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1 | INTRODUCTION

Stochastic delay differential equations with continuous-time Markovian chains (known also as hybrid SDDEs) have been devel-
oped to model the real-world systems which do not only depend on the present state and the past ones but may also experience
abrupt changes in their structures and parameters. One of the important issues in the study of hybrid SDDE:s is the automatic
control, with consequent emphasis being placed on the analysis of stability. 123436789 Most of stability criteria can only be
applied to the hybrid SDDEs where their coefficients are linear or bounded by linear functions !%11:1213.1415.16 Recently, some
new results have been established for highly nonlinear SDDEs. For example, the robust stability for nonlinear hybrid SDDEs is
studied by Hu et al'7. Taking different structures in different modes into account, Fei et al.'® discussed the structured stability
for highly nonlinear hybrid SDDE:s.

In many cases, stochastic delay systems may depend on historical states in a time interval. Stochastic functional differential
equations (SFDEs) have been used to model these systems. In fact, SFDEs have been widely used in biology, physics, economics
and so on. In the past few decades, the theory of SFDEs has attracted a great deal of attention. In particular, many papers have
been devoted to the study of stability of highly nonlinear SFDEs. Without the linear growth condition, Wu et al.!® discussed
Razumikhin-type theorems on the asymptotic stability with a general decay rate and its robustness for SFDEs. The critical
foundation in developing stability in distribution for highly nonlinear SFDEs has been presented by Wang et al?°. Under the
polynomial growth condition, Mei et al.?! discussed exponential stabilization by delay feedback control for highly nonlinear
hybrid SFDEs with infinite delay.

Recently, there was a great deal of attention to the stability of neutral stochastic differential equations (NSDEs) (see, e.g, related
works 22:23:24,25:26,27.28.29.30.31) ' One of the important classes of NSDEs is the class of neutral stochastic functional differential
equations (NSFDEs). For example, new criteria for the mean square exponential stability of NSFDEs are given by Pham 2.
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The asymptotic stability with a general decay rate of nonlinear NSFDEs was analyzed in the work of Wu et al.*}. Song and
Shen?* studied asymptotic behavior of nonlinear NSFDEs. However, all of these results have the same feature: they are delay
independent.

It is well known that the stability criteria can be classified into two categories: delay independent and delay dependent.
The delay-independent type is independent of delay size, and it is generally conservative, especially when a delay is short.
Although a great deal effort has been devoted to the investigation of this subject, our knowledge of highly nonlinear SDDEs
delay-dependent stability criteria is still insufficient. An important breakthrough is due to Fei et al.(see related work3>) who
are first to establish delay-dependent criteria for highly nonlinear hybrid SDDEs. The results were later extended to hybrid
stochastic integro-differential delay equations by Fei et al. 3¢ and hybrid SFDEs by Song et al.?” respectively. Shen et al. 38 further
investigated delay-dependent criterion for a highly nonlinear neutral stochastic delay systems. But they all require drift coefficient
to be globally Lipschtiz continuous in the delay component. Moreover, Shen et al.*8 require 0 < k < % in contraction mapping
of neutral term. Those limitations may exclude many highly nonlinear hybrid SDDEs. Moreover, as far as we know, there’s no
results on the decay rate of solutions for delay dependent highly nonlinear hybrid SDDE:s. In this paper, we will loosen some
restrictive conditions in the papers of Shen et al.3® and Fei et al. % to investigate the delay dependent stability of highly nonlinear
NSFDEs.

The key contributions of our paper are highlighted below:

1. This paper investigates delay-dependent stability criteria for highly nonlinear hybrid NSFDEs. A significant amount of
new mathematics has been developed to deal with the difficulties due to the neutral term.

1.38 1.36

2. In the papers of Shen et al.”® and Fei et al.”°, there are some restrictive conditions which may exclude many nonlinear
SDDE:s. In this paper, we will loosen this restrictive condition to cover a much wider class NSFDEs. Moreover, the
delay-dependent exponential stability criterion for highly nonlinear hybrid NSFDE:s is established for the first time.

3. The stabilities discussed in this paper include H, stability in L?, asymptotic stability in L7 and exponential stability in
LA, These are more general than corresponding results of Shen et al. 8.

The structure of the paper is arranged as follows. In Section 2, by the method of Lyapunov functional, the boundedness and
stability of hybrid highly nonlinear NSFDEs are discussed. The delay dependent stability criteria of highly nonlinear neutral
stochastic functional differential equations are discussed in Section 3. An example is given to illustrate effectiveness of our
theory in Section 4 while the conclusion is made in Section 5.

2 | PRELIMINARY

Let B(t) = (B,(1),- - - , B,,(1))T be an m-dimensional Brownian motion defined on the probability space (Q, F, {F, }ts0» P) Where
a filtration {7}, satisfies the usual conditions (i.e. it is increasing and right continuous while ¥, contains all P-null sets ).
Let C([-7,0]; R?) denote the family of continuous functions ¢ from [—7,0] — R¢ with the norm ||¢| = SUpP_, ;<o 1@(5)].
Let W([—7,0]; R,) denotes all probability measures on [—7,0]. Let {r(¢), t > 0} be a right-continuous Markov chain on the
probability space taking values in a finite state space .S = {1,2,---, N} with generator I' = (y;;) y v glven by

: , YijA +o(4) if i #j,
e+ &=l =1 {1+7iiA+o(A) iti=),

where A > 0, and y;; > 0 is the transition rate from i to j if i # j while y;; = = 3 i Vij- We assume that the Markov chain r(-)
is independent of the Brownian motion B(-).

Let F(-,-,-) : C([-7,0; R) X SX R, - R4, G(,--): C([-7,0]; R9)X S X R, — R™>"  D(-,-,-) : C([-7,0]; R?) x
S X R, = R? be Borel measurable functionals and 7 € W([—17,0]; R,) is a probability measure. In this paper, we consider the
following hybrid NSFDE

d[x() — D(x,,r(®),1)] = F(x,, r(t),t)dt + G_(xt’ r(t),t)d B(t) @)
on ¢t > 0 with initial data
(x(): —1<1<0) =E € C(~7,0;RY) and r(0)=i,€ S, @)
where x, = {x(t + u) : —t < u < 0} . We also assume that F(0,i,7) = 0, G(0,i,t) = 0, D(0,i,1) = 0.
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Assumption 1. For each integer L > 1 there is a positive constant K, such that
|F(@.i,0) = F(@.i.01> V1G(9,i,1) = G(@.i.0I> < K, (lo ~ @l1*)
for those @, @ € C([—7,0]; R?) with [|@|| v ||@]| < L and all (i,) € S X R,

Assumption 2. Assume that there is a constant x;, € (0, 1) such that

0

|D(@.i,1) = D(p,i,1)| < Ko/ lo(u) — @Q)|dn(u) 3

for all @, € C([—7,0]; R?) and (i,1) € S X R,.

In order to achieve our aim, we extend a lemma in Fei et al. 3% to contain the neutral term case, the results of this lemma will
play an important role in the paper.

Lemma 1. For nonnegative integers b, > b,_; > --- > b, > 0, define the quasi polynomial function H(Y) = a,|Y|% +--- +
a1|Y|b1,Y € RY, where |Y| is Euclidean norm of Y, a;>20,i=1,---,h—1,and g, > 0. Assume y(:) : [-7,00) = Riisa
continuous function, where y(¢) = {(t),t € [-7,0] and = > 0. Assume that Assumption 2 holds, fix £ > 0 arbitrarily, we have
the following properties:

®
T 0 T
/e” / H(t +w)dnu)dt < e** / H&@®)dt + 7 / e H(y(t))dt, VT > 0.
0 r e 0
(ii)
T T
/ E’H y(t)—D(y,,r(t) t))dt < Kkye* /H(C(t))dt+C /eE’H(y(t))dt, vT > 0,
0 0

where C, = ket + (1 — i)' 7.

Proof. For b, > 0, it is easy to show that

‘/ /ﬂﬂz+@ﬁd«@dr<&f/:/ ey dtdn(u) = e /ﬂaowdr+éf/1“wan%n )

By the definition of H(Y'), we have
T 0 0 T
/e” / Hy(t +w)dn(u)dt < e* / H&@®)dt + 7 / e H(y(t))dt, VT > 0.
0 -7 -7 0

Specially, if € = 0, it is easy to show

T O

/ / H/(t + w)dn)dt < / H(C®)dt + / H(y(1)dt, VT > 0.

Now, let us show the assertion (ii). For b, > 1, applying the inequality (see, e.g., Kolmanovskii et al. %)
@+ 0% <1+ 0> 1@h + ' 7%ob) Va,0>0, b, > 1, 1> 0,
it is straightforward to get

i b1 b o 1=b, b
[y(6) = D 0| < (L4 0P Uy 417 | DOy, . 0] )

we derive

Setting 1 = 1_”

|y = DOy o0 < (1 = k) 1 + 53| DG 0,0
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< (1= k) ™ y0)|" + K / |y(t + w) " dn(w), )
which, together with (4), show that
T T T 0
/ D(y,, (1), 1) d:<(1—,<0)1 ”/ f’|y(t)|bdt+;<0// e |yt + w)| > dn(u)dt
0 0 -7
T T
Slcoe”/|C(t)|b'dt+K0e“/e”|y(t)|bidl+(1—Ko)l_b'/e”|y(t)|bfdt
T 0 0

= kye” / [C]Pdt + [Kpe ™ + (1 — K)' 7] / e |y(1)|bdt.
T 0

Noting that 0 < 1 —x;, < 1 and 1 — b; <0, we have (1 — k)' ™% < (1 — ky)'"b, Vb; < b,,. Thus,

T 0
/ et D(y,, r(), t)|b"dt < ke’ / [P dt + [Kpe™ + (1 — k) ™%] / ey rdt
0 -7 0
for all 1 < b,. Clearly, for b, = 0, the inequality above holds still. By the definition of H(Y'), we see that
T 0 T
/ e H () = Dy ), r))dr < Kpet / @plg@1" + -+ ay|E@I")dt + C, / e (aylyO" + -+ a |y ")dt
0 0
T
= Kye” / H(@)dt + C, / e H(y(t))dt.
T 0

Thus the proof is complete. O
Let C>!(RY x S X R,; R,) denote the family of nonnegative functions U(x, i,7) on R? x § X R, which are continuously

twice differentiable in x and once in . Let U,(x,i,1) = W, U.(x,i,t) = (‘)U;)’:’["),o . aU;;"i”)) and U, (x,i, 1) =
1 d

(aZU(x,t,t)) . Define LU : C([-7,0]; R?) X S X R, - Rby
dxd

0x,.0x;

LU (@, i,1) = U(p(0) — D(o,i,1),i,1) + U (9(0) — D(@,i,1),i,1)F(@,i,1)

1 = A N A N
+ Etrace[GT(co, i, 0T, (9(0) = D(@, i, ),,0G (@, i, )] + D 7,U(@(0) = D(@, j, 1), > 1).
j=1
Assumption 3. Assume that O is a quasi polynomial function. Suppose that there exist nonnegative constants g, a,, a,, a; with
a, > ay, q > 2, and function U € C*!(R? x S X R, ; R,), such that

|x]9 < U(x,i,1) < Q(x), V(x,i,t) € R xS xR, (6)

and
LU(g,i,1) < a; — a,0(9(0)) + ay / O(p(u))dn(u)

for all (¢p,i,1) € C([-7,0]; RY) x S X R,.

With the notations and assumptions introduced in above, we can get the existence and uniqueness of system (1). The following
theorem can be proved in the similar way as in theorem 3.2 in the work of Wu et al.?? or in theorem 1 of Shen et al.3° Thus, we
omit the proof of this theorem.

Theorem 1. Let Assumptions 1, 2 and 3 hold. Then for any initial data (2), we have the following assertions:
(1) There is a unique global solution x(¢) to the hybrid NSFDE (1) on ¢ € [—7, 0).
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(ii) The solution has the property that

t

lim sup % / EQ(x(s))ds <

t—o00

2 3
0

The following theorem, which forms the foundation of this paper, shows that the gth moment of the solution of equation (1)
is bounded.

Theorem 2. Let Assumptions 1, 2 and 3 hold. Then for any given initial data (2), there is positive constant g > 2 such that

sup E|x(1)|? < . @)

—7<t<oco
Proof: Applying the generalized Ito formula to e’ U (z(¢), r(2), t), we get
t t
Ee®U(z(1), r(t), 1) = U(2(0),7(0),0) + E / e’ U(z(s), r(s), s)ds + E / e’ LU (x,, r(s), s)ds,
0 0

where z(t) = x(t) — D(x,,r(t),1), 0 < € < 1 is sufficiently small such that
a, — eC, — aze’™ > 0, ®)

where éT depends on the highest power of Q(x). From Assumption 3, Lemma 1 and condition (8), we have
t t t

Ee'|z(1)|7 < U(z(0),r(0),0) + €E / e 0(z(s))ds + ﬂe” —a,E / e’ Q(x(s))ds + az E / e’ / O(x(s +u))dn(wds
€

0 0 0
t t t

<K,+ el e +eC E/e”Q(x(s))ds—azE/e”Q(x(s))ds+a3e”E/e”Q(x(s))ds
0 0 0
< Kz 61 Et

where K, = U(z(0), 7(0),0) + ee”f Q(&(s))ds + a3e”/ O(&(s))ds. It implies that

sup E|z(1)]Y < oo. )

0<t<co

Similar to the discussion of (5), we have that for any ¢ > 0,

0
sup Elx(s)|! <1 - Ko)l_" sup E|z(s)]? + sup KOE/ [x(s + w)|9dn(u)
0<s<t 0<s<t 0<s<t
< (1 = k)" sup E|z(s)|7 + K, ||I€]17 + sup ko E|x(s)]4. 10)
0<s<t 0<s<

Thus, we can get

(1 —xg) sup Elx(s)|? < (1 - KO)I"’ sup E|z(s)|? + xpllEI9.

0<s<t 0<s<t

Letting t — oo, it yields

(1 —kp) sup E|x(s)]? < (1 —x0)'™ sup E|z(s)|? + xoll&]|9.

0<s<oo 0<s<o0

Making use of (9), we clearly have

sup Elx(0)]! < ——— sup E|z(n]? + —2—[|£]19 < oo,
0<t<oco (1- o)q 0<t<co 1- Koy

which implies the assertion (7). Thus the proof is complete. O
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3 | DELAY-DEPENDENT STABILITY OF NSFDES

In this section, we will investigate the delay-dependent stability of NSFDEs. The neutral term D was allowed to depend on
the mode and time before. In this situation, the stability analysis will become very complicated. In order to make our stability
analysis more understandable, we will only consider the simple case in this paper where the neutral term D is independent of the
mode and time. Moreover, we assume F(x,, 7(t),1) = f(x(t),7(t),1) + F(x,, r(t),1), G(x,, r(t), 1) = g(x(t), r(1),1) + G(x,, r(t),1).
That is we only consider the following highly nonlinear hybrid NSFDE

d[x(®) — D(x)] = [f(x(@), (1), ) + F(x;, r(1), )]dt + [g(x(1), r(), ) + G(x,, r(1), )]d B(2). an
The key technique used in this paper is the method of Lyapunov functionals. To define the Lyapunov functionals, we introduce
two segments X, := {x(t+s) : -2t < s <0}and 7, :={r(t+s) : =27 < s < 0} fort > 0. For X, and 7, to be well defined

for 0 <t < 27, we set x(s) = &(—7) for s € [-27,—7) and r(s) = r( for s € [-27,0). To study the delay dependent stability of
the NSFDE (11), we need to impose the following assumptions which is named as polynomial growth condition.

Assumption 4. Assume that there exist three constants K > 0, g; > 1 and ¢, > 1 such that
0

|f(x,i,0) + F(o,i, 0] < K[1+ [x|" + / lo@|* dn@)],

0
186G is 1)+ G, i, D] < K[1+ [x]% + / 0G| dn(w))

for all (x,i,1) € R x S X R, and (¢,i,1) € C([-7,0]; RY) X S X R,.
In the paper of Fei et al.3%, there is a restrictive condition arranged as Assumption 3.3 which requires the drift coefficient to
be globally Lipschtiz continuous in the delay component. This condition may exclude many nonlinear SDDE:s, for example, the

one to be discussed in Example 6 where
0 0

F(x,,l,t):—1/x(r+u)du+(1/x(z+u)du)3,
T T

0 0

F(x,,2,1) = 1 / x(t + w)du + 0.5(l / x(t + u)du)’.
T T

-7

In this paper, we replace the restrictive condition with the following assumption which will cover a much wider class SDDEs.
Assumption 5. Assume that F can be decomposed as
F(x[s i, t) = F](xts is t) + Fz(xts is t)9

and, moreover, there is a positive number f such that

0
|Fi(e.i,1) = Fi(y.i,1)] Sﬂ/l(p(u)—w(u)ldn(u) 12)

for all @,y € C([-7,0]; R?) and (i,1) € S X R,.

Remark 1. From Assumption 5, we can see that F' can be decomposed as globally Lipschtiz continuous term F; and highly
nonlinear term F,, this decomposition enables us to arrange the highly nonlinear term of the delay component into F, but leave
the globally Lipschitz continuous term in Fj.

The Lyapunov functional used in this paper has the form

0 1
V(x,,7,t) =Ux() — D(x,), r(t),1) + o/ / (v)dvd s (13)

-7 I+s
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for t > 0, where I1(1) = 7| £ (x(1), F(t), 1) + F(x,, r(£), )| > + | g(x(t), (1), ) + G (x,., (1), H)|*, U € C*!(R? x S X R, ; R,) such that

lim inf  U(x,i,t)] = o,
| x| =00 [(i,t)GSXR+ ( )]

and o is a positive number to be determined later while we set
f&xi0 = f(x,0,0),  gx,i,0)=g(x,i,0), F(x,i,1)=F(x,i,0), G(x,i,1)=G(x,i,0)

forx € RY,x, € C([-7,0]; RY) and (i, 1) € Sx[-27,0). Applying the generalized Itd formula® to U (x(t) — D(x,), r(t), 1), we get
dU(x(t) — D(x,),r(®),t) = <Ut(x(t) — D(x,),r(t),t) + U, (x(t) — D(x,), r(t), )(f (x(1), r(?), ) + F(x,,r(t),1))

+ %trace[(g(x(t), r(t),t) + G(x,, r(t), t))T U, (x(t) = D(x,), r(t), 1)(g(x(1), r(t), 1) + G(x,, r(1),1))]
N
+ Z Yrny,; U (x(@) = D(x,), (), t))dt +dM(()
j=1

for t+ > 0, where M(¢) is a continuous local martingale with M(0) = 0. Define a mapping =, : R? - C([-7,0]; RY) by
7. (x)(s) = x for s € [-7,0]. Rearranging terms gives

dU(x(t) — D(x,), (1), 1) = (Ux(x(t) = D(x,), (1), D[ Fy (x,, r(1), 1) — Fy (7 (x(@)), (1), D] + LU (x,, (1), t))dt +dM(),
where the function LU : C([-7,0]; RY) X .S X R, — Ris defined by
LU(e,i,1) =U(90) = D(), i, 1) + U (9(0) = D(9), i, D[f (9(0), i, 1) + F, (7. (¢(0)), i, 1) + F5(9, i, 1)]
+ %trace[(g((p(o), i.1) + G(,1,0) U, (9(0) = D(@), 1, 1)(g((0), 1,1) + G, i, 1))]

N
+ 7, U(@(0) = D(@), j,1).

Jj=1

Lemma 2. With the notation above, V' (X,, 7,,t) is an It process on ¢ > 0 with its Ito differential
dV(x,,r,,t) = LV (X, F,t)dt + d M (t),
where M (¢) is a continuous local martingale with M (0) = 0 and

LV (x,,7,,t) = U/(x() — D(x,), r(®), )[F|(x,, r(?),t) — F|(m (x(?)), r(?), )]

t

+ LU(x,, r(1), 1) + otTI(1) — 0 / (v)dv.

-7

3.1 | Delay-dependent asymptotic stability
To study the delay-dependent asymptotic stability of the NSFDE (11), we need to impose a new assumption.

Assumption 6. Let U, U, are nonnegative coefficient quasi polynomial functions. Assume that there are positive constants a
(k=1,2,3,4)and p; (j = 1,2,3), as well as function U € C*>'(R? X § x R,; R,), such that

a <o, ag<a (14)
and

LU(@,i,1) + p; U (@(0) — D(@),i,)|* + p,| f(9(0),i,0) + F(@,i,1)|* + p31g(@(0), i,1) + G(p,i,1)|*
0 0

< - U (90) + a, / U (e))dn(u) — a3Uy(9(0) + ay / Uy (e@)dn(u), 5)

-7 -7

for all (¢, i,1) € C([-7,0], R X S X R,.
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Theorem 3. Let Assumptions 1, 2, 5 and 6 hold. Assume that
< 2(1 = Kp)* P13 A (1 = x0)V2p1p,

T < (16)
p? p
Then for any given initial data (2), the solution of the hybrid NSFDE (11) has the properties that
/EUl(x(t))dt < o0,
0
sup EU(x(t) — D(x,),r(t),t) < 0. a7
0<t<oco

Proof: Fix the initial data ¢ € C([—7,0]; R?) and r, € S arbitrarily. Let k > 0 be a sufficiently large integer such that ||&]| < k.
For each integer k > k, define the stopping time

v =inf{t >0 : [x(1)| >k}, (18)

where throughout this paper we set inf § = co. By Theorem 1, we can see v, is increasing as k — oo and lim,_, , v, = oo a.s.
By the generalized Itd formula we obtain from Lemma 2 that

AV
EV (%ypy s Fonyo T A V) = Vg, 7, 0) + E / LV (X,.F,.s)ds (19)
0

forany r > 0and k > k. Let o = . By Assumption 6 and the Holder inequality, it is easy to see that

ﬂZ
20, (1=K ?

U, (x(1) = D(x,), r(), DLF, (x;, (1), 1) = F (7 (x(1)), r(1), 1)]
0
2
< py|U(x(1) = D(x,), r(0), D> + % / |x(t) = x(t + 5)[*dn(s).
1

By condition (16), it is easy to see that 97> < p, and o7 < p;. It then follows from Lemma 2 that

LV (x,,7g,5) SLU(x,, 1(5), ) + p | U, (x(s) = D(x,), r(s), s)|2 + po| F(x(5), r(s), 5) + F(x, r(s), s)|2

N

0
2 2
+ p3lg(x(5). r(s), 5) + G, r(s), ) + fTI / |x(5) = x(s + v)Pdn(v) - m / M(w)dv.

By Assumption 6, we then have

0 0

LV (x,, 7y, 5) < —o U (x(5)) + / U, (x(s + 0))dn(v) — azU,(x(s)) + ay / U,(x(s + v))dn(v)
0 N s N

+ ﬁ—z/ |x(s) — x(s + v)|2dn(v) — ﬁ—z/H(U)dv.

4p, E 2p(1— Ko)2

Substituting this into (19) implies

EV (Xipy Fipy T A V) SV (X0, 7, 0) + W + W) = W, (20)
where
AV 0 0
W,=E / [ U (x(5)) + / U, (x(s + w)dn(u) — azUy(x(s)) + a, / Uy(x(s + w)dn(w)|ds,
0 -7 —r
tAv, 0 [ZN79]

) 2
W2=fTIE//Ix(s)—x(s+u)|2d"l(v)ds, W3=2p,(1ﬂ——1<0)2E0/_/H(U)dUdS'

0 -t
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Noting that
1AV, 0 0 1AV
//Ul(x(s+u))dn(u)dsS/Ul(df(s))ds+/Ul(x(s))ds
0 - -z 0

and
1AV, 0 0 1AV
//Uz(x(s+u))dn(u)ds§/ Uz(f(s))ds+/U2(x(s))ds.
0 - -z 0

These imply

0 0 1AV AV
W, 50{2/Ul(e;‘(s))ds+a4/Uz(é(s))ds—éclE/Ul(x(s))ds—&zE/Uz(x(s))ds,
~r - 0 0

where @, = a; —a, > 0,@, = a3 — @, > 0 by condition (14). Substituting this into (20) yields
TAV
&IE/ U (x(s))ds < C, + W, = W;, (21)
0
where C is a constant defined by
0 0

C, = V(% 7. 0) + / U,(E(s)ds + a, / U,(&(s))ds.

Applying the classical Fatou lemma and let K — oo in (21) to obtain

t
E / U, (x(s))ds < C, + Wy — Wi, (22)
0
where

0
W, = 'B—2E// |x(s) = x(s + v)|*dn(v)ds, W, = 'B—zE//H(U)dvds.
4p, - 2P1(1_K0)2 >

By the well-known Fubini theorem, we have

’2—4'6_//E|x(s)—X(S+U)|2d’1(U)dS'

For t € [0, 7], we have

W < 2 ﬁz 2\ .
< (E|x(s)|? + E|x(s + 0)P)dn(v)ds < p—< sup E|x(v)] )_. C,.
1
0 -7

—<v<t

For t > 7, we have
W, <C p 2
H < 2+E E|x(s) — x(s + v)|“dn(v)ds.
1

Noting that, for v € [—7, 0],

|x(s) = x(s + 0)| < |[x(s) = D(xy)] = [x(s + v) = D(xgy )]l + | D(xy) — D(xy,,)
0

SK‘O/ |x(s+u)—x(s+v+u)|dn(u)+|/[f(x(u),r(u),u)+F(xu,r(u),u)]du

-7 s+v
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S

+ /[g(x(u), r(u),u) + G(x,, r(u),u)ld B(u)|.

s+v

Hence
0

E|x(s)—x(s+u)|25(1+9)K§/E|x(s+u)—x(s+u+u)|2dn(u)

-7

+ 0+ )E| /[f(x(u) r(u),u) + F(x,, r(w),u)ldu + /[g(x(u) r(u), u) + G(x,, r(u), u)]dB(u)l2

s+v

0 s
S(1+0)K§/E|x(s+u)—x(s+v+u)|2dn(u)+2(l+%)E/H(u)du,

where @ is a positive constant. Letting 0 = Ki — 1, we have that
0

0 0 0 s
/Elx(s)—x(s+v)|2d11(v)§KO//E|x(s+u)—x(s+U+u)|2d11(u)d11(v)+ 1 2;« E/H(u)du.
— Ko

This implies

//E|x(s)—x(s+v)| dn(U)ds<K0///E|x(s+u)—x(s+v+u)| dn(u)dn(v)ds+

//H(u)duds
Tro //Elx(s)—x(s+v)| dr/(U)ds+ //H(u)duds

/ / I(u)duds

<K0//E|x(s)—x(s+v)| dn(v)ds+

Noting that 0 < x;, < 1, it follows that

//Elx(s) — x(s 4+ v)|2dn(v)ds <

Hence
W, <o, 4 0T sup E|x(s)|> + W, = C; + W
256+ (1 Ky) —revee 3543 3
where C; = C, + SUp_, <, E|x(s)|. Substituting this into (22) yields

1(l l()
t

E/ U (x(s))ds < C, + C;.
0

Letting t — oo gives E /Ooo U,(x(s))ds < &il(C1 + C3) < oo. Similarly, we can see from (20) that
EU(x(t A vk)—D(x,Avk), rEAVEAV) S C + W, + W, — Wi,
Letting k — oo we get
EU(x(t) — D(x,),r(t),1) £ C; + C5 < o0,
which shows

sup EU(x(t) — D(x,),r(t),t) < 0.

0<t<oco

Thus the proof is complete. O
Next, we will state a corollary which gives a criterion on H -stability.
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Corollary 1. Let the conditions of Theorem 3 hold. If there moreover exists a pair of positive constants ¢ and p < g such that
c|x|” <U,(x), V(x,t)€ R"XR,,

then for any given initial data (2), the solution of the NSFDE (11) satisfies

/Elx(t)l"dt < 0. (23)
0
That is, the NSFDE (11) is H_,-stable in L?.

This corollary follows from Theorem 3 obviously. However, it does not follow from (23) that lim
will discuss asymptotically stable of the NSFDE (11).

E|x(@®)|? = 0. Next, we

—o0

Theorem 4. Let the conditions of Corollary 1 hold. If, moreover,
p22 and (p+q -DVpP+2¢,-2)<q,
then the solution of the NSFDE (11) satisfies
lim E|x()|7 =0, Vg € [p.g) 24
for any initial data (2). That is, the NSFDE (11) is asymptotically stable in L9.
Proof: Fix the initial data (2) arbitrarily. For any 0 < #; < ¢, < o0, by the Itd formula, we get

E|x(1y) - D(x,)I” — E|x(1,) — D(x, )|’
1)
=E/(mmn—mmwﬁum—Dumﬁﬂmmwao+memnn
+§um—0mw”mumeﬁ+GmeﬁF

p(p—2)
+ 2

5() = D)7 = D) T80, r(0),1) + G, 10, D1 ).
This implies
|Elx(t,) = DGx,))I? = Elx(ty) = D(x, I

153

< E/ (pIX(t) — DO)IPH f(x(@), 7(0), 1) + F(x,, (1), 1)]

2O 1xt) = D) 18(x(0) 70,1+ Gl (0,01 )i

1, 0

SE/(pKIX(T)—D(x,)I”_l[1+Ix(t)l"‘ +/|x(t+u)|‘“dn(u)]

LS

+

0
_ 2
+ 3‘D("’#m(r) = D)1+ [x(0)*% + / |X(1 + w)|*2dn(u)] )dt.

By inequalities

0
|x(t) = D(x)I” < 277" (|x()|” + K(’)’/ |x(t + w)|Pdn(w)),

0 0

IX(t)I’H/IX(t+u)I"1d77(u)S IX(t)I"+"‘_1+/IX(t+u)I"+q‘_1d'1(u),

-T -7

()P < 1+ |x(0)]9.
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We can obtain
| Elx(t) = DGx, )P~ Elx(t) = D, )PP| < Culty = 1)),

where C, = 2°*'[pK + 3p(p — 1)K?/2](1 + sup_
inton R, . By (23) we can obtain

r<i<oo E|X()]9) < 0o . Thus we have E|x(¢) — D(x,)|? is uniformly continuous

o0 o 0

/Ex(t)—D(x,)|Pdts/2P—‘E<|x(z)|P+Kg/ |x(t+u)|pdn(u)>dt

0 0

<271+ K{,’)/Elx(t)lpdt + 2 liEl < eo,
0

so we can obtain lim, , , E|x(t) — D(x,)|? = 0. By Assumption 2 and inequality

1—00

(@+ b <A+ 0P '@+, Va,b>0,p>1,1>0,

we have
0

E|x(0)]” < E[(1 + 0P~ (|x(0) - D(X,)I”+ll_”Kg/ |x(t + w)[Pdn(w))].

Setting 1 = x;,/(1 — k), then
0
I Y~ E|x(t) — D(x,)|” +K0E/ [x(t + w)|Pdn(u).

Elx(0) < (-—
0

Moreover, letting t — oo, it gives that
tllrg sup E[x(1)]? < x, tllrglo sup E|x(®)|? a.s.
This, together with the Theorem 2, yields
tlirg E|x(®)|? =0. (25)
Let us now fix any g € (p, q), for a constant € (0, 1), the Holder inequality shows
Elx0)]7 < (E|x@)1")°(E|x(t)| @000y,

Letting § = q%z, then we can obtain

Y

E|x(®)|7 < (E|x1)|?)4D/@=D(E|x(r)|9)dP/@p) < Céq—P>/(q—P)(E|x(,)|p)(q—ci)/(q—p)’ (26)

where Cs 1= sup_, ., E|x(#)|? < co. This, along with (25), implies the assertion (24). Thus the proof is complete. O

3.2 | Delay-dependent exponential stability

Asymptotic stability discussed above shows that the solution of the NSFDE (11) will tend to zero in L7 asymptotically but does
not show the rate of decay. In this subsection, we will take a further step to show the solution of the NSFDE (11) will tend to zero
exponentially fast if the delay is small enough. In order to get exponential stability criteria, we need some stronger conditions
than those in Assumption 7 and Theorem 3.

Assumption 7. Assume that U, U, are nonnegative coefficient quasi polynomial functions. Assume more that there are positive
constants &, (k =1,2,3,4)and p, (j = 1,2,3), as well as the function U € C*'(R? x S X R,; R,), such that

a<a, o <a, Ux,it)<U/x)
and

LU(@,i, 1)+ p;|U(9(0) — D(@),i,1)|*
+ 03| (@), i, 1) + F(@,i,1)|* + p3lg(@(0),i,1) + G(p,i,1)|?
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0 0

< - U (¢0)) + a, / U (p)dn(u) — a;Uy(¢(0)) + a4 / U, (o))dn(u),

for all g(0) € RY, (¢, i,1) € C([-7,0]; RY) x S X R,.

Theorem S. Let Assumptions 1, 2, 5 and 7 hold. Assume also that

< (1- K0)2p1p3 A (1- Ko)\//)lpz

27
B? B
Then for any given initial data (2), the solution of the hybrid NSFDE (11) has the property that
log EU (x(t) — D(x,), r(1),t
tim sup 2 (()t ().r0.0) _ o8

Proof: We will use the same Lyapunov functional V' (X,, 7,,t) as defined by (13) and same stopping times as defined by (18)

with ¢ = % By the It6 formula, we can show that
—Ro
tAVy
E(@ ™V (X095 Finyr T A VD)) = V (%0, 7, 0) + E / MWV (Xy, Ty 5) + LV (R, 7y, 8))ds
0

for any t > 0, where A is a sufficiently small positive number to be determined later. By Assumption 7, we have

tAV
E(@ ™V (X095 Finvyr T A VD)) < V (%, 7, 0) + E / 2e™ U, (x(s) — D(x,))ds
0
AV, tAV
+E / e“LV(xS, r,s)ds+ E / et / / II(v)dvduds. 29)
0 0 -7 s+u
By Lemma 1, we have
AV 0 AV
/ e U, (x(s) — D(x,))ds < kye* / U,(&(s)ds + C, / e U, (x(s))dss, (30)
0 -7 0
where C, depends on the highest power of U;. It is easy to see
1AV AV
/ As / / (v)dvdn(u)ds < Et / As / (v)duvds. 31
-7 S+u
As we did in the proof of Theorem 3, we can show that
0 0
LV (x,, 7, 5) < — o Uy (x(s)) + oy / U,(x(s + 0))dn(v) — a3 U, (x(5)) + a4 / U,(x(s + v))dn(v)
B 2 p
+— [ |x(s) — x(s + v)|“dn(v) — — TI(v)dv. (32)
4p, pi(1 = Kp)
7 S—T
Substituting (30)-(32) into (29), as we did in the proof of Theorem 3, we can show that
AV AV
E("™MOV (X0, Fipy T A V) < Co + (AC, — a) — a,e')E / eM U, (x(s))ds + (a,e’™ — ay)E / e U,(x(s))ds
0
tAv, 0 tAV

At f? s
+—E//lx(s)—x(s+v)|2d11(v)ds+( T—r? o 1_KO)Z)E/ et /H(v)dvds
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where Cj is a positive constant. We can now choose a sufficiently small A such that

AC, — aye* < ay, age’ <ayand At <

N | —

Consequently, by condition (27), we have

AV 0 tAVy s
2 2
E@ ™V (%, ,Finy -t AVy)) < Cg + LAy / e / |x(s) — x(s + v)|*dn(v)ds — 'B—ZE / e / (v)dvds.
* k 4p, ) 2p;(1 = xp) )

Now, letting k — oo yields

t

2 2 )
HEV (%, F 1) SC6+ﬁ—E/e’“/|x(s)—x(s+v)|2d11(u)ds—ﬁ—zE/e'“/H(U)dvds.
4p, ) 2p,(1 = xp) ., J

As we did in the proof of Theorem 3, we can show that
e"EV(X,,F,,t) < Cq.
This along with definition of V' (x,, 7, t), implies that
e"EU (x(t) — D(x,), (1), 1) < Cq, (33)
which implies the required assertion (28).

Corollary 2. Let the conditions of Theorem 5 hold and kye® < 1. If there moreover exists a pair of positive constants ¢ and
p > 2 such that

c|x|P <U(x,i,t), Y(x,i,H) € R XS XR,, (34)
then for any given initial data (2), the solution of the NSFDE (11) satisfies
lim sup - log(E|x()[") < 0, Vg € [p.a). (35)
That is, the NSFDE (11) is almost surely exponentially stable in L9.
Proof: For T > 7 , by (10), we have
sup e E|x(1)|P < (1 — k)" sup e”E|x(t) — D(x,)|” + sup ke E / [x(t + w)|Pdn(u)
0<1<T 0<1<T <t<T

< (1=K sup e”E|x(t) — D(x,)|” + ko( sup e”E|x(®)|” + sup E|&@®)|).

0<t<T 0<t<T —7<t<0
Which implies that
(1 = x)t=? Kpe’
sup e”E|x(t)]? < ——2— sup " E|x(1) — D(x,)|” + —> sup E|E@)|P.
0<t<T — Kp€®  o<i<T — K€" _r<i<0

Letting T — oo, it then follows from (33) and (34) that

sup e E|x(n)|” < C;,

0<t<oo

where C, is a positive constant. It implies that
E|x(0)|F < Cre™
This, along with (26), can show that
E|x®))7 < Cs(‘f—P)/(q—P)C7(q—ﬁ)/(q—p)e—7lt,

where 1 = A(qg — §)/(q — p), which implies the assertion (35). O
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4 | AN EXAMPLE

In this section, we will give an example to illustrate our theory. Although our example is scalar highly nonlinear hybrid neutral
stochastic functional differential equations whose probability measure # is uniform distribution on [—7, 0], it will supports our
theory fully.

Example 6. Consider a scalar hybrid NSFDE
d[x(t) = D(x))] = [f (x(0), r(®), 1) + F(x,, r(1), D]d1t + [g(x(1), r(1), 1) + G(x,;, r(1), )]d B(1), (36)

where r(¢) is a Markov chain on the state space .S = {1,2} with its generator

-1 1
= (5 %)
0

f(x, 1,0 = —6x3, f(x,2,t) = —4x3, Fi(x, 1,1 = —1 / x(t + u)du,
T

-T

and the coefficients are defined by

0 0

Fi(x,,2,t) = —%/x(t+u)du, Fy(x,,1,1) = (%/x(t+u)du)3,

0 0
Fy(x,,2,t) = 0.5(l / x(t + u)ydu)?, glx, 1,0+ G(x,,1,1) = % / x(t + u)du,
T T

-7

0 0
g(x,2,t)+ G(x,,2,1) = 2L / x(t+uwydu, D(x,) = 01 / x(t + u)du. (37
T T

For the sake of simplicity, we define w(x,) = % /_OT x(t +wdu, w(x,) = % f_OT |x(t + w)|*du, k > 1.

Before applying our theory, we consider two case: 7 = 5 and 7 = 0.01 for all # > 0. In the case of 7 = 0.01, let the initial data
x(u) = 2+ cos(u) for u € [-0.01, 0], #(0) = 2. The sample paths of the Markov chain and the solution of the NSFDE are shown
in Figure 1, which indicates that the NSFDE is asymptotically stable. In the case of = = 5, let the initial data x(u) = 2 + cos(u)
for u € [-5,0],r(0) = 2. The sample paths of the Markov chain and the solution of the NSFDE (36) are plotted in Figure 2,
which indicates that the NSFDE is unstable.

We can see coefficients defined by (37) satisfy Assumption 4 with ¢, = 3 and g, = 2. Define U(x, i,t) = |x|® for (x,i,1) €
R xS x R, .Itis easy to show that

LU (x,,i,1) = 6(x — 0.1w(x,))’[f (x, i, 1) + F(x,,i,1)] + 15(x — 0.1w(x,))*|g(x, i, 1) + G(x,,i,1)|*.

Applying the inequalities (a + b)” < (1 +1)*~!(a? + 1'7PbP), here setting 1 = k, /(1 — k) = 1/9, and a?b'~" < pa+ (1 — p)b, we
can obtain

LU (x,, 1,1) < —13.651x% 4+ 7.958a4(x,) + 7.626x° + 2.13@,(x,)
and

LU (x,,2,1) < —8.905x® + 5.1924,(x,) + 7.626x° + 2.13@4(x,).
Thus, we have

LU (x,,i,t) < —8.905x® + 7.958,(x,) + 7.626x° + 2.13,(x,)
<c; —8.5(1 +x%) + 8(1 + @y (x,)),

where ¢; = sup, g[l + 7.626x + 2.13@4(x,) — 0.405x® — 0.22475;(x,)] < oo. Therefore, Assumption 3 is satisfied with
O0x)=1+x%¢c,=85, ¢; = 8. From Theorem 2, solution of the NSFDE (36) has the that

sup E|x(1)|® < o0.
—7<1<00
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Figure 1: The computer simulation of the sample paths of the Markov chain and the NSFDE (36) with 7 = 0.01 using the truncation method 40
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Figure 2: The computer simulation of the sample paths of the Markov chain and the NSFDE (36) with 7 = 5 using the truncation method.

To verify Assumption 6, we define

2x2+ x4, ifi=1
U 9.,t = . . . ’
x40 {2x2+2x4, ifi=2
for (x,i,1) € RX S X R,. Then

LU(x,,1,1) = [4(x — 0.1w(x,)) + 4(x — 0.1@(x))’1(—x + @ (x,) — 6x%)
+0.5(1 + 3(x — 0.1w(x)?)@*(x,) + (x — 0.1w(x,))*
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and
LU(x,,2,1) = [4(x — 0.1w(x,)) + 8(x — 0.1w(x,))*1(—x + %w3(x,) —4x%)
+0.5(1 4+ 6(x — 0.1w(x,)))@*(x,) — 2(x — 0.1w(x,)*.

We can show that

. —3.8x% + 0.2w@,(x,) — 22.927x* + 4.103w@,(x,) — 14.968x° + 6.832w(x,), if i = 1,
LU(x, i) < T ) ° ) - ! (38)
=3.8x" + 0.2, (x,) — 20.498x" + 2.806@,(x,) — 20.414x° + 8.36w4(x,), ifi=2.
Moreover,
U.(x - D(x,). i t)|2 _f 16(x - O.lw(x,))2 +32(x — ().lw(x,))4 + 16(x — 0.1w(x,)6, ifi=1,
x e T 16(x — 0.1w(x,))* + 64(x — 0.1w(x,))* + 64(x — 0.1w(x,))°, if i = 2.
< 17.8x% + 1.6@5,(x,) + 43.9x* + 3.2@,(x,) + 27.1x° + 1.6 (x,), if i = 1, (39)
= | 17.8x% + 1.6a5,(x,) + 87.8x* + 6.41,(x,) + 81.3x® + 6.4w(x,), if i = 2.
|f(x,i,1) + F(x,,i,D]?
] wx) = @ (x) + 6532 <y (x,) + 9x* + @y (x,) + 42x° + T (x)), ifi=1, 40)
) |w(x,) - %w3(x,) +4x3 |2 < @,(x,) + 6x* + @, (x,) + 18x5 + 2.25@4(x,), if i = 2.
lg(x, 1,0 + Gx,, 1,07 = |g(x,2,0) + G(x,, 2,0)|* < 0.257,(x,). 1)

Setting p; = 0.05, p, = 0.1, p; = 4, using (38)-(41), we obtain that

LU(x,,i,10) + p U (x = DCx, i, D) + py| f(x,0,1) + F(x,, i, D) + pslg(x. i, 1) + Gx,. i, 1)
< [ ~291x% +0.38a,(x,) — 19.827x* + 5.363,(x,) — 9.108x% + 7.612,(x,), ifi =1,
= =2.91x2 + 0.38,(x,) — 15.508x* + 4.2267,(x,) — 14.549x° + 8 9w(x,), ifi=2.

This implies

LU (X, i, 1) + py U (x = D(x,), i, D + pol £, i, 8) + Fx,, i, D + p3lg(x, i, 1) + Glx, i, D)
< —2.91x? + 0.38@,(x,) — 15.508x* + 5.363@,(x,) — 9.108x° + 8.9,(x,)
< =9.1(0.2x% + x%) + 8.9(0.2@,(x,) + @y(x,)) — 15.5x* + 5.4a@5,(x,).
Letting U, (x) = 0.2x*> +x% U, (x) = x*, &; = 9.1, a, = 8.9, a; = 15.5, a, = 5.4, we get condition (15). Noting that k, = 0.1,
f = 1, then condition (16) becomes 7 < 0.09. By Theorem 3, we can therefore conclude that the solution of the NSFDE (36)
has the properties that
/ (x*(t) + x°(t))dt < 0 a.s. and / EGP2(@1) + x0(1))dt < o0.
0 0
Moreover, as |x(t)|? < x2(t) + x°(¢) for any p € [2, 6], we have
/ E|x(t)|Pdt < .
0

Recalling ¢, = 3, ¢, =2 and g = 6, we see that for p = 4, all the conditions of Theorem 4 are satisfied and hence we have
lim E|x()]* = 0.

It is also easy to see that if we set ¢ = 1, we have got q; = 3, g, = 2, p = 4, then all the conditions of Corollary 1 are satisfied
too. We perform a computer simulation with the time delay = = 0.09 for all # > 0 and the initial date x(u) = 2 + cos(u) for
u € [-0.09,0] and r(0) = 2. The sample paths of the Markovian chain and the solution of the NSFDE (36) are plotted in Figure
3. The simulation supports our theoretical results.
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Figure 3: The computer simulation of the sample paths of the Markov chain and the NSFDE (36) with 7 = 0.09 using the truncation method.

S | CONCLUSION

In this study, some criteria for delay dependent stability of highly nonlinear neutral stochastic functional differential systems have
been investigated. We point out that the existing results on the delay-dependent stability of hybrid NSDEs require the coefficients
of the underlying NSDEs satisfy the linear growth condition. On the other hand, many hybrid NSDE models in the real world
do not fulfill this linear growth condition. There is hence a need to develop a new theory on the delay-dependent stability for the
highly nonlinear NSDE models. In this paper, we consider delay-dependent stability of a class of highly nonlinear NSFDEs, the
H__ stability in L, asymptotic stability in L7 and exponential stability are discussed in this paper. The key technique used in this
paper is the method of Lyapunov functionals. A numerical example is given to show the effectiveness of the proposed theory.
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