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Abstract 

There is increasing interest in understanding fuel consumption from the 
perspective of increasing energy efficiency on a vessel. Thus the aim of this 
paper is to present a new framework for data-driven estimation of fuel con-
sumption by employing a combination of (i) traditional statistical analysis 
and (ii) Artificial Neural Networks. The output of the analysis is the most 
frequently occurring fuel-speed curves corresponding to the respective op-
erational profile. The inputs to the model consider important explanatory 
variables like draft, sea current and wind. The methodology is applied to a 
case study of a fleet of 9000 twenty-foot equivalent units (TED) vessels, in 
which telemetry data on the fuel consumption, vessel speed, current, wind 
direction and strength were analysed. The performance of the method is 
validated in terms of error estimation criterion like R 2 values and against 
physical phenomena obtained from the data. The results can be used to 
study the economic and environmental benefits of slow-steaming and or fuel 
levies, or by extending this part of the model into exergy analysis for a more 
holistic review of energy saving initiatives. 

Keywords: Fuel consumption in vessels, Artificial neural networks, 
telemetry data 

1. Introduction 

1.1. Aim of study 
Fuel efficiency of ships have, in recent years, been of interest due to the 

volatility of fuel prices and environmental considerations. The volatility of 
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the fuel prices, especially when it is high, have become significant economic 
driving forces to optimise each voyage, as fuel costs can exceed 50% of a 
carrier's cost when sailing speeds and fuel costs are high [1], [2]. 

In terms of environmental concerns, the International Maritime Organi-
sation (IMO) set up a goal of 50% reduction of GHG emission by 2050 [3] in 
order to reduce the footprint of ships significantly. As of 1 Jan 2019, ships 
greater than 5000 tonnes are required to have continuous monitoring on fuel 
consumption [3]. This legal requirement drives pushes for improved emis-
sions control via a holistic approach with access to real-time information on 
fuel consumption. 

The paper proposes to process telemetry data in a data-driven model 
to predict the fuel-speed curves under varying operational profiles. The 
operational profiles in turn are largely segmented by port-to-port journeys 
as the effect of current and wind are geographically determined and thus 
confined to vessel journey segments, while the average draft is generally 
fixed from one port to the next. 

1. 2. Literature review 
Fuel consumption of a ship is of interest as an important piece of infor-

mation for several decision-making points on its operation profiles. It has a 
direct impact on the journey cost, and emission goals. 

The ship's power vs speed curve that is prepared during the delivery sea 
trials are usually the first point of reference, but these are usually based on 
a limited range of sea-states, thus this is not representative of the sea-faring 
scenario most of the time. 

The prediction of fuel-speed functions can be classified in three ways (i) 
data-based (ii) naval architecture principles (iii) hybrid of methods (i) and 
(ii). In recent years, methods steer towards methods (i) and (iii), either as a 
full data-based or a combination of naval architecture principles and data-
based methods. This is largely due to numerical or theoretical methods 
which are complicated to replicate the results measured under operation 
conditions. The goal of this paper is also to use telemetry data present 
onboard a vessel to estimate its fuel consumption, thus the literature review 
is focussed on either data-based or a combination of data-based and naval 
architecture principle models. 

There are several documented methods to estimate fuel consumption 
from statistical methods such as Bialystocki et al's [4]paper on considering 
inputs on draft and sea-state and its effect on fuel consumption. However, 
the fuel consumption output is a multiple step filtering of separate fuel-speed 
curves. This method, while it bridges the gap of insufficient data, may not 
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accurately consider the combined effect of wind strength and wind direction 
on fuel consumed. However, the classification of the data preparation into 
the statistical model is robust and referred in this paper. Other researchers 
such as Adland et al [5], Magirou et al [6], Yao et al [7], Wang et al [8], 
Meng et al[9], Ng et al [10] and Lindstad et al [11] consider a number of 
factors that may affect the residual resistance, such as hull condition, water 
depth, water temperature, wave etc. However, speed is considered as the 
main factor in determining fuel consumption. These methods only consider 
fuel-speed consumption on a constant elasticity for a vessel's port-to-port 
journey. 

Researchers like Leifsson et al [12] and Coraddu et al [13] combine ele-
ments of modelling methods (i) and (iii) which involves naval architecture 
principles and data-driven models (called 'grey-box models'). In their analy-
sis, the grey-box and black-box models performed better than the white-box 
models. However, the short-comings of using a grey or black box model of 
not be able to extrapolate infomation from data gaps is highlighted in the 
paper. Other researchers such as Abdel Naby et al [14] have used Artificial 
Neural Networks (ANN) to predict specific residual resistance of a vessel in 
shallow water, for which design parameters can be improved for the next 
iteration of vessel design. 

Regardless of the methods used to derive fuel-speed curves, Adland et al 
[5], in particular, highlights that the assumption of constant fuel-speed con-
sumption elasticity needs to be re-evaluated. Wang et al [15] also reported 
that the coefficient of fuel-speed curves of container ships varies from 2. 7 to 
3.3. Tsitsilonis et al [16] also proposed a method to capture propeller curves 
under different operational profiles. 

Tsitsilonis et al [16] proposed to use Kernel Density Estimates (KDE) 
to identify shaft power as a function of the density bins the data belongs to. 
Each shaft power data bin, together with the respective vessel speed forms 
an operational profile. The most frequently occurring profile is the highest 
peak demonstrated on the KDE plot. However the method, applied on cargo 
vessels, bulk carriers and Very Large Crude Carriers (VLCCs), only yielded 
differentiating power-speed curves for VLCCs which travel on ballast and 
laden journeys. The power-speed curves for container ships and bulk carriers 
only had one such curve after the analysis, which does not reflect general 
conditions. 

Thus, in order to work around the lack of data and in differentiating 
a wider varierty of operational profiles, the method proposed in this paper 
aims to combine data categorisation from Bialystocki et al [4] and simplifica-
tion of the KDE method to group fuel-speed data groups and the addition of 
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an ANN to identify operating profiles not discerned in the methods described 
above. This paper attempts to highlight the variances in the fuel-speed data 
and draw relationships between the variances in the ship resistance, by us-
ing an analytical and systematic method to come up with more accurate, 
updated fuel-speed curves according to the operational profile. 

This article is divided into several parts. In Section 2, the statistical 
treatment of data is introduced. Section 3 discusses the theory and set-up 
of the ANN. It also identifies how the parameters affect fuel consumption 
estimation. The results from several case studies are presented in Section 4 
including a discussion of results. Section 5 discusses the application of the 
model. The conclusions of this study are presented in Section 6. 

2. Methods and data 

2.1. Modelling of ship fuel consumption 
The data used in the model is obtained from the telemetry system on 

board a fleet of two sister vessels of 9000 twenty-foot equivalent units (TEU) 
capacity. The main characteristics of the analysed ship are listed in the table 
below (Table 1): 

Table 1: Main characteristics of fleet of ship. 
Type 
Built 
Length LOA (m) 
Width (m) 
Moulded depth (m) 
Summer Draft ( m) 
Deadweight (ton) 
Shaft Power at Maximum continuous rating (MCR) (kw) 

9000 TEU container ship 
2013 
328.2 
45.2 
27.1 
14.5 
108,600 
51,070 

Fuel consumption of a vessel is linked to the resistance that a ship en-
counters. A theoretical discussion on the contribution of all parameters can 
be identified in Stopford [1] and Andersen et al [17]. Bialystocki et al [4] 
highlighted three parameters in their statistical analysis of fuel consumption 
as : (i) increased draft and displacement (ii) worsening of weather conditions 
and (iii) worsening of hull and propeller roughness. 

For this analysis, there is no access to hull condition. Thus the five 
factors that could relate to item (i) and (ii) and are accessible as telemetry 
data, are identified below: 
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• Vessel speed 

• Average draft 

• Current 

• Wind direction and wind speed 

• Vessel journey: High seas vs sheltered water 

First and foremost, vessel speed has a major impact on fuel consumption. 
This relationship is characterised by a power function, suggesting that a 
higher speeds, there is a non-linear increase in fuel consumption if other 
conditions remain constant. 

Average draft is used as an indication of the intended cargo weight and 
arrangement in the cargo holds. 

The sea-state can be used to classify the subsequent three parameters. 
Current can act as an aid or impediment to a vessel depending on the 

direction of current and the vessel's travelling direction. If current is against 
the vessel, the vessel experiences greater resistance. Current has both vector 
and scalar qualities. However as no separate sensor is available, the current 
can only be estimated from the ship's speed over ground and the ship's 
speed through the water, taking into account the course, heading and wind 
influence on the ship. THe scalar quantity of current is recorded as knots 
(kn) based on telemetry data on the difference between the water speed and 
vessel speed-over-ground. 

The weather a ship faces during voyage has significant influence on her 
fuel consumption, in particular relating to prevailing wind and waves. Nor-
mally, a 10 - 15% weather margin [18] is taken into account in design calcu-
lations. Head wind requires more power for the ship to advance; therefore 
more fuel is consumed by the main engine. A tail wind, on the other hand, 
decreases the amount of fuel consumed. Depending on the cargo load, a 
beam wind can also have significant influence on the fuel consumption. The 
forces of the wind are classified according to Beaufort scale, while the wind 
direction is based on relative angle range from 0 - 180 degrees, which are 
then filtered into 3 categories : Head (0 - 60 degrees), Beam (60-120 de-
grees), Tail wind (120-180 degrees). The method on classifying wind speed 
and direction is based on Bialystocki et al's [4] method. 

Vessel leg is used to confine random effects to a journey leg, as the cargo 
load does not change during the journey from Port A to Port B, and also 
the local weather or journey conditions can have a significant effect on the 
ANN modelling accuracy. 
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Operational data from two sister ships are collated and used as part of 
the modelling. In general, this is done to work around the issue of data 
scarcity from confidential commercial operations. The data from both ships 
are compared and it is noted that due to the same routing and similar 
cargo load (i.e. operational profiles) the variance between the data is of 
an acceptable range. In terms of how reliable the data obtained from the 
system installed on the ship is, in general, there is a physical agreement 
between the variation in fuel consumed with respect to the environmental 
conditions and the cargo load. In Section 5 Validation and Benchmarking, 
Figure 7 highlights the variation in fuel consumed with respect to the channel 
conditions of current and wind acting against the vessel. 

2. 2. Data treatment 
The first part of data analytics involves the use of the appropriate data 

for the analysis. This refers to cleaning the data of erroneous values, for e.g. 
sensors cannot cover every operational profile and may register negative val-
ues which do not make sense in the physical world. Data is also categorised 
according to vessel journey as literature [16]. In a typical vessel journey, the 
cargo load is expected to remain the same in the leg of the journey. The de-
cision behind the vessel speed would be dependent on the schedule to meet 
at the upcoming port or the weather conditions. Segmenting the data into 
vessel journey would reflect the clustering of data, roughly according to the 
decision-making time frame along a payload journey and, the local-regional 
weather condition. 

The data entries corresponding to the engine steady state operation are 
identified. 

1. The engine power versus speed data set is split into individual data 
sets corresponding to each vessel voyage. One voyage is defined as the 
travel from the origin to the destination port (i.e. the one leg of a 
round voyage). 

2. The fuel consumption data (in tonnes/day) from each voyage is then 
expressed as a Kernel Density Function (KDF) in order to identify the 
most frequently occuring operational profile. Each local maximum is 
classified as an vessel operational profile. 

3. The specific kernel probability distributions of the fuel consumption 
bins ( from 1 minima to the next minima) are extracted together with 
the corresponding parameters. 

4. Using the categorised engine power data, an ANN model is trained 
according to the current direction and strength, wind direction and 
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strength, average draft of vessel and speed of vessel. The output of 
the model is the fuel consumption[t/d]. 

5. Upon a satisfactory learning of the ANN, simulation is carried out 
according the desired operational profile to predict the fuel consumed. 

2. 3. K emel density estimation 
The use of a Kernel Density Estimate (KDE) is a non-parametric way to 

estimate the probability density of a random variable. The random variable 
of interest is the fuel consumption of the vessel in [t/d]. A plot of the fuel 
probability density functions demonstrates that parametrised models (such 
a Gaussian distribution) would not accurately describe the multi-modal fuel 
data. KDEs are closely related to histograms. The use of a suitable kernel 
can mimic the smoothness or continuity of the probability distribution of 
fuel data. (see Figure 1). One benefit of using this method is the ability 
to separate the data into bins which reflect different operation decisions or 
conditions of travel. 
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Figure 1: A KDE constructed using the data of fuel consumption [t/d] for a vessel journey, 
usually defined as a Port A to Port B journey. 
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Figure 2: Fuel-speed plot as clustered and colour coded according to the KDE of fuel 
consumption for vessel journey between two ports. 

The shape of the function is estimated through a kernel density estimator 
ih(x): 

(1) 

where (x1, x2, ... , Xn) are independent fuel consumption samples drawn 
from a distribution with an unknown density f at any given point x. K 
is the kernel and h is a smoothing parameter called the bandwidth. Kh is 
is the scaled kernel and defined as Kh(x) = 1/h · K(x/h). Both K and 
h are non-negative functions.The selection of the bandwidth, h, has to be 
optimal in the trade-off between an overly smooth or overly noisy function. 
An overly-smoothed function does not yield extra information. An overly 
noisy distribution with too many extrema is inconclusive. With reference to 
the optimisation of bandwidth, the Silvermans reference bandwidth is used 
[16]. The Silvermans reference bandwidth h1 is defined as: 
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h = 0.9[min(IQR(x) r,)] · n(-t/5) 
I 1.34 ' (2) 

where IQR is the interquartile range of the random variable, fuel con-
sumption, x and r, the standard deviation of the sample. This is a rule-of-
thumb estimator where the underlying goal is to select a bandwidth that 
minimises the mean integrated squared error. With a determined band-
width, the fuel consumption data is filtered into bins kx from the KDE: 

(3) 
where the most frequently occurring values corresponding to the local 

maxima is determined and sorted into operational profile I of the voyage. 

3. Design and performance of the ANN model 

In general, an ANN consists of three segments, an input layer, an output 
layer and a hidden layer (see Figure 3). In the input layer, each neuron 
receives inputs aj=l, aj=2, ... , aj=n attached with a weight aj which indicates 
the connection strength for a particular input for each connection. Then it 
multiplies every input by the corresponding weight of the neuron connection. 
At the input layer, there is also a bias neuron bli, which can be described 
as a type of connection weight with a constant non-zero value added to 
the summation of inputs and corresponding weights. In the hidden layer 
between input and output layer, activation functions create the output. The 
activation functions can be stepwise to reflect binary outputs or sigmoid 
to produce a range of values. Generally there could be more than one 
hidden layer. The number of hidden layers and the number of neurons in 
each hidden layer need to be identified and are usually optimised by trial 
and error; the initial weights are randomised to start the training process. 
During the different trials, the data was divided into three different subsets: 
training, cross validation and testing. Cross validation set is used as a signal 
to stop the training and prevent over training. The determination coefficient 
is used for measuring ANNs performance. 

Fuel consumption of the ship is measured in tonnes/day and is the output 
of interest in the ANN model. The inputs to the ANN model are current, 
wind strength, wind direction, vessel speed and average draft. The inputs 
are refined according to literature review such as that of Bialystocki et al 
[4]. The following equations which demonstrate the mechanism of a neuron 
are described below and with respect to Figures 4 - 5. 

9 

An Artificial Neural Network for fuel efficiency analysis for cargo vessel operation



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

a1_2 Wind strength 

a1~3 Wind direction 

a1 5 Average draft 

Input layer Hidden layer Output layer 

Fuel consumption 
[t/d] 

Figure 3: General structure of an ANN with five inputs and one output, and twenty hidden 
layers 

The activation function f ( ui) used is the hyperbolic tangent function: 

(4) 

where ui refers to the net inside activity level of the i-th neuron in the 
hidden layer. The net inside activity level Ui is defined as : 

n=5n=20 

Ui = L L Wijaj + bli 
i=l j=l 

(5) 

where Wij refers to corresponding weights and biases bli based on the inputs 
aj. With respect to the five inputs, Eq. (5) can be written as: 

Ui = wi,l · current+ wi,2 · windstrength + wi,3 · vesselspeed 
+ Wi,4 · winddirection + Wi,5 ·avg.draft+ bli 

(6) 

The outputs from the hidden layer are then used as inputs to the output 
layer. This is passed through the activation function f(ki): 

(7) 
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a1=1 Current 

W ;=JJ=l 

" i=J~ Outputofneuron 1, 
to be served as 

/ input to output 
a1• 5 Average draft w,.1J. 5 . Average draft _// layer 

Input layer Hidden layer 

Figure 4: Working mechanism inside a single neuron, This neuron refers to hidden layer 
1. 

where ki refers to the net output activity level of the i-th neuron in the 
hidden layer. The net output activity indicator ki is: 

n=20 

ki = L J(ui) · lwi + b2 
i=l 

n=20 1 + e-u; L l _ e-u; - lwi + b2 
i=l 

(8) 

where n refers to the number of hidden layers. Each hidden layer node ni 
has its own weights (identified as lwi)- The bias at the output level is defined 
as b2. In this paper, 20 hidden layers have been utilised after investigation 
that any increase in the number of hidden layers does not improve the R 2 

value. The training and validation sets of the data are split in 70-30 % ratio. 
The model yielded an overall R2 value of 0.8800 (see Figure 6). The 

training set obtained a R 2 value of 0.9048, while the validation and testing 
set had a value 0.8501 and 0.8411 respectively. 

The weights and biases in the ANN are summarised below (see Table 6): 
4. Validation and benchmarking 

The model is validated through two ways. The first is by looking at 
the goodness-of-fit for the model. The second is by comparing the results 
to the situations which may relate to the overall ship resistance and hence 
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Hidden layer Output layer 

Figure 5: Working mechanism inside a single neuron at the output layer. 

the derived fuel-speed curve. The goodness of fit (R2 = 0.884) values from 
this analysis are considered satisfactory. Similar applications of ANN to 
different ship operations demonstrate that 'acceptable' R2 values are 0.744 
to 0.834 for fuel prediction for oil tankers [19]. In addition to using R 2 values 
as a goodness-of-fit indication, the results corresponding to the physical 
phenomenon is also used to assess the model performance. 

The simulated data (see Figure 7 and 8) demonstrates that the ANN 
model can derive results according to the steepest propeller curve (Profile 
1) and the most gentle propeller curve (Profile 2) in accordance to the differ-
ent operating conditions stemming from the sea-state and thus the overall 
resistance to the vessel. In Figure 7, Leg 1: Profile 1 refers the sea state 
conditions that suggests the highest resistance the ship might face, such as 
high current against the vessel, head wind of strength of Beaufort scale 7 
(which is considered as high wind, near gale strength) and at an average 
draft of 14 m. The histograms ( see Figure 9) show that the current, wind 
strength and associated draft from cargo load experienced is in the upper 
end of the distribution of sea state conditions of the vessel experience. Leg 
1: Profile 2, which reflects a much gentler propeller curve indicates that 
the resistance a ship is experiencing is much lesser. Current is significantly 
lesser at almost zero. While the ship experiences headwind, it is a Beaufort 
strength 5, it is 2 states lower and is considered a 'fresh breeze' as compared 
to Leg 1: Profile 1. In addition, the average draft is at 13 m, implying lesser 
cargo load. Leg 1: Profile 3 has conditions in between that of Leg 1: Profile 
1 and 2. The current against the vessel is lesser at -0.8 kn, and the average 
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Figure 6: Plot of the actual and predicted fuel consumption in Leg 1 within a channel. 
The predictions are broken down into output from training, validation, test data sets and 
overall results. 

draft is of a lower value than Leg 1: Profile 1. Wind conditions remain at 
headwind and at Beaufort strength 7, similar to Leg 1: Profile 1. Overall 
Leg 1: Profile 1 reflects a scenario where the sea-state conditions suggest 
that the ship would experience high resistance, and Leg 1: Profile 2 reflects 
a scenario where the sea-state conditions is more conducive for a lower ship 
resistance. Leg 1: Profile 3 refers to a scenario in between them. A similar 
plot to Figure 7 except with fuel-speed power curves plotted from the simu-
lated results demonstrate that the power coefficients are in the range of 2.21 
to 3.13, which agree with literature review of container ships by Wang et al 
[8] and Adland et al [5]. 

It can observed that the first NN presented reflects the environment 
within rather closed waters as there is another island that simulates travel-
ling within a channel. 

An analysis of another leg of the vessel journey is based on travelling 
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Figure 7: A plot of the original data demarcated in black and three fuel-speed curves 
simulated from three differing profile. Profile 1 suggests sea-state conditions which will 
results in higher ship resistance, while Profile 2 suggest sea,..state conditions resulting in 
lower ship resistance. Profile 3 suggests sea state conditions that are in between that of 
Profile 1 and 2. 
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Figure 8: A similar plot to Figure 7 except with fuel-speed power curves plotted from the 
simulated results. The power coefficients are in the range of 2.21 to 3.13, which agree with 
literature review of container ships by Wang et al [8] and Adland et al [5]. 

through open water in the Indian Ocean. The plot of the actual and pre-
dicted fuel consumption using the ANN model is demonstrated in Figure 
10. The overall R2 value at 0.8675 is comparable to the ANN model for Leg 
1 of the journey. The KDE plot (Figure 11), fuel-speed plot (Figure 12, as 
clustered and colour coded according to the KDE) and the description of 
the sea-state for the most frequently occurring fuel-speed profile is found in 
Figure 13. 

The simulated results (Figure 14) demonstrate that the ANN model is 
capable of deriving different Fuel-Speed curves according to the resistance 
that the ship faces not only in close conditions (such as through a channel) 
but also in open water conditions. The difference in resistance is largely due 
to the sea-state conditions. 

It can be observed that the fuel-speed data in Leg 2 of the journey has 
a largely horizontal profile which may appear odd as this implies the fuel 
consumed does not change even as vessel speed changes from 14 kn to 19 
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Figure 9: A geographical plot of the original data. The histograms in the right of the figure 
refer to the sea-state conditions of the journey demarcated in purple within a channel. The 
purple plots in the geographical plot indicate where the fuel consumption is the highest. 
The minimas refer to the KDE probability density plot in Figure 1. 

kn. One explanation for this observation is that the sea-state conditions 
actually reduce the ship resistance such that the fuel consumed for the same 
or greater speed is lesser, such as wind and current pushing a vessel along 
in the direction of travel, as opposed to working against wind and current 
along the journey. 

Leg 2: Profile 1 describes a scenario where current and wind is working 
against the vessel such that the overall ship resistance is increased. Current 
is at -0. 77 kn, with headwind at wind strength at Beaufort scale 5 (Fresh 
breeze). Leg 2: Profile 2 differs from Profile 1 in terms of current only, where 
current is positive,i.e. pushing the vessel in its intended direction of travel 
at 0. 7 kn. Leg 2: Profile 3 describes the sea-state that is in between Profile 
1 and 2 by having current assisting the vessel, but at a lower magnitude 
than Profile 2, and lesser headwind at Beaufort scale 3 ( Gentle breeze). 

It is also interesting to note that at higher vessel speeds such as at 19 
kn, when the sea-state is such that it reduces the overall resistance faced 
by a vessel, the ANN model can capture the observation that the fuel con-
sumption for the addition 1 kn at 19 kn of vessel speed is only a little bit 
more than at 18 kn. 
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Figure 10: Plot of the actual and predicted fuel consumption in Leg 2, a journey in the 
Indian Ocean. The predictions are broken down into output from training, validation, test 
data sets and overall results. 

5. Improving energy efficiency in ships 

It is generally understood that most research on optimising vessel op-
erations attempt to predict or have snapshots, as accurately as possible, 
the ship resistance. The summary of the proposed method in this paper is 
attempting to provide snapshots of the ship resistance under different sea-
state conditions. One novelty of this paper is the derivation of fuel-speed 
curves from actual data. These fuel-speed curves capture elements that the 
design fuel-speed curves do not. 

Adland et al [5] investigated and demonstrated that the elasticity of fuel 
consumption of oil tankers varies across speeds and sea-states. The article 
suggests that the 'cubic law' is only true near the design speed of vessels and 
conditions set out in the speed trial analysis. In the same way that engine 
load diagrams have different curves for recommended operations or heavy 
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Figure 11: A kernel density estimate constructed using the data of fuel consumption[t/d] 
for a vessel journey in the Indian Ocean. 

operations, the derived fuel-speed curves from the telemetry data indicated 
that within a vessel leg where the cargo remains constant, the different sea-
states affect the fuel consumption of the vessel. 

For a given voyage, the fuel consumption is not just affected by the 
speed of the vessel. Figure 7 shows that while travelling at 17 kn, the vessel 
may consume between 85 t/d to 115 t/d due to the sea-state that affects 
the overall ship resistance. If considering the impact of slow-steaming on 
CO2 emissions simply based on design propeller curves, there could be an 
overestimation in the reduction of CO2 emissions. Vessel operations are 
dynamic and thus the optimal speed changes according to the sea-state. 
With the provision of parameter information on the average draft, the wind 
strength and direction and impact of current, the optimal speed according 
to the ideal fuel to be consumed can then be estimated. Or, in the case of 
cargo vessels which travel mostly to meet a delivery schedule (i.e. there is 
priority of reaching destination over emissions control or fuel economy), a 
more accurate fuel consumption pattern can be derived, from which a more 
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Figure 12: Fuel consumption for vessel journey between two ports in Leg 2 of the journey. 
The clustering of data (colour coded) is done so with respect to the KDE of Figure 11). 
The 2 clusters plotted geographically also could indicate different sea states that resulted 
in difference in fuel consumptions. This can be cross referred to Figure 13. 

accurate em1ss10ns analysis can be undertaken. The impact of maritime 
policy such as slow-steaming or changing the constituents of marine fuel can 
then be more accurately assessed. 

6. Conclusion 

In this paper, a systematic methodology for deriving vessel and journey 
specific fuel-speed curve from ship telemetry data has been carried out. Ker-
nel densities estimation is used to categorise operational profiles, and then 
an ANN is used to derive the relationship between fuel consumed and vessel 
speed, vessel average draft and sea-state conditions. The method demon-
strated that it was able to deduce fuel-speed curves in close-sea conditions 
such as within a channel, and open-sea conditions in the Indian Ocean. In 
both conditions, the fuel-speed curves varied according the sea-state thus 
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Figure 13: A geographical plot of the original data. The histograms in the right of 
the figure refer to the sea-state conditions of the journey demarcated in purple within a 
channel. The purple plots in the geographical plot indicate where the fuel consumption is 
the highest. The minimas refer to the KDE probability density plot in Figure 1. 

highlighting that the different working loads experienced by the vessel can 
be captured by the model. In addition, the model is validated by compa-
rable R 2 values with other statistical/machine learning methods, as well as 
by analysis of the physical phenomena ( i.e. based on domain knowledge) 
of the conditions that affect the ship resistance. In summary, the method 
allowed a more accurate prediction of fuel consumption, and a vessel specific 
understanding of what is considered optimal speed. It is thus inferred that 
the method on analysing telemetry data demonstrates consistent results, 
and benefitting the industry with improved maritime practices or stream-
lined vessel operation. This encourages better data collection practices in 
the industry which will become a valuable big data push for the maritime 
industry. 

7. Future work 

With the IMO requirement on the data monitoring on fuel consumption 
for vessels greater than 5000 tonnes, the method can be extended to provide 
greater insights to engine performance. Tillig et al [20] highlighted that 
maximising fuel efficiency of existing ships is crucial but the sole solution 
of optimizing the maintenance and operation of existing ships will not aid 
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Figure 14: A plot of the original data (Leg 2: Indian Ocean) demarcated in black and 3 
fuel-speed curves simulated from 3 differing profile. Profile 1 suggests sea-state conditions 
which will results in higher ship resistance, while Profile 2 suggest sea-state conditions 
resulting in lower ship resistance. Profile 3 suggests sea state conditions that are in 
between that of Profile 1 and 2. 

the shipping industry in achieving the IMO goals. To cut the emissions of 
shipping by the targeted 50%, drastic measures must be taken in the de-
sign, operation and propulsion of ships. For this purpose, a ship energy 
systems model must be capable of predicting the performance of generic 
ships prior to the actual design phase or retrofitting of existing ships with 
alternative propulsions systems. This method of deriving the fuel-speed 
curves from kernel probability densities as outlined in this paper is actually 
a simplified method by Tsitsilonis et al [16]. Tsitsilonis et al [16] attempts 
to classify the 2 coefficients of the propeller curve by utilising KDEs of the 
engine rotational speed to determine the most frequently occurring opera-
tional profile. Within the operation profile of the engine rotational speed, 
the corresponding engine characteristics such as the air filter pressure, the 
compressor outlet temperature etc to conduct energy and exergy analysis. 
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The output of such analysis can give holistic direction to the problematic 
areas engine operational point that corresponds to low efficiency, in which 
such analysis is sensitive to a specific ship (its hull design, propeller design 
etc) and sea-state conditions. 
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