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Deterministic creation, pinning, and manipulation of quantized vortices
in a Bose-Einstein condensate
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We experimentally and numerically demonstrate deterministic creation and manipulation of a pair of oppositely
charged singly quantized vortices in a highly oblate Bose-Einstein condensate (BEC). Two identical blue-detuned,
focused Gaussian laser beams that pierce the BEC serve as repulsive obstacles for the superfluid atomic gas; by
controlling the positions of the beams within the plane of the BEC, superfluid flow is deterministically established
around each beam such that two vortices of opposite circulation are generated by the motion of the beams, with
each vortex pinned to the in situ position of a laser beam. We study the vortex creation process, and show that the
vortices can be moved about within the BEC by translating the positions of the laser beams. This technique can
serve as a building block in future experimental techniques to create, on-demand, deterministic arrangements of
few or many vortices within a BEC for precise studies of vortex dynamics and vortex interactions.
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I. INTRODUCTION

Quantized vortices are central features of macroscopic
quantum coherent phenomena [1-4], and serve as robust
indicators of the dynamics of quantum fluids. Through the
development of progressively better experimental techniques
for controlling and observing the motion of vortices in these
systems, new possibilities open up to better understand the
physics of vortices in a quantum fluid. In turn, new techniques
for controlling the states and properties of quantum fluids
may soon follow. For example, in type-II superconductors
immersed in a strong magnetic field, the motion of magnetic
flux vortices is largely responsible for energy dissipation
and limiting the temperatures at which superconductivity in
these materials occurs [3]; by pinning or otherwise arresting
the motion of vortices, superconductivity may persist at
higher temperatures and magnetic fields than if the vortices
were free to move. New research on the parameters that
influence vortex motion may thus help extend the temperature
and magnetic field ranges of such superconductors [5]. In
superfluid helium, vortex-vortex interactions and Kelvin waves
on vortex lines also dissipate energy; new methods to measure
and better understand the dynamics of vortices in a superfluid
might shed new information on quantum turbulence energy
dissipation mechanisms in these systems [6]. Similarly, in
two-dimensional (2D) quantum turbulence in highly oblate
Bose-Einstein condensates (BECs) [7,8], vortex motion is a
key indicator of the hydrodynamic state of the BEC; studies
of vortices and their motion in these systems may aid in the
development of a deeper understanding of 2D quantum turbu-
lence [9-11]. To better understand these and other quantum
fluid phenomena, it is essential to construct a detailed un-
derstanding of vortices, their dynamics, and their interactions
under a wide variety of conditions and in different systems.
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Dilute-gas BECs are well suited to experimental, theoreti-
cal, and numerical studies of vortices, and to direct quantitative
comparison between experimental and numerical results that
enable rapid development of our understanding of vortices
and superfluidity in BECs. With the publication of over 100
articles to date covering experimental work with vortices since
1999, the experimental techniques available for creating and
studying vortices in BECs are by now numerous and widely
varied [12,13]. In most of these studies, the specific positions
of each vortex within the BEC were not of primary concern,
and vortex creation was not deterministic at the single-vortex
level. Nevertheless, deterministic vortex creation has indeed
been demonstrated in a few studies. These experiments focused
on creation or pinning of a singly or multiply quantized
vortex near the center of a BEC, or the establishment of a
persistent current about a repulsive laser-beam obstacle within
the BEC [14-26]. Vortices in BECs are also large enough to
be detected optically, either with in situ techniques involving
multicomponent BECs [14] or single-component BECs [27],
or most commonly with a now-standard method of imaging the
BEC after a short period of ballistic expansion [28]. Various
techniques enable the dynamics of vortices to be measured,
either in real-time [29,30] or after deterministic vortex-dipole
nucleation [31] for single-component BECs, or with in situ
imaging for multicomponent BECs [14]. Vortex dynamics
and pinning are also strongly affected by the presence of
time-dependent potential barriers [32], and even arrays of
vortices can be pinned in a rotating frame by laser beams [33].

However, despite such a proliferation of experiments with
vortices in BECs, there are still no published experimental
techniques that have demonstrated the flexibility of construct-
ing arbitrary vortex configurations in a BEC, such that the
location, vorticity, and circulation direction for each individual
vortex can be prescribed deterministically. Such a technique
would be an important component of precision studies of
vortex dynamics and interactions, and in manipulating and
studying states of a quantum fluid. Especially under conditions
where existing single-shot imaging techniques are used,
the ability to specify vortex distributions on-demand would
open up new possibilities for studying vortex dynamics and
interactions. To address the challenge of developing such
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a technique, we present here a method of deterministically
generating and manipulating two singly quantized vortices of
opposite circulation in a highly oblate BEC, showing results of
an experimental study and numerical simulations. We expect
that this technique is scalable well beyond two vortices, and
in principle may be used to create designer distributions of
many vortices; this possibility is numerically explored in a
companion article [34].

Below, we first present the conceptual foundation for our
technique, followed by a description of our experimental setup
and the beam parameters used in our study. To illustrate the
vortex creation process described above, we then show results
of numerical simulations of the 2D Gross-Pitaevskii equation
for conditions closely approximating those of our experiment.
Finally, we discuss various aspects of the manipulation of
vortices within the BEC.

II. CONCEPT

Our technique generally proceeds as follows. We begin with
two blue-detuned laser beams that pierce a stationary BEC
at positions that can be controlled electronically. The beams
are initially colocated, then simultaneously and at a constant
speed move together across the BEC, say in the x direction,
while also moving slightly apart in the y direction. As the
beams move apart in the y direction, there is eventually a
point in their trajectories at which a channel opens up between
the beams, and atomic superfluid can then flow between the
beams. The beams come to rest at positions for which the width
of this channel is of the same scale as the width of one of the
beams, although the precise final positions and separations of
the beams are not critical parameters.

The laser beams serve as repulsive obstacles for the atomic
superfluid, pushing fluid out of their way as they move.
Fluid simultaneously fills the space vacated by the beams
during their motion. The speed of the beams is well below
the critical velocity for vortex dipole shedding, enabling the
beam motion to establish dipolar fluid flow with minimal
additional excitation of the BEC. When the beams separate
enough that a channel opens up between them, the fluid
behind the beams merges with the fluid ahead of the beams.
In order for net circulation to be created around each beam,
the fluid flow velocity around each beam and in the channel
between the beams must be high enough to correspond to
a phase winding of nominally 2. For a suitable range of
beam trajectory parameters, such a condition can be readily
achieved, and the now-continuous fluid flow around each
separate beam corresponds to a net winding of the BEC’s
quantum phase of £25 around each beam. In other words, at
the moment of beam separation and channel formation, two
opposite-circulation regions of persistent superfluid flow are
trapped around each laser beam. Equivalently, this process can
be seen as the simultaneous nucleation and pinning of two
oppositely charged vortices, with one vortex pinned to each
beam. Subsequent motion of the laser beams can transport
vortices to other locations within the BEC, reminiscent of the
use of lasers as optical tweezers for material particles, and
allowing for deterministic vortex creation and location. To
emphasize (i) the need to use laser beam pairs in our method,
(ii) the two different linear trajectories that the beams take
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when moving through the BEC (described in detail below), and
(iii) the vortex pinning and manipulation capabilities provided
by the beams, we henceforth refer to this dual-vortex creation
and manipulation method as the “chopsticks” technique.

III. EXPERIMENT

We create BECs of ®’Rb in the 528, |F = 1, mp = —1)
state in a highly oblate harmonic trap. The trapping potential is
a combination of a magnetic time-averaged orbiting potential
(TOP) magnetic trap [35] with an axis of symmetry in
the vertical (z) direction, and a red-detuned 1090-nm laser
beam that propagates horizontally along the x direction and
is tightly focused and provides tight confinement in the z
direction. The harmonic trapping frequencies of this hybrid
trap are (w, /27,w,/2m) = (8,90) Hz in the radial and vertical
directions, respectively. With no laser beams present other than
the 1090-nm laser beam used for the hybrid trap, our BECs
have Thomas-Fermi radii of R, ~ 50 um in the radial (x,y)
plane, corresponding to condensates of about N. ~ 1.7x10°
atoms and a chemical potential of g ~ 8 hw,. Further details
of our BEC creation methods can be found in Refs. [7,31].

The primary tool used in the chopsticks technique is a pair
of blue-detuned focused laser beams propagating along the z
direction. The beams serve as repulsive barriers that penetrate
the BEC and whose positions can be translated within the plane
of the BEC. Figure 1 shows a schematic diagram of the optical
system that is used to control the motion of these two beams;
a detailed description of the optical system is provided in the
figure caption. The chopstick beams are initially colocated at
position (x;, ¥;) = (—10, 0) um relative to the center of the
trap. Prior to the final stage of evaporative cooling that creates
a BEC, each beam is turned on to full power, corresponding
to a peak repulsive potential of ~0.811. By creating the BEC
after the beams are in place, we minimize excitations of the
BEC that would otherwise result from turning on the beams
after creating a BEC, and also damp out BEC sloshing in the
harmonic trap that can otherwise decrease the effectiveness
and repeatability of vortex creation. Figure 2(a) shows an in
situ image of the BEC with the two chopstick beams turned
on at full power at their initial locations.

To generate two vortices of opposite charge pinned to the
chopstick beams, we simultaneously move both beams along
linear trajectories at a constant speed for a sweep time of
t; = 0.7 s. Beam B1, in the upper half-plane, moves to a final
position of (xy, ys) = (13,15) um. Beam B2, in the lower
half-plane, moves to a final position (x ¢, yz) = (13, —15) um.
An in situ image of the BEC after the beams have been moved
is given in Fig. 2(b). The beams travel distances of ~27 um
at a speed of ~34 pm/s, much less than the maximum speed
of sound for our BECs of ¢y ~ 1700 um/s, and still much
less than ~c( /10, the speed required to nucleate and shed a
vortex dipole for comparable beam and BEC parameters [31].
Once the beams reach their final positions, their positions and
powers are held constant for times up to 2.5 s, after which their
optical powers are linearly decreased to zero in 0.25 s. This
rate at which the beams are linearly ramped off was determined
experimentally, such that it is fast enough to ensure that the
vortices would not move significantly far away from the beam
positions as the beam power is decreased, but slow enough such
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FIG. 1. (a) Diagram of the optical system that is used to translate
two blue-detuned laser beams through the BEC. A 660-nm laser
beam is brought into the optical system with a polarization-preserving
single-mode optical fiber. The beam is collimated by lens L1 and
then split into two paths by a polarizing beamsplitter cube (PBSC);
the optical powers of the two beams are balanced using a half-wave
plate (HWP) placed before the first PBSC. Each beam reflects off
of two mirrors (M1la and M1b, or M2a and M2b). Each mirror has a
piezoelectric transducer (PZT) stack attached to an adjustment screw;
the two PZTs attached to the mirrors of a given beam path control
the tilts of the two mirrors about orthogonal axes, enabling the two
laser beams to be remotely steered. After passing through additional
HWPs, allowing for further optical power adjustment, the two beams
are recombined with another PBSC. Lenses L2 and L3 comprise a
6x minification system in order to increase the angular deflection of
the chopstick beams, prior to deflection of the beams by mirror M3
and focusing the beams at the BEC by lens L4. In the experiments
reported here, the beams have 1/¢? radii at the BEC of 6. ~ 19 um.
During the course of an experimental run, the two laser beams move
along paths P1 and P2 in the (x,y) plane, as represented in the inset
diagram. (b) An illustration of the BEC (large gray disk) lying in the
(x,y) plane. The laser beams are initially colocated and pierce the
BEC (left dark-gray disk) and move along paths P1 and P2, which
subtend an angle o ~ 66°. The beams end up in different locations
(upper and lower right dark-gray disks). The size of the laser beams,
relative to the BEC Thomas-Fermi radius, and the initial and final
locations of the laser beams are illustrated to scale.

that the BEC is not significantly excited by a rapid change in
the potential well profile. The BEC is then released from the
trap and allowed to ballistically expand in order to look for the
presence and positions of vortices using standard absorption
imaging techniques.

Figure 2(c) shows a representative image in which two
vortices were observed after applying the chopsticks proce-
dure, with each vortex being located near the final position of
one of the laser beams. In one test of the repeatability of the
chopsticks procedure, we created 30 BECs and subjected each
to the procedure described above. In 26 (86%) of the cases we
found two vortices, with each located at a position that closely
matches the final beam position, relative to the BEC center.
In the remaining cases, either one vortex was observed in the
BEC, or an extra unpinned vortex was observed in addition
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FIG. 2. (a) A 144-um-square in situ image of the BEC
taken along the vertical (z) axis, showing the profile of the
~100-um-diameter BEC in the (x,y) image plane. The hole to
the left of center is created by the two colocated chopstick beams
turned on at full power prior to moving them across the BEC. (b)
Same as (a), but with the chopstick beams at their final locations
at the ends of paths P1 and P2. The intensity minima due to the
chopstick beams are ~31 um apart in this image, slightly larger
than the separation obtained when measuring the beam positions
directly. (c) A 205-um-square absorption image of a BEC at the end
of the chopsticks procedure, after the chopstick beams were ramped
off at their final positions and the BEC was released from the trap
and allowed to ballistically expand a factor of ~1.78 in the radial
direction. Vortex cores appear as the two small dark holes in the
density distribution, and are ~65 pm apart in this image, compared
with an expected separation of ~55 um given the final positions of
the chopstick beams and the expansion factor of the BEC.

to the two vortices that were located at positions matching
those of the chopstick beams. A likely explanation for these
cases is the presence of spontaneously formed vortices [36].
Such vortices can alter the background flow profile of the BEC
such that the necessary conditions for vortex nucleation and
pinning parameters are not achieved, or might annihilate with
one of the vortices created by the chopsticks technique, or
could remain present throughout the chopsticks mechanism of
vortex creation and be visible as a third vortex.

IV. NUMERICAL SIMULATIONS

To better understand the mechanisms at work in the
chopsticks technique, we turn to numerical simulations of
the Gross-Pitaevskii equation (GPE) [37]. We first assume
a three-dimensional wave function of the form

Wy = (x) " y ey e,

where the dynamics of the 2D macroscopic wave function
¥ (x,y,t) are assumed to closely approximate the dynamics of
our actual three-dimensional (3D) system. This approximation
is appropriate for our highly oblate system, particularly
because for our conditions, vortices remain aligned along
the z direction without undergoing significant tilting or
bending [38]. The constant /, is an effective length scale for
the axial thickness of our BEC, described below, and is not
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necessarily equal to the harmonic oscillator length for the z
direction.

With this 2D approximation, the 3D GPE with a dimension-
less phenomenological damping constant y can be reduced to

2

. d 1)
(i —Yh—¥ = ===V ¥ + Ve + Ve + gon|V*¥,
ot 2m

where Vi, = 1m@>(x* + y?) is the potential energy of a 2D
harmonic trap of frequency @,, and m is the mass of 87Rb.

The potential due to the chopstick beams is given by

2
2
Vc(xvyvt) = UOZCXP{_E[(XJ) - (-xisyi)j - (stvy)jt]z}v

j=1

where Uy = 0.8 is the maximum repulsive potential energy
of each beam during the sweep, (x;,y;); is the initial position
of beam j, (vy, vy); is the sweep velocity vector for beam
j, and o, =19 um is the radius of each chopstick beam.
In order to mimic the effects of nonzero temperature and
investigate varying degrees of damping provided by a thermal
cloud of atoms, a wide range of values for y was examined.
For all simulations reported here [39,40], y was set to 0.003.
Although this value is at the upper end of experimentally
realistic damping parameters [39,41], we find no significant
dependence of our results on the specific choice of y for values
in the range from y = 0to y = 0.003.
4nh’a

We use a 2D interaction parameter g,p = -

a is the atomic s-wave scattering length for our atoms.
For the 2D GPE simulations, we use an effective length
parameter [, = 0.53 pm, an effective radial trap frequency of
&, = 0.84 w,, where w, /2mr = 8 Hz as in the experiment, and
an effective number of atoms equal to 3.3x10°. The length
parameter [, is about half of the harmonic oscillator length
in the axial direction, and is about 100 times smaller than
the radial Thomas-Fermi radius. These numbers are chosen
such that when the BEC is in its ground state without the
chopstick beams present, the density at the center of the BEC
in the 2D approximation matches that of a 3D Thomas-Fermi
approximation for the actual experimental parameters, and the
2D Thomas-Fermi radius of ¥ (x,y) is also the same as that of
the 3D Thomas-Fermi approximation. This approach enables
us to compare the beam velocities of the simulation to a speed
of sound that is the same as calculated for our 3D experimental
parameters in the Thomas-Fermi limit, ¢y = /po/m, and
permits direct comparison of beam radii and positions in the
simulations with the equivalent parameters of the experiment.

Using a split-step routine, we simulate the dynamics of
Y(x,y,t) on a 120-um-square area using a 512x512 grid,
giving a grid point spacing of 0.23 um that is comparable
to the bulk healing length of ~0.28 um calculated for our
experimental parameters. After finding the ground state of the
system in the presence of the static chopstick beams at position
(xi,yi)1 = (xi,y1)2 = (—10,0) um, the beams are swept to
their final positions (13, +15) um in a sweep time ¢, = 0.7 s,
as in the experiment. Finally, with the beams remaining at
their final positions and at their full powers, we propagate the
simulation for an additional hold time of 0.5 s. The results of
this simulation are shown in Fig. 3.

PHYSICAL REVIEW A 93, 023603 (2016)

V/COO.36

FIG. 3. Results of numerical simulations for parameters de-
scribed in the text. Each row represents the state of the system at a
time 7 /¢, during the sweep, indicated in the left column. The final row
shows the state of the system at a hold time of 0.5 s after the end of the
sweep, during which time the chopstick beams’ positions and powers
remain unchanged from their final values. Columns one through three
show (respectively) 120-um-square regions of the density profile n
relative to the maximum number density n,,.y, the phase profile ¢,
and the velocity profile relative to the maximum speed of sound
co = «/1o/m for the ground-state BEC without chopstick beams
present. Column four shows a magnified view of the velocity profile,
a 61-um-square region centered on the point midway between the
chopstick beams. Arrows indicate local fluid flow velocity vectors,
rescaled for each time step; arrows are not shown for 7/¢, = 0, for
which there is negligible flow. In all columns, points for which
n/nmax < 0.0005 are assigned the color black; these regions within
the BEC are larger at early times when the two beams are colocated
and their repulsive potentials add together. The colored circles in the
second column are described in the caption of Fig. 4.
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FIG. 4. For each time step ¢ /¢, represented in Fig. 3, the quantum
phase ¢ around the path denoted by the colored circles in the phase
profiles of Fig. 3 is shown here as a function of the angle 6 around the
circle. The point & = 0 is taken to be at the midpoint between the two
laser beams, and 0 increases in a clockwise direction, as indicated by
the inset figure showing the phase profile at 7 /¢, = 1.0. The plots of ¢
vs 6 in this figure are labeled with the values ¢ /¢, of the corresponding
rows of Fig. 3, and the colors of the corresponding rings indicate the
points for which ¢ is shown. At points where the density is negligible
(i.e., for black-colored values in the phase profiles of Fig. 3), values
for ¢ are not shown. This plot shows the gradual establishment of a
clockwise 27 phase winding around the lower laser beam. At time
t/t; = 0.7 (green line), immediately before the beams separate, a
phase winding close to 27 has been established. At /¢, = 0.8 (pink
line), just after the beams separate, a continuous loop of fluid is seen
to exist around each beam (see first column Fig. 3), with a phase
winding of 27 around each beam. For ease of comparison of the
phase at different times #/1,, each plot of ¢ vs 6 shown here has a
constant value added such that ¢ is continuous from 6 = 0to 6 = 2x
and the minimum value of ¢ over this range is zero.

We see from the simulation results of Fig. 3 that when the
two beams start moving, fluid flow is induced in the BEC.
For example, at 7/t; = 0.3, the velocity profile shows the
highest fluid flow speeds at the sides of the moving barrier,
corresponding to the regions of the largest phase gradients
seen in the phase profile. As the chopstick beams eventually
separate, between ¢/t;, = 0.7 and ¢ /¢, = 0.8, a channel opens
up between the beams, allowing the atomic superfluid in the
regions in front of and behind the beams to merge. In order for
Y to be single-valued and continuous in a path around each
laser beam, the two merging regions of superfluid must adopt a
continuous phase profile in the channel between the two beams.
Whether or not the path around a given laser beam encloses
net circulation will depend upon how the regions merge and a
phase gradient is established [42]. As shown in Fig. 4, prior to
beam separation and fluid merging, there is a phase difference
of approximately 1.757 established between the regions in
the front and rear of beam travel; once the beams separate and
the front and trailing regions merge, the phase relaxes to an
azimuthal phase winding of 27r (—27) around beam B1 (B2),
indicating the presence of a positively (negatively) charged
vortex pinned by beam B1 (B2).

The phase winding around each beam at the end of the
chopsticks process depends on the fluid flow speed induced
by beam motion. If, immediately prior to merging, a phase
difference precisely equal to 7 has gradually built up between
these two regions (due to, for instance, slower beam velocities
than used in our experiment), the system will support the
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FIG. 5. Each column shows 61-um-square regions of the phase
profile ¢(x,y) centered on the midpoint between the chopstick beams
for different times ¢/, indicated above each column. Sweep times ¢,
are indicated at the left of each row. The display colors are mapped
to a range of 0 to 27, as in the second column of Fig. 3. Except for
the variation of 7, simulation parameters are identical in all cases
to those described in the text. For 0.6 s < t, < 1.2 s, two vortices
are generated and left pinned to the beams, an indication of the
robustness of the chopsticks technique. For 7, > 1.2 s, an insufficient
phase gradient is established around each beam, and vortices are not
created. For#, < 0.6, too large of a phase gradient is established, and
two or more vortices are nucleated for each beam. For the conditions
studied, these additional vortices did not remain pinned to the laser
beams, as can be seen from the singularities in the phase profiles in
the last two rows.

temporary existence of a dark soliton between the two
beams [43]. If the phase difference between the front and
trailing regions is less than s, as is the case in Fig. 5 for
t, = 1.4 s, no vortices will be created or pinned. If that phase
difference is somewhat greater than & and less than 3, the
system will relax to one with a positively charged vortex pinned
to beam B1, and a negatively charged vortex pinned to beam
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B2, as seen in rows 2 through 4 of Fig. 5. Numerically, the
presence of a small but nonzero damping constant y aids
this relaxation process, but is not essential to the creation
of vortices or their pinning at a laser beam. For even larger
phase differences, induced by faster sweeps, larger amounts
of vorticity are created, but the vortices are not stably pinned
by the laser beams for the conditions studied. The numerical
results shown in Fig. 5 demonstrate the robustness of the
chopsticks method to variations in the sweep velocity, relative
to an experimental uncertainty of ~15% when choosing a
sweep velocity. In other words, based on our numerical study,
if we choose a sweep time in the middle of the range of the
times reported above (¢, ~ 0.9 s), we expect vortex creation
results to be relatively insensitive to shot-to-shot fluctuations
of the positions of the beams, which are less than +2 pm in
any direction from the intended location. The experimental
uncertainty in sweep time is negligible; hence sweep velocity
uncertainty is dominated by beam positioning uncertainty.
Assuming #; ~ 0.9 s and a beam travel distance of 27 &= 4 pm,
the corresponding range of sweep velocities is then 29 um/s
to 39 um/s. By comparison, the range of sweep velocities
that are found to create and pin vortices in the simulations
is from 23 pum/s to 45 um/s, and we therefore expect
the chopsticks technique to be relatively insensitive to beam
position fluctuations, or to the precise selection of other beam
trajectory parameters.

V. MANIPULATING VORTICES

As an experimental demonstration of deterministic manip-
ulation of vortices, after generating and pinning two vortices
and then holding the beam positions and powers fixed for 0.5 s,
one of the beams was translated back to its original position
over areturn time of ¢, = 1.0 s while the other beam remained
stationary. The beams were then held in these new positions
for an additional time of 1.0 s. The insets to Fig. 6 show
in situ images of the BEC with one of the two chopstick beams
returned to its initial position after completion of the chopsticks
procedure. After ramping off the beams in 0.25 s, and releasing
the BEC from the trap, two vortices were observed in the BEC
at locations that correspond to the new final positions of the
chopstick beams, as shown in the main images of Fig. 6.

The chopstick beams can also be recombined as a check
that the equal and opposite circulations can be canceled
out on-demand. We experimentally examined two different
methods of returning the beams. First we examined sequential
beam motion, with one beam returning to the initial position
(xi, yi) = (—10,0) umin 1.0 s, followed by a 0.5 s hold during
which both beams were stationary, followed by the second
beam returning to the initial positionin 1.0 s. We also examined
simultaneous beam motion, where both beams returned to
the initial location in 1.0 s. As expected, after returning both
chopstick beams to their original position, either sequentially
or simultaneously, vortices were repeatedly absent from the
BEC. From our experimental data, however, it is not clear
whether vortex-antivortex annihilation occured within the bulk
BEC after vortices are pulled from the chopstick beams, or if
the vortices remained pinned to the lasers during the circulation
cancellation process.
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FIG. 6. Experimental demonstration of vortex position manip-
ulation. After creating and pinning two vortices, and waiting an
additional 0.5 s, one of the chopstick beams was returned to its
initial position in 1.0 s while the other beam remained in place.
The large images show 205-pum-square regions taken after beam
ramp-down and BEC ballistic expansion. Insets show 144-pm-square
in situ images taken prior to beam ramp-down, but after one beam has
returned to its initial position. For the left pair of images, the upper
beam (B1) was returned to its initial position, as indicated by the
regions of depleted density seen in the inset, and the corresponding
position of the upper vortex in the image of the expanded BEC. For
the right image and inset, the lower beam (B2) was returned to its
initial position, as also seen in the in situ image and the positions of
the vortices in the expansion image.

To further examine dynamics of circulation cancellation, we
performed a numerical simulation of the simultaneous return
of the beams to the initial position in a return time of #, = 1.0
s. From the simulation, shown in the top row of Fig. 7, we see
that the vortices are first ripped away from the chopstick beams
within a time of /¢, = 0.11, where ¢ = 0 is the beginning of
the return sweep. Additional vortices are also seen around each
beam’s position, but none of these are pinned by the beams.
Eventually all vortices annihilate one another, and the system
is left free of any fluid circulation.

We interpret this process as arising from the laser beams
now moving against the background fluid flow initiated
by the motion of the chopstick beams, i.e., the fluid flow
corresponding to the vortices now pinned to the beams.
At a time t/t, = 0.1 during the beam return, the beams
are approximately 13.5 um apart. If vortices of opposite
circulation are pinned to the beams, there is a background flow
speed of ~52 um/s at each beam due to the presence of the
vortex that is pinned to the opposite beam. If the beams return
to their initial position over distances of 27 um in 1.0 s, they
increase the speed of a beam relative to the background flow
speed by nearly 27 um/s. The presence of a vortex pinned to
a beam further increases the relative flow speed at the edge of
each beam that is closest to the opposite beam (i.e., at the £y
boundaries of the channel between the beams). Apparently,
these conditions are sufficient to rip vortices off of the beams,
and soon thereafter, to cause the nucleation of a vortex dipole
at each beam, with all vortices then annihilating pairwise.

In a second numerical study of the return of both beams
to the initial locations, we again performed the simulation
described above, but first conjugated the BEC phase at the end
of the chopsticks procedure. Phase conjugation is equivalent
to reversing the charge of each vortex, or to slowly exchanging
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FIG. 7. Numerical results of 2D GPE simulations showing the
return of both chopstick beams to their initial positions over a
return time 7,, for beam and BEC parameters that are the same as
those of Fig. 3. Phase profiles are shown for 61-um-square regions
centered on the midpoint between the chopstick beams, with display
conditions identical to those of the second column of Fig. 3. The
top row shows the return of the beams after a 0.5 s hold time,
with 7, = 1.0 s. The beams are moving from right to left, and are
in the process of merging with one another. At time #/¢, = 0.07,
immediately after the return process starts (top row, leftmost image),
the vortices are still colocated with each laser beam. Soon afterwards,
at ¢/t, = 0.11, the vortices are clearly no longer pinned (top row,
second column). Additional vortices are subsequently nucleated
(top row, third column) and annihilated, leaving a state with no
circulation by 7/t, = 0.38 (top row, fourth column). For the same
return sweep, but with a conjugation of the quantum phase (second
row, also see text), the vortices remain pinned to the beams until the
beams recombine. The return process that follows phase conjugation
produces conditions that are nearly identical (aside from the phase
conjugation) to the initial vortex generation stage, shown in the
third row in reverse-time order for ease of comparison, for beam
separations identical to those of the first two rows.

the positions of the two beams by rotating them around their
center point, which was also examined numerically and is
experimentally feasible. After phase conjugation, the beams
were returned to their initial positions in 1.0 s. Because in this
case the beams were moving in roughly the same direction
as the background flow, the speed of the beams relative to the
background flow was much less than the ~52 pum/s calculated
for the case without phase conjugation. The vortices remained
trapped until the opposite circulations canceled each other
when the beams recombined, as shown in the second row of
Fig. 7. Furthermore, as the third row of Fig. 7 shows, the
phase profiles for the times at which the chopstick beams
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have the equivalent spatial separation during the initial forward
chopsticks sweep are remarkably similar to the return sweep
after the phase conjugation step. We therefore conclude that
while the chopsticks procedure cannot be simply reversed
in order to return the system to the initial state, the process
does demonstrate reversibility when vortex charges are also
first reversed. This charge-time symmetry is similar to the
hysteresis recently reported when spinning up or slowing
down the persistent superfluid current in a toroidally trapped
BEC [44].

VI. CONCLUSIONS AND OUTLOOK

The primary results of this paper are the proof-of-principle
experimental and numerical demonstrations of a deterministic
method of creating and manipulating, on-demand, two vortices
of opposite circulation in a BEC. There are numerous parame-
ters involved in determining the range of utility of this method,
and here we have begun to explore some of those parameters.
Our demonstrations are a step towards the engineering of
arbitrary vortex distributions in a BEC, and also open up a
pathway to precision studies of the interactions of vortices with
each other, with sound, with potential barriers and obstacles
in a BEC, and as a function of other parameters such as trap
geometry and temperature. To more fully understand how this
technique can be best utilized for studies of vortex dynamics
and vortex interactions, additional experimental and numerical
research is required, particularly regarding an assessment of
the motion of the vortices once the chopstick beams are ramped
off, and the ranges of beam powers, sizes, and sweep speed
that can be successfully used in the chopsticks process.

The goal of creating specified distributions of many vor-
tices, on-demand, remains an experimental challenge, but one
that is within reach. From numerical explorations, it appears
possible to simultaneously utilize multiple pairs of chopstick
beams, or to use just two chopstick beams with stationary
pinning sites in successive vortex creation stages. Additional
beam manipulation procedures that remove vortices from
a BEC can also be explored in order to create charge-
imbalanced populations of vortices. These aspects of the
chopsticks technique are numerically explored and presented
in a companion article [34].
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