þ

Table 12 shows the performance of the system using RF
and ANN over the Validation Set of the balanced data-
base. It can be seen that RF outperforms ANN, both in
mean F1-score and on almost all individual Class F1-
score. Overall, the performance of the system is good, a
mean F1-score near 90%. Breaking down by Classes, it is
worth noting how Classes 4 and 5 are almost perfectly pre-
dicted, while Class 3 presents the worst prediction score.
The reason for a lower score, in this Class, is the lack if
direct information on the magnitude of the manoeuvre.
In fact the CAM itself is not an input and the ICS has to
assume the presence of the CAM from the allocated class.
Since Class 3 is the more ambiguous one, events are miss-
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classified as 1 or 2. Note also the low recall of Class 1, and
the corresponding low precision of Class 2. This suggests
that the ICS tends to generate a number of false Class 1
negatives that would induce the operator to acquire addi-
tional information before executing a CAM. Although
the situation might improve with an extended database,
this result is still positive, as it is, because it leads to the
acquisition of more information. Indeed since Class 1 usu-
ally corresponds to short TCAs, the operator can anyway
decide to implement a manoeuvre if there is no time to allo-
cate a new observation.

From these results, it can be concluded that the system is
able to predict, with a reasonable level of accuracy, the cor-
rect Class of a close encounter event, with the exception of
Class 3. However, Class 3 is characterised by a medium-to-
long term event and further decisions can be made. Fur-
thermore, an event Class 3, with the added dv criterion, is
miss-classified as more stringent Class 1 and 2. It can also
be concluded that, out of the two ML algorithms we tested,
RFs worked better for this problem.

As it will be shown in the next section, the classification
errors are compensated by a significantly lower computa-
tional time compared to the exact calculation of Belief
and Plausibility. When the number of uncertain intervals
and dimensions increases the direct computation of Belief
and Plausibility would make the screening of the whole cat-
alogue of resident objects quite time consuming. Further-
more, all incorrect classifications would lead the
operators to take the robust decision to prepare a CAM
and acquire more information unless the available time is
too short. What remains to be tested is the potential
increase in unnecessary CAMs due to false positives. How-
ever, this can be done after operational constraints, on the
execution of the CAM, are accounted for in the decision.
This will be the subject of future work.



Table 12
Performance of the best models for predicting the close event Class.

Technique Class Accuracy Precision Recall F1

RF Overall 90.33 - - 88.03

1 - 92.34 76.47 83.66

2 - 77.54 94.04 85.0

3 - 83.87 70.27 76.47

4 - 98.67 98.23 98.44

5 - 97.69 95.46 96.58

ANN Overall 87.67 - - 82.05
1 - 88.94 80.09 84.28
2 - 75.56 86.81 80.79
3 - 60.0 48.65 53.73
4 - 96.01 96.02 96.01
5 - 96.76 94.14 95.43

Table 13
Comparison on computational time for the risk assessment: using the ICS
(left) against computing the actual values of the variables involved on the
criterion (right). The time is given in seconds.

Prediction with ICS Computing actual values

Time ML 0.1875 Time Pl/Bel 29.7916
Time CAM at Hm 93.7321
Time criterion 1.5798

Total time 0.1875 Total time 125.1035

L. Sánchez, M. Vasile Advances in Space Research 72 (2023) 2627–2648
4.4.4. Computational time

In this section we compare the computational time
required to the ICS to indicate the Class of an event and sug-
gest an action against the computational time required to
generate the same output but without ML. We use the same
example as in Section 4.2. The bounds of the uncertain vari-
ables on the impact plane are included in Table 7, both
sources are assumed to be equally reliable
(bpa1 ¼ bpa2 ¼ 0:5) and the time to the nominal TCA is
2.0673 hours. This information represents the input to the
ICS. With these values, the ICS indicates that the event
has to be classified as Class 1: a CAM should be imple-
mented. Table 13 shows the computation time required to
evaluate the risk and classify the event. It can be seen that
the use of the ML model in the ICS leads to a reduction of
the computation time by three orders of magnitude. Note
that these times refer to a case with 2 sources of information.
If more sources of information were available the Time Pl/
Bel would have increased, or if more positions had been
included inHm, Time CAM, the calculation of CAM, would
have also been greater. This demonstrates the utility of the
ICS at processing a potentially large number of events.

5. Conclusions

This paper has introduced an Intelligent Classification
System to automatically make decisions on close encounter
events and automatically allocate optimal CAMs. The sys-
tem combines DSt to classify conjunction events under
epistemic uncertainty with a ML model.

The system proposed in this paper has the distinctive
property of accounting for epistemic uncertainty and mul-
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tiple sources of uncertain information. The work in this
paper demonstrated the use of DSt to compute robust esti-
mates of the correctness of the PoC and generate robust
CAMs. The paper provides a validation of the linear model
used to compute both impulsive and low-thrust manoeu-
vres and of their robustness against both aleatory and epis-
temic uncertainty in the PoC.

The paper also demonstrated that the robust strategy to
optimise low-thrust manoeuvres provides better results
(lower propellant consumption) than the simple applica-
tion of a tangential thrust.

On the data-set used in this paper, the RF classifier was
shown to be able to reliably return the Class of the events
and provide robust decisions on the execution of a CAM
for most of the classes except for class 3, the one containing
the most ambiguous cases. However, it was found that the
miss-classification leads to the association of events to
more conservative classes. It was also found that the low
recall on Class 1 is due to the miss-classification of events
as Class 2. Although this would lead to a less conservative
decision still it would require to plan a CAM and assess its
necessity.

It was also shown how the ICS provides a response order
of magnitude faster than the actual calculation of the prob-
ability of collision, reliably bypassing Pl and Bel time-
consuming computations. This result demonstrates the util-
ity of the combination of the ML and DSt to provide a
robust automation of space traffic management. As men-
tioned during the analysis of the results, the combination
of ML and DSt provides very good prediction accuracy
when the CAM magnitude is not considered to reclassify
the events, while this accuracy is reduced once it is consid-
ered. This suggests either a different approach where the
influence of the CAM magnitude is considered after the
ICS step, or an improvement on the MLmodel. The former
option would provide more flexibility but would also add
computational cost as manoeuvres would need to be re-
computed to evaluate every decision, unless a separate ML
model was trained to predict the manoeuvre. The analytical
model is sufficiently fast to allow this frequent re-
computation but the solution of the robust optimisation
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problem introduces a relatively high computational over-
head. On the other hand more stringent operational con-
straints might need to be considered before even
computing a CAM. Thus the need to compute a CAM could
result to be limited to a small number of cases.

Since we considered only a limited number of ML algo-
rithms, more work is required to find or develop a more
specific ML model. Future work will look into a further
extension of the calculation of the probability of collision
accounting for the full probability distribution and the
inclusion of constraints in the ICS. Finally, the epistemic
uncertainty associated to the ML model itself was not con-
sidered in this work. The quantification of this additional
source of uncertainty would improve the classification and
the robustness of the decision. This source of uncertainty,
along with a more detailed modelling of other sources of
epistemic uncertainty will be considered in further works.
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Appendix A. Min-max optimisation algorithms

Min-max impulsive optimisation algorithm
2646
Min-max impulsive magnitude optimisation algorithm
Low-thrust CAM optimisation
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Low-thrust CAM fuel saving optimisation: acceleration

reduction
Low-thrust CAM fuel saving optimisation: burning-time

reduction
Acronym

ANN: Artificial Neural Networks
bpa: basic probability assignment
CAM: Collision Avoidance Manoeuvre
CDM: Conjunction Data Message
DSt: Dempster-Shafer theory of evidence
FE: Focal Element
HBR: Hard-Body Radius
ICS: Intelligent Classification System
LT: Low-Thrust
MAE: Maximum Absolute Error
ML: Machine Learning
MC: Monte Carlo
PoC: Probability of Collision
RF: Random Forests
RMSE: Root Mean Squared Error
STM: Space Traffic Management
TCA: Time of Closest Approach
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