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Abstract: The main obstacle against the penetration of wind power into the power grid is its high 

variability in terms of wind speed fluctuations. Accurate power forecasting, while making mainte-

nance more efficient, leads to the profit maximisation of power traders, whether for a wind turbine 

or a wind farm. Machine learning (ML) models are recognised as an accurate and fast method of 

wind power prediction, but their accuracy depends on the selection of the correct hyperparameters. 

The incorrect choice of hyperparameters will make it impossible to extract the maximum perfor-

mance of the ML models, which is attributed to the weakness of the forecasting models. This paper 

uses a novel optimisation algorithm to tune the long short-term memory (LSTM) model for short-

term wind power forecasting. The proposed method improves the power prediction accuracy and 

accelerates the optimisation process. Historical power data of an offshore wind turbine in Scotland 

is utilised to validate the proposed method and compare its outcome with regular ML models tuned 

by grid search. The results revealed the significant effect of the optimisation algorithm on the fore-

casting models’ performance, with improvements of the RMSE of 7.89, 5.9, and 2.65 percent, com-

pared to the persistence and conventional grid search-tuned Auto-Regressive Integrated Moving 

Average (ARIMA) and LSTM models. 

Keywords: auto-regressive integrated moving average (ARIMA); long short-term memory (LSTM);  

Optuna; isolation forest (IF); elliptic envelope (EE); one-class support vector machine (OCSVM) 

 

1. Introduction 

Undoubtedly, to accelerate economic growth, power production through renewable 

energy sources needs to increase because conventional methods such as using fossil fuels 

have irreparable consequences, including pollution, climate change, and the depletion of 

the ozone layer [1]. 

In recent decades, various renewable energies, such as wind, solar, waves, etc., have 

received increasing attention. Among all these energies, wind power has played the most 

important role in replacing fossil fuels [2]. As reported by the World Wind Energy Coun-

cil, the installed global capacity of wind energy in the world in 2021 has reached 837 GW, 

with an increase of 92 GW compared to 2020 [3]. Figure 1 shows the global wind power 

installed capacity increment over the past 21 years [3]. In this figure, the blue columns 

represent the capacity of installed wind power on land, while the red columns represent 

the offshore installed wind energy. 
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Figure 1. Global wind power installed capacity increment during the last 21 years [3]. 

One main obstacle hindering the increase of wind power penetration into the power 

grid is the production uncertainty due to fluctuations in wind speed [1]. Therefore, ade-

quate planning in electricity distribution to meet consumers’ demand, determining the 

best time for operation and maintenance, and the fairest pricing on the market requires 

accurate wind power forecasting in the upcoming time steps. 

Hanifi et al. [1] categorised wind power forecasting into three main methods, includ-

ing physical, statistical, and hybrid approaches. Physical methods utilise numerical 

weather prediction (NWP) data, wind turbine geographic descriptions, and weather in-

formation to predict wind power [1]. These methods are computationally complex and 

very sensitive to initial information [2]. On the other hand, statistical methods work based 

on building an accurate mapping between input variables (such as NWP data, historical 

data, etc.) and target variables (wind speed or wind power). These methods include two 

main approaches: time-series-based methods and machine learning (ML) approaches [1]. 

Time-series-based methods can predict wind speed or wind power based on the history 

of the predicted variable itself. They can recognise the concealed random features of wind 

speed and are used for very short-term (minutes to a few hours) forecasting. The Auto-

Regressive Integrated Moving Average (ARIMA) model proposed by Box–Jenkins [4] is 

one of the common statistical methods which is used in various research. For example, in 

Western Australia, Yatiyana et al. [5] applied the ARIMA model for wind speed and di-

rection forecasting. They proved that their proposed model could predict wind speed and 

direction with a maximum of 5% and 16% error, respectively. Firat et al. [6] proposed an 

autoregressive (AR) wind speed prediction model for a wind farm in the Netherlands. 

They used six years of hourly wind speed and achieved a high accuracy for 2–14 h ahead. 

In another study, De Felice et al. [7] applied 14 months of temperature readings in Italy to 

train an ARIMA model for electricity demand prediction. Their proposed method demon-

strated higher accuracy, particularly in hot locations, compared with persistence methods. 

Duran et al. [8] proposed a method to combine AR and exogenous variable (ARX) models 

to predict the wind power generation in a wind farm located in Spain up to one day in 

advance. They used different model orders and training periods to prove that the appli-

cation of the AR models presents lower errors than a persistent model. Kavasseri et al. [9] 

examined the application of fractional ARIMA models to predict wind farm hourly aver-

age wind speed for one- and two-day-ahead time horizons. The results of the predictions 

showed a 42% improvement compared to persistent methods. Later, the predicted wind 

speeds were applied to the power curve of an operating wind turbine to predict the rele-

vant wind powers. In another study, Torres et al. [10] used the ARMA and the persistence 

model for hourly average wind speed forecasting up to 10 h ahead. The ARMA model 

https://www.sciencedirect.com/topics/engineering/wind-turbines


Energies 2022, 15, 6919 3 of 22 
 

 

demonstrated a better performance compared to the persistence method, with a 12% to 

20% lower root mean square error (RMSE) when forecasting 10 h in advance. 

ML methods such as neural networks (NNs) can establish deductive models by learn-

ing dependencies between input and output variables. These methods are easy to create, 

do not require further geographic information, and can predict over longer timeframes. 

One of the common ML methods is the LSTM model, which can address the long-term 

dependency issues [11], which is important in forecasting time-series with long input se-

quences [12]. 

LSTM is variously used in research for wind power prediction. For instance, Zhang 

et al. [13] proposed an LSTM wind power forecasting model for three wind turbines of a 

wind farm in China. They utilised three months of wind speed and historical power data 

and achieved the highest forecasting accuracy in a one-to-five time-steps ahead compared 

to the radial basis function (RBF) and deep belief network (DBN). Fu et al. [14] demon-

strated LSTM and gated recurrent unit (GRU) for a one-to-four step-ahead forecasting of 

a 3 MW wind turbine in China, based on the first three-month dataset of 2014, with a 

resolution of 15 min. The comparison with ARIMA and support vector machine (SVM) 

methods showed the superiority of their proposed methods. Cali and Sharma [15] pro-

posed an LSTM-based model with one hidden layer for 1 to 24 h ahead of wind power 

forecasting. The model was trained with 9-month data and evaluated in the last three 

months of 2016. They used nine combinations of input data, including wind speed at var-

ious levels, wind direction, temperature, and surface pressure. They demonstrated that 

temperature, wind speed, and direction positively impacted model performance; how-

ever, adding surface pressure to the input features led to worse performance. 

As well as the training data, ML models’ accuracy strongly depends on the adequate 

selection of their parameters and hyperparameters. The parameters of ML models (e.g., 

the weights of each neuron) are determined during the training process of the algorithm. 

In contrast, hyperparameters are not directly learnt by the learning algorithm and need to 

be specified outside the training process. The main role of the hyperparameters is to con-

trol the capacity of the models in learning dependencies. They also prevent overfitting 

and improve the generalisation of the algorithm. Hyperparameter optimisation or tuning 

improves forecasting accuracy and reduces models’ complexity [16]. 

The literature’s most common hyperparameter tuning methods are the grid search 

and random search. Grid search can be used for simple models with a few parameters. 

The calculation will be extremely time-consuming by increasing the number of parame-

ters and expanding the space of the possible configurations [17]. Therefore, researchers 

usually consider a narrow range of hyperparameters during the grid search [16]. On the 

other hand, a random search algorithm looks randomly for a set of combinations rather 

than searching for better results. 

Both these search methods generate all candidate combinations of hyperparameters 

upfront and then evaluate them in parallel. Based on the evaluation of all combinations, 

the best hyperparameters can be selected. Trying all possible combinations is very costly; 

as a result, it is vital to develop advanced techniques to intelligently select which hyperpa-

rameters to assess and then decide where to sample next after evaluating their quality. 

The advanced optimisation of the ML-based time-series forecasting models for wind 

turbine-related predictions remained untouched. However, a few studies have proposed 

methods for optimising ARIMA and LSTM models within other applications than wind 

power forecasting. For example, Al-Douri et al. [18] designed a genetic algorithm (GA) to 

find the best parameters of an ARIMA model for the better cost prediction of used fans in 

Swedish road tunnels, and provided results which proved a significant improvement in 

data forecasting. In another study, F. Shahid et al. [19] employed GA to optimise the win-

dow size and neuron numbers of LSTM layers. This approach improved the power pre-

diction accuracy of wind farms in Europe by up to about 30% compared to existing meth-

ods such as support vector regressors. 
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As the review of the literature indicates, several examples use linear and nonlinear 

regression models for challenges related to predicting wind power. Each study provides 

the use of one model type or a comparison of various model types. Nevertheless, without 

the tuning and selection of the hyperparameters, it is not possible to obtain their maxi-

mum benefit [16]. This advanced tuning method plays an important role when the hy-

perparameter search space grows exponentially, and the use of exhaustive grid search 

becomes extremely time-consuming. 

This paper proposes a framework for developing accurate and robust ML models for 

wind power forecasting. The framework outlines the model development procedure from 

data engineering to precision evaluation and fine-tuning. Furthermore, an advanced al-

gorithm is utilised to optimise wind power forecasting models to reduce time calculation 

costs, as well as to improve accuracy. For the case study, two ML models were selected: 

the LSTM model, which is proven to have remarkable prediction performance on time-

series-based models, and ARIMA, a traditional model, for the purpose of benchmarking. 

The novelty of this work lies in developing a short-term wind power forecasting 

model through an intelligent application of the long short-term memory (LSTM) model, 

while a new optimisation algorithm tunes its main hyperparameters. In addition, the dis-

tinguished aspects of the methodology are summarised, based on importance, as follows: 

• LSTM is used on a wind power dataset to take advantage of its ability to learn non-

static features from nonlinear sequential data automatically. 

• The ARIMA model is applied as a forecasting model because of its short response 

time and ability to capture the correlations in time series. 

• Instead of the trial-and-error method to select the best hyperparameters of the 

ARIMA and LSTM forecasting models, which require a great deal of time, grid search 

is used to tune both these models. 

• The new Optuna optimisation framework is employed to optimise the hyperparam-

eters of the LSTM model, including the number of lag observations, the quantity of 

LSTM units for the hidden layer, the exposure frequency, the number of samples in-

side an epoch, and the used difference order for making a nonstationary dataset sta-

tionary. 

• Unlike most previous studies, which is for onshore wind turbines, forecasting assess-

ments have been done for an offshore wind turbine in this study. 

• How to deal with the negative values of wind power (which are normally found in 

active power observations), in terms of removal or replacement, has been thoroughly 

investigated in this study and the results have been discussed. 

• After a detailed discussion about the reasons for having outliers, three different 

methods, including isolation forest (IF), elliptic envelope (EE), and the one-class sup-

port vector machine (OCSVM), are used to detect and treat them. A comparison of 

the results will help researchers to choose the best outlier detection method for future 

studies. 

• The proposed Optuna–LSTM model is assessed by the comparison of its forecasted 

power with actual values and predictions by persistence and ARIMA based on the 

RMSE statistical error measure. 

The rest of this paper is organised as follows: Section 2 discusses the optimisation 

process, the forecasting models, and the studied supervisory control and data acquisition 

(SCADA) data. This section includes the steps taken for preprocessing, resampling, and 

outlier treatment. Section 3 presents the results of the trained, optimised LSTM model in 

terms of model accuracy and the time cost compared to other prediction methods. Finally, 

Section 4 summarises the paper’s contributions. 

2. Methodology 

The proposed procedure of this study is illustrated in Figure 2. At the beginning of 

this study, three required features, including the time stamps, wind speeds, and active 
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wind powers, are selected to improve the computational time. At the next step, negative 

power values are removed or replaced. This data preprocessing is followed by resampling 

the dataset and removing outliers in three different ways. After finishing the data prepro-

cessing and providing proper data for forecasting, data predictability and stationarity are 

assessed as two important specifications for accurate power forecasting. Afterwards, three 

different approaches are employed for forecasting, and their best performance is gained 

by the selection of their most appropriate hyperparameters. 

 

Figure 2. Diagram of applied methodology. 

2.1. ARIMA Model 

In this study, the standard approach of the Box–Jenkins method [20] was traced for 

the ARIMA model development. The ARIMA model is a widely used set of statistical 

models for analysing and predicting time-series data [21]. This model can be expressed as 

[22]: 

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ −  𝜃𝑞𝑒𝑡−𝑞  (1) 

While 𝜙𝑡 and 𝜃𝑡 are coefficients, p, q, and d are the lag number of observations in 

the model, the order of moving average, and the degree of difference, respectively. Degree 

of difference (d) values greater than 0 imply that the data has been nonstationary but has 

become stationary after some degree of difference. 

The ARIMA model combines the AR, moving average (MA), and the Integrated (I) 

components, which denotes the data substitution with the value of the difference between 

its values and the preceding values [23]. The forecasting accuracy of the ARIMA model 

depends on selecting the most appropriate combination of p, d, and q. Normally, for small 

data sets, the autocorrelation function (ACF) and partial autocorrelation function (PACF) 
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can be used to determine which AR or MA component should be selected in the ARIMA 

model [24]. 

These two factors, which can be graphically plotted, are widely used elements in an-

alysing and predicting time-series. They highlight the relationship between an observa-

tion and the observations’ value at prior time steps. The difference between ACF and 

PACF is that, in PACF, while assessing the relationship between observation of two time 

steps, the relationships of the intervening observations are removed. Figure 3a,b show the 

observations’ ACF and PACF plots. An appropriate ARIMA model can be selected based 

on the simple explanations in Table 1 [9], and the value of d (degree of difference) depends 

on the number of differencing until the data is stationary. 

  
(a) (b) 

Figure 3. ACF (a) and PACF (b) plots for generated power of LDT. The blue points represent the 

value of autocorrelation and partial autocorrelation of different time lags. 

Table 1. ACF and PACF application for statistical model selection. 

Model Autocorrelation Partial Autocorrelation 

AR (p) Tails off gradually Cuts off after p lags 

MA(q) Cuts off after q lags Tails off gradually 

ARMA (p, q) Tails off gradually Tails off gradually 

The ARIMA model forecasting steps after resampling and outlier treatment can be 

seen in Figure 4. The first step is assessing the stationarity of the time-series. Stationary is 

one of the assumptions during time-series modelling, which shows the consistency of the 

summary statistics of the observations. 

When a time-series is stationary, it means that the statistical properties of the time-

series (such as mean, variance, and autocorrelation) do not change over time. This prop-

erty can be violated by having any trend, seasonality, and other time-dependent struc-

tures. There are two main methods for the stationarity assessment of time-series, the vis-

ualisation approach and the augmented Dickey–Fuller (ADF) test. The visualisation 

method uses graphs to show whether the standard deviation changes over time. On the 

other hand, the ADF method is a statistical significance test that compares the p-value 

with the critical values and does hypothesis testing. This test makes the stationarity of 

data clear at different levels of confidence. 

Regarding the data used in this study, due to the high number of observations and 

wide dispersion, it is not possible to check stationarity through the visualisation method. 

Therefore, in this study, the ADF method was used. 

The ADF test’s execution provides a p-value which, by comparing it with a threshold 

(such as 5% or 1%), can identify the stationarity of the data. Nonstationary data in this 

step need to be changed to stationary by methods such as differencing. After ensuring the 
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time-series is stationary, a persistence method as a baseline is created. Then, through a 

detailed grid search, the best hyperparameters for the ARIMA forecasting for each pre-

processed data were found. The last step is ARIMA forecasting and comparing its error 

with the error of the persistence method. 

 

Figure 4. Flowchart of ARIMA and LSTM wind power forecasting models. 

2.2. LSTM Model 

The recurrent neural network (RNN) is a model in which the connection of its units 

creates cycles. RNN has a high ability to represent all dynamics. However, its effectiveness 

is affected by the limitations of the learning process. The main limitation of gradient-based 

methods that use back propagation is their path integral time-dependence on assigned 

weight [13]. When the time lag between the input signal and the target signal increases to 

more than 5–10 time-steps, the normal RNN loses the learning ability, and the back-prop-

agation error either vanishes or explodes. This error elimination raises the question of 

whether normal RNNs can show practical benefits for feed-forward networks. To address 

this problem, the LSTM has been developed based on memory cells. The LSTM consists 

of a recurrently attached linear unit known as the constant error carousel (CEC). CECs, by 

keeping the local error backflow constant, mitigate the gradient’s vanishing problem [25]. 

They can be trained by adjusting both the back propagation over time and the real-time 

recurrent learning algorithm [26]. Figure 5 shows the typical structure of the LSTM. 
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Figure 5. Typical structure of the LSTM. 

As can be seen, there are three gate units in a basic LSTM cell, including the input, 

output, and forget gates. The gate activation vectors of 𝑖𝑡, 𝑜𝑡 and 𝑓𝑡 for input, output, 

and forget gates, respectively, are calculated in Equations (2)–(4). 

𝑖𝑡 =  𝜎𝑙(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (2) 

𝑜𝑡 =  𝜎𝑙(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3) 

𝑓𝑡 =  𝜎𝑙(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (4) 

In these equations, 𝑊𝑖, 𝑊𝑜, 𝑊𝑓 𝑈𝑖, 𝑈𝑜, and 𝑈𝑓 represent the assigned weights, and 

𝑏𝑖, 𝑏𝑜, and 𝑏𝑓 represent the biases in conjunction with relevant activation functions 𝜎𝑙. In 

addition, 𝑥𝑡 is the neuron input at time step t, and the cell state vector at time step t − 1 is 

ℎ𝑡−1. As shown in Equation (5), the next evaluated value of the state 𝑆̃𝑡 can be calculated 

based on the relevant activation function 𝜎𝑠. 

𝑆̃𝑡 =  𝜎𝑠(𝑊𝑠𝑥𝑡 + 𝑈𝑠ℎ𝑡−1 + 𝑏𝑠) (5) 

In Equation (7), the newly assessed value of 𝑆̃𝑡 and the prior cell state 𝑆𝑡−1 are used 

to calculate cell state 𝑆𝑡, which by itself will be used with the output gate control signal 

𝑜𝑡   and the activation function 𝜎𝑙ℎ to obtain the overall output ℎ𝑡 according to Equation 

(8). 

𝑆𝑡  =  𝑓𝑡   ⃘ 𝑆𝑡−1 + 𝑖𝑡   ⃘𝑆̃𝑡  (6) 

ℎ𝑡  =  𝑜𝑡   ⃘𝜎𝑙ℎ  (𝑆𝑡) (7) 

As can be seen in Equations (6) and (7), the output ℎ𝑡 is dependent on the state 𝑆𝑡 

of the LSTM cell and the activation function 𝜎𝑙ℎ that is usually tanh (x). The state 𝑆𝑡 de-

pends on the state of the prior step  𝑆𝑡−1 as well as the new value of the state 𝑆̃𝑡. 



Energies 2022, 15, 6919 9 of 22 
 

 

In accordance with all the relations mentioned above, the function of the LSTM 

model can be concluded as: 

• Input gate (𝑖𝑡) controls the extent to which 𝑆̃𝑡 flows into the memory. 

• Output gate (𝑜𝑡) regulates the extent to which 𝑆𝑡  gives to the output (ht). 

• Forget gate (𝑓𝑡) controls the extent to which  𝑆𝑡−1 (i.e., previous state) is kept in the 

memory. 

Specifying the best LSTM model for wind power forecasting requires the determina-

tion of the neural network’s best combination of hyperparameters. LSTMs have five main 

hyperparameters, including the number of lag observations as inputs of the model, the 

quantity of LSTM units for the hidden layer, the model exposure frequency to the whole 

training dataset, the number of samples inside an epoch in each weight updating, and 

finally, the used difference order for making nonstationary data stationary. 

2.3. Grid Search for ARIMA and LSTM Models 

ARIMA model factors (i.e., p, d, and q) can be estimated through iterative trial and 

error by revising the ACF and PACF plot. This part of defining the ARIMA forecasting 

model can be very challenging and time-consuming, leading to prediction errors. As a 

result, researchers attempt to find these hyperparameters using an automatic grid search 

approach. Similar to the ARIMA model, specifying the best LSTM model for wind power 

forecasting requires the determination of the best combination of hyperparameters in this 

neural network. This study also specified a grid of the LSTM parameters to iterate. An 

LSTM model is created based on each combination, and its forecasting accuracy is as-

sessed by calculating its RMSE. 

2.4. Persistence Method 

It is vital to create a baseline for any time-series prediction approach. As a reference, 

for comparing all modelling approaches, this baseline can show how well a model makes 

predictions. Models which perform worse than the performance level of the baseline can 

be ignored. 

Benchmarks for forecasting problems need to be very simple to train, fast to imple-

ment, and repeatable. The persistence model is one of the most commonly used references 

for wind speed and power prediction (short-term forecasting methods in particular). 

Based on the definition of this method, wind power in the future will be equivalent to the 

generated power in the present [27], as given by Equation (8): 

𝑃̂𝑡+𝑘/𝑡 =  𝑃𝑡 (8) 

where 𝑃𝑡 is the measured wind power at time t and 𝑃̂𝑡+𝑘/𝑡  is the predicted wind power 

for the future time k. This model performs better than most short-term physical and sta-

tistical forecasting methods. Therefore, it is still widely used in very short-term prediction 

[28]. This research uses the persistence model to compare the performance of the ARIMA 

and LSTM models for different datasets. 

2.5. Hyperparameter Optimisation with Optuna 

This study uses the Optuna optimisation method to optimise the forecasting models. 

Optuna is an open-source optimisation software with several advantages over the other 

optimisation frameworks [29]. Other optimisation tools usually differ depending on the 

algorithm used to select the parameters. For example, GPyOpt and Spearmint [30] apply 

Gaussian processes, SMAC [31] employs random forests, and Hyperopt [32] uses a tree-

structured Parzen estimator (TPE). These methods have three main drawbacks. Firstly, 

they need the parameter search space to be statically defined by the user, a process that is 

extremely hard for large-scale experiments with many possible parameters. Furthermore, 

they do not have an efficient pruning strategy for high-performance optimisation when 

accessing limited resources. In addition, they cannot handle large-scale experiments with 
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minimal setup requirements. On the other hand, Optuna, with a define-by-run design, 

enables the user to create the search space dynamically. This optimisation framework is 

an open-source, easy-to-set-up package that benefits effective sampling and pruning al-

gorithms [29]. Optuna optimises the model through minimising/maximising an objective 

function (here, the RMSE of the forecasted wind power rather than the real generated 

values) that assumes a group of hyperparameters as input and returns its validation core. 

The optimisation process is called a study, and each objective function’s evaluation is 

called a trial [29]. 

At the beginning of the optimisation, the user is asked to provide the search space 

for the dynamic generation of the hyperparameters for each trial. Then, the model builds 

the objective function by interacting with the trial object. After this step, the next hyperpa-

rameter selection is based on the history of previously evaluated trials. This algorithm 

optimises ML models in two steps. First, a search strategy determines a set of parameters 

to be examined, and second, a performance assessment strategy known as a pruning al-

gorithm excludes the improper parameters based on the estimation of the value of the 

currently investigated parameters [29]. 

Since the initial prediction accuracy assessment of the ARIMA and LSTM models 

(both tuned by grid search) highlighted the better performance of the LSTM model com-

pared to ARIMA, it was decided to apply the optimisation framework only to the LSTM 

model. 

In this way, the hyperparameter ranges of the LSTM model increased from what was 

examined in its grid search to wider ranges, as shown in Table 2. In other words, the hy-

perparameter combinations increased from 48 combinations to more than a million com-

binations. 

Table 2. Hyperparameter ranges and their total combinations in LSTM–grid search and LSTM–Op-

tuna methods. 

Parameters 

LSTM–Grid Search LSTM–Optuna 

Values Possible Combinations Values 
Possible  

Combinations 

No. of lag observations (3, 4, 6) 48 (1, 3, 4, …, 10) More than 1 M 

No. of LSTM units (100, 150)  (50, 60, 70, …, 300)  

Exposure frequency (100, 150)  (50, 60, 70, …, 300)  

No. of samples inside an epoch (100, 150)  (50, 60, 70, …, 300)  

Difference order (0, 1)  (0, 1, 2, …, 5)  

2.6. Wind Power Dataset 

The source SCADA data are measured at a 1 Hz frequency from the Levenmouth 

Demonstration Turbine (LDT), an offshore wind turbine which is located just 50 m from 

the coast at Leven, a seaside town in Fife, Scotland [33]. This wind turbine was acquired 

by the Offshore Renewable Energy (ORE) Catapult in 2015, while its construction was 

completed by Samsung in October 2013 [34]. 

ORE Catapult’s wind turbine is a three-bladed upwind turbine installed on a jacket 

structure [25]. The turbine is ranked to work at 7 MW, but to decrease the noise, it is lim-

ited to operating at the highest power of 6.5 MW [33]. This turbine’s rotor diameter is 171.2 

m, and its hub height is 110.6 m. Each blade of this turbine measures 83.5 m and weighs 

30 tons. The defined cut-in speed for this turbine is 3.5 m/s, which means its electricity 

generation will start when wind speeds reach this speed. It will shut down if the wind is 

blowing too hard (roughly 25 m/s) so to prevent equipment damage. Its operating tem-

perature is between −10 °C to +25 °C, and it has been designed to work for 25 years [35]. 

Figure 6 shows the configuration and main parameters of the LDT. 
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Figure 6. Main parameters and schematic of Levenmouth wind turbine [35]. 

2.7. Feature Selection 

This study recorded the SCADA datasets for five months, from 1 January 2019 to 31 

May 2019, at a 1 Hz frequency (with one-second intervals). Each timestamp in this time-

series data includes 574 different observations, including the generated power, wind 

speed at different levels, blade pitch angle, nacelle orientation, etc. At the beginning of the 

data processing, a feature selection was carried out to decrease the size of the dataset to 

reduce the computation time by excluding unnecessary variables. This process was vital 

to making this study possible. All variables except the time stamp, wind speed, and active 

power were removed at this stage, which was useless in the ARIMA and univariate LSTM 

forecasting methods. Keeping the wind speed variable was vital in this project, as it veri-

fied the accuracy of generated power. For example, failure to generate power when high 

wind speeds were recorded was recognised as a stop in power generation due to reasons 

such as maintenance. After removing the redundant information, observations of wind 

speed and active power were plotted as shown in Figure 7a,b. 

  
(a) (b) 

Figure 7. Wind speed observations (a), wind active power observations (b). 

The histograms of this dataset for wind speed and active power are presented in Fig-

ure 8a,b, and Table 3 shows their statistical descriptions. 
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Active power Wind speed 

  
(a) (b) 

Figure 8. Histogram of active power (a) and wind speed (b). 

Table 3. Statistical descriptions of the SCADA datasets. 

 Active Power, kW Wind Speed, m/s 

Count 1.0 ×  107 1.0 ×  107 

Mean 1.8 ×  103 7.6 

Standard deviation 2.3 ×  103 3.9 

Minimum −1.2 × 102 −3.3 × 10−2 

25% −6.0 ×  10 4.7 

Medium 5.9 ×  102 7.1 

75% 3.2 ×  103 1.0 ×  10 

Maximum 7.2 ×  103 3.2 ×  10 

2.8. Obvious Outlier Removal 

An initial assessment of Figure 7b specified that a large part of the recorded gener-

ated power at the end of this time-series (May 2019) equals zero. Usually, the generated 

power of a turbine can be zero when no wind is blown. However, the evaluation of Figure 

7(a) shows a continuous wind blowing with fluctuations similar to previous months. 

Therefore, it is speculated that the turbine was out of production during this period. Based 

on this assumption, it was decided that this month (May 2019) should be removed entirely 

from the dataset. The time-series after this omission was reduced to four months, from 1 

January 2019 to 30 April 2019. A closer look at the active power, as shown in Figure 9, 

revealed another obvious error in the SCADA data, the existence of negative values. Neg-

ative values are values of which there is no practical meaning in wind power generation. 

Shen et al. [36] believe that these values represent time stamps when turbine blades do 

not rotate, but the turbine’s control system needs electricity [36]. These values need to be 

eliminated along with the corresponding parameters of the same timestamp for better 

forecasting results [25]. Since the elimination of these negative values disrupts the time 

continuity of the time-series, and can possibly lead to errors in wind power prediction, at 

this stage it was decided to create and assess three types of datasets based on different 

actions against negative values. Assessment of the impact of these actions on forecasting 

accuracy became another goal of this study. 

These three preprocessing methods against the negative values are: 

• Total elimination of negative values without any substitution; 

• Replacement of negative values with the average amount of power in the whole 4-

month period; 

• Replacement of negative values with positive values of power at the nearest 

timestamp. 
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Figure 9. Wind power observations (only power values under 1000 kW are shown). The dotted red 

line indicates the power value of zero (the boundary of negative/positive values). 

2.9. Resampling 

The effect of wind turbulence as one of the obstacles to increasing the wind energy 

penetration in energy markets is more significant in horizontal axis wind turbines. This is 

because the wind speed and direction change rapidly after hitting swept blade rotors. 

Therefore, the amount of wind speed measurements by installed anemometers are not 

equal to the speed of the wind flow hitting turbine blades [25]. These differences, which 

lead to a decrease in the correlation between the measured wind speed and the output 

power, and then scattering of the power curve, can be resolved by averaging the samples 

in a reasonable average period [25]. The SCADA data for this study was recorded with a 

1 Hz frequency; as a result, it was possible to create multiple averaged sets for removing 

the mentioned obstacle. According to a review conducted by Hanifi et al. [1], the maxi-

mum sampling rate used for wind speed and power forecasting in the previous research 

is 10 min. This is equivalent to an average time that the international standard for power 

performance measurements of electricity-producing wind turbines (IEC 61400-12-1) es-

tablishes for large wind turbines [37]. Based on the IEC 61400-12-1 and reviewed litera-

ture, the data presented here was averaged for each 10 min of data collection. Figure 10a,b 

show the wind power curves for the original and 10 min resampled data. 

  
(a) (b) 

Figure 10. Wind power curves. (a) Original 1s data (b) and 10 min resampled data. 

2.10. Anomalies Detection and Treatment 

Outliers in a dataset are specific data points that are different or far from most other 

regular data points [38]. Undetected or improperly treated anomalies can adversely affect 

wind power forecasting applications. They may be biased with high prediction errors [38]. 
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There are various reasons for having outliers among wind turbine and wind farm 

measurements, including wind turbine downtime [36], data transmission, processing or 

management failure [39], data acquisition failure [40], electromagnetic disturbance [36], 

wind turbine control system fault (such as the pitch control system fault) [41], damage of 

the blades or the existence of ice or dust [42], shading effect of neighbouring turbines, 

fluctuation of air density [43], etc. 

Figure 11 shows four different types of anomalies in the current SCADA data. Cate-

gory A points have negative, zero, or low values of generated power during speeds larger 

than the cut-in speed [25]. The leading causes of these outliers are wrong wind power 

measurements, wind turbine failure, and unexpected maintenance. Wind speed sensors 

and communication errors cause category B outliers. The mid-curve outliers (category C) 

represent power values lower than ideal—this is caused by the down-rating of the wind 

turbines and data acquisition. Outliers in category D are scattered irregular points due to 

faulty sensors exacerbated during harsh weather circumstances [36]. 

 

Figure 11. Observed anomalies coupled with the power curve of the 1 Hz original data. (A) Low 

power output in high wind speeds in turbine failure cases; (B) Outliers due to the wind speed sensor 

and communication errors; (C) Power outputs less than the rated power as a result of the turbine’s 

down-rating; (D) Scattered outliers caused by sensor malfunctions or noise in signal processing. 

There are different methods for anomaly detection in machine learning, such as Den-

sity-Based Spatial Clustering of Applications with Noise (DBSCAN), IF, local outlier fac-

tor, and EE. In this study, three common methods for wind power forecasting are investi-

gated. EE is used based on the assumptions described in [44]. IF, which is an unsupervised 

learning algorithm, recognises anomalies by isolating them in the data. This algorithm 

works based on two main features of anomalies, that they are few and different. The one-

class support vector machine (OCSVM) is a common unsupervised learning algorithm for 

outlier detection, assuming rare anomalies create a boundary for most data, and consid-

ering data points out of the boundary as outliers [45]. This method of outlier detection and 

treatment chose the third method. 

3. Experimental Results and Discussion 

This research employs packages and subroutines written in Python to implement the 

proposed algorithms. A PC with an Intel Core i5–7300 32.6 GHz CPU and 8 GB RAM 

(without any GPU processing) was used to run the experiments. Three outlier detection 
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methods, which were described in Section 2.8, were used to detect and remove the outliers 

of the resampled dataset. The results of these treatments can be seen in Figures 12–14: 

  

Figure 12. Elliptic envelope application for outlier detection and treatment. The blue points repre-

sent the normal data, and the red represents the detected anomalies. 

  

Figure 13. Isolation forest application for outlier detection and treatment. The blue points repre-

sent the normal data, and the red represents the detected anomalies. 

  

Figure 14. OCSVM application for outlier detection and treatment. The blue points represent the 

normal data, and the red represents the detected anomalies. 

This study considers six different preprocessing methods based on applying three 

different outlier detection methods and three approaches against the negative power val-

ues (Table 4). Different cases of preprocessed data are fed to the ARIMA and LSTM fore-

casting models. The grid search method is applied for the initial hyperparameter tuning; 

Table 4 shows the selected hyperparameters for the ARIMA and LSTM models. As 
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expected, the values of the hyperparameters vary depending on the different employed 

preprocessing methods (Table 4). 

Table 4. Best ARIMA and LSTM hyperparameters resulting from the grid search. 

Case Data Preprocessing Approach 
ARIMA 

Hyperparameters 

LSTM 

Hyperparameters 

Case 1 Negatives replaced by mean *; Outliers not removed (2, 0, 1) (3, 100, 100, 150, 0) 

Case 2 
Negatives replaced by nearest positive value *; Outli-

ers not removed 
(1, 1, 1) (6, 100, 150, 150, 0) 

Case 3 Negatives removed; Outliers not removed (1, 0, 2) (3, 100, 150, 150, 0) 

Case 4 Negatives removed; Outliers removed by EE method (1, 1, 3) (3, 100, 100, 150, 0) 

Case 5 Negatives removed; Outliers removed by IF method (3, 1, 1) (3, 150, 150, 150, 0) 

Case 6 
Negatives removed; Outliers removed by OCSVM 

method 
(1, 1, 3) (3, 150, 150, 150, 0) 

*: Mean value has been calculated after removing negative values. 

After selecting the best ARIMA and LSTM prediction methods, both models were 

trained by the first 95% part of the dataset (as training data) to make predictions for the 

last 5% of the dataset. The predicted values were compared with the measured values to 

determine the RMSE of each forecasting process. Table 5 provides the RMSE values of the 

ARIMA, LSTM, and persistence methods. 

Table 5. RMSE values of persistence, ARIMA, and LSTM models for six different treated case data. 

 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Negative values Mean 1 Nearest Positive 2 Removed Removed Removed Removed 

Outliers 
Not 

removed 
Not removed 

Not re-

moved 

EE 

removed 

IF 

removed 

OCSVM 

removed 

Persistence 636.3 720.5 830.5 512.7 509 566 

ARIMA 622.8 713 813 505.3 503.3 559 

LSTM 626 695.8 785 501.5 497.5 550.6 
1 Replaced by mean value calculated after removing negative values. 2 Replaced by nearest posi-

tive value. 

Comparing the RMSE values of all three models (Table 5) for case data 1, 2, and 3 

clarifies that the complete elimination of the negative values (without any replacement) 

will lead to worse forecasting. The highest RMSE value of case 3 means that removing the 

negative values will decrease the forecasting accuracy. One of the reasons for this perfor-

mance drop can be the creation of discontinuity in the dataset. 

Regarding the best specific value to be considered instead of negatives, a comparison 

of case data 1 and 2 proves that replacing the negative values with the average wind 

power values has a better impact than replacing them with the nearest (neighbour) posi-

tive value. Replacing the negative values with the average values can lead to about a 15% 

forecasting improvement for ARIMA and 11% for the LSTM models. 

The results also highlight the importance of dealing with outliers in wind power fore-

casting. Cases 4, 5, and 6, representing the outlier removed data, show a significant en-

hancement of the accuracy rather than the other cases, without any action against the 

anomalies. Comparing the error levels of case data 3 with cases 4, 5, and 6 (for both 

ARIMA and LSTM models) shows a 30% to 38% forecasting improvement by the elimina-

tion of the outliers, either by isolation forest, elliptic envelope, or the one-class SVM outlier 

detection methods. 

The assessment of the RMSE values of cases 4, 5, and 6 show that the IF and EE outlier 

detection methods overcome the OCSVM method. An elliptic envelope can improve 
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forecasting performance up to 9.61% and 8.92% rather than OCSVM for ARIMA and 

LSTM methods. This performance enhancement can reach 9.96% and 9.64% for ARIMA 

and LSTM, respectively, by applying the isolation forest. 

As shown in Table 5, the ARIMA and LSTM methods for all the treated case data 

have better performances than the persistence methods. This is understandable if one re-

members that, in the persistence method, only one preceding step data is used for fore-

casting, whilst the ARIMA and LSTM models consider a more extensive range of prior 

data. 

It is also clear that the LSTM performs better than the ARIMA almost for all ap-

proaches against the negative values and outliers. This is probably due to the fact that 

LSTMs are better equipped to learn long-term correlation. In addition, the LSTM can bet-

ter capture the nonlinear dependencies between the features. 

In this study, because of the better prediction performance of the LSTM model com-

pared to the ARIMA model, the proposed optimisation algorithm is applied to the LSTM 

model to tune its hyperparameters even more. As discussed in Section 2.5, the hyperpa-

rameter ranges of the LSTM model are increased from what was examined in its grid 

search to the wider ranges shown in Table 2. 

The six preprocessed case data are again divided into the first 95% as the training 

dataset and the rest 5% as the test data. These divisions were developed to establish the 

same conditions and logically compare the new and previous methods. The developed 

optimisation algorithm, with the two described strategies, including search and pruning, 

started the selection of different combinations to minimise the RMSE value. Table 6 shows 

the new hyperparameters found by the Optuna optimisation algorithm, and Figure 15 

shows the measured power values of the turbine and prediction results of all the forecast-

ing methods, including ARIMA, LSTM–grid, and LSTM–Optuna, for one of the datasets 

(data 4—removed negative values and removed outliers with the EE method). 

Table 6. Best LSTM hyperparameters resulted from Optuna optimisation. 

Case Data Preprocessing Approach LSTM Hyperparameters 

Case 1 Negatives replaced by mean *, Outliers not removed (9, 190, 230, 130, 0) 

Case 2 Negatives replaced by nearest positive value *, Outliers not removed (8, 60, 270, 170, 0) 

Case 3 Negatives removed; Outliers not removed (3, 120, 120, 160, 0) 

Case 4 Negatives removed; Outliers removed by EE method (6, 180, 180, 180, 0) 

Case 5 Negatives removed; Outliers removed by IF method (4, 260, 120, 280, 0) 

Case 6 Negatives removed; Outliers removed by OCSVM method (2, 130, 280, 90, 1) 

*: Mean value has been calculated after removing negative values. 
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Figure 15. Comparison of measured wind power and forecasted values by ARIMA, LSTM–grid, and 

LSTME–Optuna models for data 4 (removed negative values and removed outliers with EE 

method). 

As can be seen in Figure 15, the LSTM model optimised by Optuna can predict more 

accurately by better learning the wind power’s short-term and long-term dependencies. 

The diagram illustrated in Figure 16 is plotted to better compare the error levels of the 

different wind power forecasting methods. It can be recognised from this diagram that 

the LSTM–Optuna approach follows rules similar to the ARIMA and LSTM–grid models. 

To achieve a higher prediction accuracy, it is essential to eliminate the outliers and replace 

the negative power values with the average wind power value. 

 

Figure 16. Error comparison of persistence, ARIMA, LSTM, and LSTM optimised by Optuna fore-

casting methods. 

Building the LSTM models based on the new values of the hyperparameters, as 

shown in Table 6, improves the prediction accuracy of the LSTM model in a range from 
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1.22% to 2.65% for different cases of preprocessed data. These accuracy improvements can 

be seen in Table 7. 

Table 7. A comparison of RMSE, the LSTM–grid search, and LSTM–Optuna methods. 

Predictive Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

LSTM tuned by grid search 626 695.8 785 501.5 497.5 550.6 

LSTM optimised by Optuna 617.8 687.3 765 492.4 484.3 540.8 

Accuracy improvement 1.31% 1.22% 2.55% 1.81% 2.65% 1.78% 

The results show that the highest accuracy improvement is related to case 5, a case in 

which negative values were replaced with the mean power value and the outliers were 

removed through the IF method. A comparison of the required search times to find the 

best combination of the hyperparameters in LSTM–grid and LSTM–Optuna proves the 

faster performance of the proposed method, as it spends from 13.79% to 20.59% less time 

adjusting the model for the most accurate prediction (Table 8). 

Table 8. A comparison of the required tuning time of the LSTM–grid search and LSTM–Optuna 

methods. 

Predictive Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

LSTM tuned by grid search 680 660 290 396 380 340 

LSTM optimised by Optuna 540 530 250 340 320 280 

Spent time improvement 20.59% 19.70% 13.79% 14.14% 15.79% 17.65% 

4. Conclusions 

This study addresses issues regarding inaccurate wind power prediction using ML 

approaches. As discussed in the reviewed literature, most previous research applied ML 

without advanced model optimisation. At the same time, in this paper, a novel concept of 

Optuna–LSTM is reported to expedite the process of selecting the hyperparameters and 

tuning the wind power forecasting models. This model not only reduces the time com-

plexity of creating reliable models, but also improves the accuracy of the predictions. 

To accurately evaluate the proposed model, SCADA data of an offshore wind turbine 

was preprocessed by eliminating its negative values and outliers to help find the best pre-

processing method. The performance of the proposed forecasting was demonstrated 

through comparisons with the persistence, ARIMA, and LSTM models, which were al-

ready tuned by grid search. This comparison proved the better performance of the pro-

posed model, with a range up to 7.89, 5.9, and 2.65 percent compared to the persistence 

and conventional grid-search-tuned ARIMA and LSTM models. 

This study also highlights the importance of eliminating negative values in the power 

recordings. The results of this study confirmed that replacing the negative values with the 

average power value has the most positive effect on the forecasting accuracy. In addition, 

comparisons between several data cases showed the significant impact of the outlier treat-

ment methods on the forecasting performance. The results proved that removing the out-

liers by the isolation forest method improves the forecast accuracy compared to the elliptic 

envelope and OCSVM methods. This novel forecasting method combining the capacity of 

the LSTM model in the prediction of nonlinearities and the optimisation tool for better 

tuning the hyperparameters can be used for different time-series-based predictions. 
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Nomenclature 

Latin symbols  

𝑏𝑖, 𝑏𝑜 , 𝑏𝑓  LSTM model biases 

d degree of ARIMA differencing 

𝑓𝑡 LSTM forget gate 

ℎ𝑡 LSTM overall output 

𝑖𝑡 LSTM input gate 

𝑜𝑡 LSTM output gate 

p order of autoregressive 

𝑃𝑡 measured wind power at the time t 

𝑃̂𝑡+𝑘/𝑡  predicted wind power for the future time k 

q order of moving average model 

𝑈𝑖, 𝑈𝑜 , 𝑈𝑓 LSTM assigned weights 

𝑊𝑖 , 𝑊𝑜, 𝑊𝑓 LSTM assigned weights 

ℎ𝑡−1 cell state vector at time step t − 1 

𝑥𝑡 neuron input at time step t 

𝑋𝑡 forecasted wind power 

Greek symbols  

𝜎𝑙 activation function 

𝜎𝑠 activation function 

𝜙𝑡 ARIMA model coefficient 

𝜃𝑡 ARIMA model coefficient 

Abbreviation  

ACF autocorrelation function 

ADF augmented Dickey–Fuller 

ANN artificial neural network 

AR  auto-regressive 

ARMA  Auto-Regressive Moving Average Model 

ARIMA Auto-Regressive Integrated Moving Average 

ARX Auto-Regressive with Exogenous variable 

BP back propagation 

BPNN back propagation neural network 

CEC constant error carousel 

DBN deep belief network 

DGF double Gaussian function 

EE elliptic envelope 

FFNN feed-forward neural network 

IF isolation forest 

LDT Levenmouth Demonstration Turbine 

LSTM long short-term memory 

MA moving average 

MAE mean absolute error 

MSE mean square error 

NN neural network 

NWP numerical weather prediction 

ORE offshore renewable energy 
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PACF partial autocorrelation function 

RBF radial basis function 

RMSE root mean square error 

RNN recurrent neural network 

SCADA Supervisory Control and Data Acquisition 
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