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Abstract—Wire electrical discharge machining (wire-EDM) 
process is having immense potential over conventional 
machining methods due to its non-contact nature of material 
removal. However, frequent and unanticipated machining 
failures like wire breakages negatively affect the 
productivity, sustainability and efficiency of the process. In 
this context, there is a wide scope to improve the process 
efficiency through online condition monitoring. A prominent 
aspect of EDM condition monitoring is discharge pulse 
discrimination. The threshold based methods which are 
currently being used has low accuracy and is reliant on 
operator’s experience. In this study, a machine learning (ML) 
based pulse classification based on the extracted discharge 
characteristics is proposed. The features are extracted from 
the raw voltage and current senor signals collected from the 
machining zone during the wire EDM operation. Among the 
various ML models, Artificial Neural Network (ANN) 
classifier is found to have the maximum prediction accuracy 
of 98 %. Also, the effects of different discharge pulses on the 
productivity, surface finish and machining failures are 
investigated. The short circuit and arc discharges are found 
to cause wire breakage failure if they predominate the pulse 
cycle by more than 80 %. Also, short and arc sparks increase 
the surface roughness significantly, by up to 70 %.  

Keywords- Wire EDM; Condition Monitoring; Signal 
Processing; Pulse Classification; Machine Learning; ANN 

I.  INTRODUCTION  
Wire-EDM is a non-traditional machining process 

which uses controlled and repeated spark erosions for 
material removal. Due to the non-contact nature of material 
removal, the hardness of the material doesn’t restrict the 
machinability during wire EDM process [1, 2]. Thus, wire-
EDM has found wide applications in machining ‘difficult-
to-cut’ alloys like Ni based superalloys and Ti-alloys. Even 
though the process is having these aforementioned merits, 
wide industrial adoption of the process is still lagging due 
to the lesser efficiency and sustainability of the process 
caused by frequent machining failures. There is a need for 
thorough investigation and eradication of machining 
failures like wire breakages and spark absence through 
pulse cycle analysis and online condition monitoring to 
make the process more efficient, robust and dependable [3, 
4]. The principal challenge for condition monitoring of wire 
EDM process is the stochastic nature of the spark 
discharges. Due to the ever varying nature of the inter 
electrode gap (IEG), there is often no consistent pattern to 
the sparks which makes the process difficult to control [5]. 
The primary task to develop an online process control 
system will thus be to investigate, identify, and classify the 
discharge pulses in a wire EDM pulse cycle. If a robust 

model is designed to automate the pulse categorization, it 
will be the right step forward for real-time monitoring and 
process control of wire-EDM. This study, thus focuses on 
developing a machine learning (ML) model to classify the 
discharge pulses and further investigate its effects on the 
machining failures, part quality and productivity.  

The research conducted thus far on pulse classification 
has been threshold based models. Liao and Woo [6] used 
voltage and current signals to classify the wire EDM 
discharge pulses, and then investigated the machining 
instabilities based on the type of pulses. Later, for wire 
electrical discharge turning, Janardhan and Samuel [7] 
proposed a strategy to identify short, and arc discharges by 
a rule based algorithm. The pulses were classified based on 
experimentally found threshold values for current and 
voltage signals. Klocke et al. [8] has developed a model to 
predict surface quality based on voltage pulses. However, 
this model has only considered voltage signals and thus the 
functionality is limited. Yan and Hsieh [9] performed 
hardware based pulse classification using a signal processor 
card, which however adds to the cost and complexity of the 
classifier. Subsequently, a two stage pulse classification 
using random forest regression and support vector 
mechanism was proposed by Zhang et al. [10]. Various 
thresholding techniques to extract different discharge 
characteristics were proposed by Caggiano et al. [11]. 

The limitations with such rule-based or threshold-based 
pulse classification models are that, the developer should 
have deep knowledge on the physics of the process to 
define the rules/thresholds. And since the pulse generator 
and machining parameter values and operating ranges 
varies from one EDM manufacturer to another, it is difficult 
to set a generic ruleset. These thresholds would require 
machine specific recalibration to work with a separate 
machine. Another shortcoming is that such models aren’t 
trainable - i.e., they don’t have the capability to ‘learn’ new 
patters and improve over the time with new training data. 
So, the models discussed thus far cannot be used a generic 
outline for the development of a pulse classification system 
for wire EDM.  

To minimize the limitations of the threshold based 
classification models proposed so far, a machine learning 
based classification model is proposed in this study. Here 
the classifier predicts the probability of each discharge 
spark, whether it is normal, short, arc, or open spark based 
on its discharge characteristics. With sufficient training 
data, the proposed methodology can be used for any wire 
EDM machine to classify the discharge pulses. Since the 
model automatically captures the distinguishable 
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characteristic features from the training data, there is no 
need to manually set up the thresholds / rules to perform the 
pulse classification. The predicted classes are investigated 
with respect to their effect on process failures, productivity 
and part quality. The automated pulse classification 
proposed in this study will enable the development of better 
real-time condition monitoring and process control systems 
in the future.  

II. MATERIALS AND METHODS 

A. Materials  
Workpiece material chosen is Inconel 718 due to its 

wide industrial applications in the areas of aerospace, oil 
and gas, and cryogenics. Zinc coated brass wire of 0.25 mm 
diameter is chosen as the wire electrode due to its better 
overall performance over other wire electrodes. 50 mm 
long straight cuts  are performed on a 10 mm thick 
workpiece for analyzing the pulse signals.  

B. Experimental Details 
Machining is carried out in an Electronica Ecocut wire 

EDM machine. Various machining situations are simulated 
by varying servo voltage, pulse on time and pulse off time 
as shown in TABLE 1. Hardware for signal acquisition 
includes a current sensor (Tektronix TCP 303-50 MHz 
bandwidth), a current signal amplifier (Tektronix TCP 
300), a differential probe (Tektronix P 5200A-50 MHz 
bandwidth) and an oscilloscope (Tektronix MDO 34-200 – 
Sampling rate/channel 2.5 GSa/S). Signal processing 
operations were carried out in MATLAB 2021a. The 
current and voltage signals acquired by the sensors are 
preprocessed to reduce the signal noises using a low pass 
filter. An appropriate pass band frequency of 5 x 10-10 π 
radians/sample is used for filtering.  

TABLE I.  WIRE EDM PROCESS PARAMETERS  

Parameters Values 

Wire diameter (mm)  0.25 
Wire feed rate, WF (m/min) 4, 8 
Discharge current, Ip (A) 10, 40 
Servo Voltage, SV (V) 25, 40, 55 

Pulse on time, TON (μs) 100, 110, 120 

Pulse off time, TOFF (μs) 35, 50, 65 
 

C.  Methodology  
The voltage and current discharge pulses undergoes 

several key characteristic variations during the wire EDM 
process. It is well documented that analyzing these pulse 
signals will aid in the analysis and prediction of machining 
failures like wire breakage and spark absence. The 
machining failures are related to the machining instabilities 
caused by the inefficient removal of debris from the spark 
gap. Once the pulses are classified, debris accumulation can 
be implicitly understood by monitoring the type of 
discharge pulses occurring between the electrodes.  

The features extracted from the raw voltage and current 
signals are discharge duration, ignition delay time, input 
current, and discharge voltage. Ignition delay time is the 
time taken for the dielectric fluid in the spark gap volume 

to ionize and break the dielectric barrier. Discharge 
duration is the overall time duration of the discharge current 
between the two electrodes. Discharge voltage is the 
instantaneous inter-electrode voltage during the discharge. 
The proposed methodology to classify the discharge pulses 
is given as follows:  

(a) Several experiments are conducted at normal and 
limiting EDM machining conditions to acquire the raw 
current and voltage signals. Limiting conditions includes 
the machining failure situations generated by a combination 
of higher discharge energy and inefficient flushing 
conditions (narrow spark gap, less pulse off time etc.). An 
extensive research have already been conducted on wire-
EDM failures by the research group [12–15].  

(b) The wire EDM discharge pulses are labelled based on 
their characteristic features (More about discharge pulses 
are further elaborated in the upcoming section). The 
labelled data points will constitute the training data for the 
ML model. Overall training dataset for this study contains 
1000 datapoints, i.e., 250 data points per class.   

(c) The inputs to the ANN model are discharge duration, 
ignition delay time, input current, and discharge voltage, 
plus its corresponding class label. The input dataset thus is 
of the size 1000 x 5. The ANN model is trained with 5-fold 
cross validation sampling strategy. Cross validation ensures 
better data utilization and generalization of the model. 
Appropriate ANN structure is to be chosen by varying the 
number of hidden layers and neurons/layer based on model 
performance. The model is then compared with other ML 
classification algorithms against its performance. Finally, 
the model performance is validated over unseen dataset 
containing 100 datapoints.  

(d) The final step is the investigation of the effect of 
discharge pulse types on machining performance and wire 
EDM failures.  

The overall pulse classification approach and 
experimental setup is given in FIGURE 1.  

FIGURE 1. (A) PULSE CLASSIFICATION APPROACH (B) EXPERIMENTAL 
SETUP 
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D. ANN Classification 
For complex manufacturing systems like wire EDM, 

prediction of events based on the available data can be an 
extremely difficult task. For such scenarios, supervised 
learning models like classifiers are usually recommended.  

FIGURE 2. TYPICAL DISCHARGE PULSE CYCLE IN WIRE-EDM  

Classification is an ML technique which predicts or 
identifies the group to which a data point(s) belongs to. 
Geometrically, the technique finds a decision boundary that 
separates a group of points from one another in space. 
Depending on the dimensions of the datapoints, the 
decision boundary can be a curve, surface, or hyper surface. 
When the datapoints are multidimensional and have higher 
order interaction, the classification becomes complex and 
demands high computational power. Among several 
classifier available, ANN classifier is widely regarded as 
the best in terms of its prediction accuracy, flexibility, 
generalization capability, and workability with noisy data. 

ANN uses a network of neurons in multiple layers to 
perform complex computational tasks. The weights and 
biases associated with the neuron connections can be tuned 
during the training phase, to iteratively improve the 
prediction accuracy of the model. The number of neurons 
in each layer, and the number of layers can be varied which 
adds to the modelling flexibility. A detailed description of 
ANN classification and its application in wire EDM 
response prediction is given in [16].   

III. TYPES OF DISCHARGE PULSES 
The typical pulse cycle for wire-EDM process contains 

several characteristic features as depicted in FIGURE 2. Once 
the voltage is applied across the electrodes, the current 
discharge ideally happens after a certain time duration. This 
time gap, called ignition delay time is utilized for the 
ionization of dielectric in the inter electrode volume. After 
the narrow discharge channel is ionized; the dielectric 
barrier is breached and a current discharge occurs between 
the electrodes. The pulse off time is utilized to flush away 
the debris to restore the dielectric property in the inter 
electrode gap before the upcoming spark cycle. Such 

repetitive sparks are called normal sparks which occurs 
when the machining is stable and the flushing is efficient.  

During unideal circumstances, the pulse cycle can be 
identified with other harmful types of sparks which are 
considered to be indicators of unstable machining. Those 
are discussed in the subsequent section. Overall, four 
different types of discharge sparks were identified from 
pulse train analysis.    

Wire EDM discharge pulses are predominantly of 4 
types.   

• Normal sparks (NS): These are the ideal discharges 
which happens after a sufficient ignition delay time. A 
predominance of normal sparks in a discharge cycle 
implies stable machining.   

• Arc sparks (AS): Arc discharges are higher energy 
discharges caused due to some percentage of debris 
accumulation in the spark gap due to inefficient 
flushing. The spark is characterized by negligible 
ignition delay time. 

• Short sparks (SS): Short circuit discharges (short 
sparks) are indicators of spark gap bridging due to 
debris accumulation. Such sparks occur without a 
voltage discharge peak. Predominance of short sparks 
in a pulse cycle is an extremely undesirable scenario 
which leads to wire breakages and causes severe part 
quality deterioration. A series of high frequency short 
sparks are often regarded as an indicator of immediate 
wire breakage.  

• Open sparks (OS): The absence of a current discharge 
between the electrodes is called open sparks. Such 
sparks lead to machining failure due to spark absence.  

The theoretical shape of various discharge sparks is given 
in FIGURE 3.  

FIGURE 3.  TYPES OF WIRE-EDM DISCHARGE PULSES [14] 

IV. RESULTS AND DISCUSSION 
Various discharge pulses identified from the acquired 
pulse cycles are shown in FIGURE 4. The pulse shapes are 
observed to vary significantly from their ideal shapes 
reported thus far. Also, several variations can be spotted 
within the short sparks itself, including pulse shapes, 
peaks, frequency and duration. Similar is the case with arc 
and normal discharges as well. It is thus clear that finding 
a common threshold that defines a particular pulse type is 
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impossible due to their inter-group variations. This 
emphasizes the need for a better model than the threshold 
based models to classify the discharge pulses.  

A. Pulse classification 
Five ML models are compared for performance against 

the same input dataset (described in the methodology 
section) with 5-fold cross validation sampling strategy. The 
models considered are decision tree, Naïve Bayes, Support 
Vector Mechanism (SVM), K-Nearest Neighbor, and 
ANN. Among them, maximum prediction accuracy was 
observed for ANN model as shown in TABLE II.  

FIGURE 4. WIRE EDM DISCHARGE PULSES FROM PULSE CYCLE  

TABLE II.  COMPARISON OF ML MODEL PERFORMANCES 

ML model Validation Accuracy 

Decision Tree 87.6 % 
Naïve Bayes 89.1 % 
SVM 90.7 % 
KNN 92.3 % 
ANN 98.3 % 

 

The ANN architecture used for this application is 4-20-
20-20-4, i.e., 3 hidden layers, having 20 neurons each as 
shown in FIGURE 5. This structure is selected by varying the 
number of hidden layers from 1 to 10 (i.e., 4-20-4, 4-20-20-
4, 4-20-20-20-4, … etc.) by keeping number of neurons in 
each hidden layer as 20. Each model accuracy was noted 
and the structure with 3 hidden layers gave the maximum 
prediction accuracy. During training, the weights and 
biases of the model are tuned to minimize the predation 
error.  Based on the input discharge characteristics, the 
model predicts the probability that the data can fall into 
each of the 4 discharge categories. The model output is the 
one with maximum probability. The predicted class label is 
then compared with the true class label to evaluate the 
model performance. The model’s prediction accuracy was 
98.3% during validation stage. i.e., 983 out of 1000 
predictions were accurate with respect to pulse category. 
The details of the ANN model can be seen in TABLE III.  

FIGURE 5. STRUCTURE OF ANN CLASSIFICATION MODEL 

TABLE III.  ANN CLASSIFIER MODEL DETAILS 

Model Feature Details 

Number of fully connected layers 3 

NN structure 4-20-20-20-4 

Activation ReLU 

Iteration limit 1000 

Cross validation 5-fold  
Model Accuracy (Validation) 98.30% 

 

FIGURE 6 shows the confusion matrix to evaluate the 
class wise prediction performance of the model. In the 
matrix, the classes are labelled as follows: Class 1 = Normal 
spark; Class 2 = Arc spark; Class 3 = Short Spark; Class 4 
= Open Spark. The diagonal blue elements of the matrix 
show the right predictions among each labelled class 
category.  The red elements show the prediction errors. For 
example, the first row of the confusion matrix indicates 
that, when a spark is actually a normal spark (true class 
label is Class 1), it is correctly identified by the ANN 
classifier as normal spark on 98.4 % instances, as arc spark 
on 0.4 % and as open spark on 1.2 % instances. Similarly, 
the prediction accuracy of arc, short and open sparks are 
98.4 %, 98.4 % and 98 % respectively. 

FIGURE 6. ANN CONFUSION MATRIX  

A receiver operating characteristic (ROC) curve is 
shown in FIGURE 7 to further represent the model 
performance. To demonstrate, ROC for class 1 is 
considered here with class 2, 3, and 4 as negative classes. 
For a perfect/ideal classification model, the ROC curve 
passes through the coordinates (0,1), which implies 100 % 
true positive rate and 0 % false positive rate. The closer the 
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ROC curve passes to this coordinate, better is the prediction 
accuracy. As it can been seen in the figure, the model passes 
through the coordinates (0,0.98) for class 1. Similar trends 
were observed for other classes as well. This affirms the 
prediction accuracy of the model.   

FIGURE 7. RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE 

B. ANN performance verification  
A confusion matrix is used to validate the real world 

performance of the trained ANN classifier. For this, 100 
unseen datapoints are selected and the model is tested for 
performance and the results are given in FIGURE 8. The 
model displayed an overall prediction accuracy of 98%. 
Class wise prediction accuracy is 96 %, 96 %, 100 % and 
100 % for classes 1 to 4 respectively.   

 

FIGURE 8. ANN CONFUSION MATRIX DURING VERIFICATION TRIALS  

C. Effects of discharge pulses on machining 
performance 

This section discusses the effect of discharge pulses on 
the part quality, productivity and machining failures during 
wire EDM of Inconel 718. To analyse the effect of various 
discharges on these responses, proportion of each pulse 
types are computed. This is done by designing a pulse 
counter and finding the ratio of each pulse count to that of 
the total pulse counts.  

Short circuit sparks and arc sparks influences the 
surface quality negatively. Such sparks often happen at 
higher than normal frequency and are having high 
discharge energy. This causes deeper craters and thus 
coarser surfaces. FIGURE 9 (A) and FIGURE 9 (B) shows the 
machined surface comparison when the proportion of sum 
of arc and short sparks are 0.6 and 0.2 respectively. In the 
former case, the surface can be observed with several 
undesired surface features like micro globules, and other 
recast layer depositions. On the contrary, lesser arc and 
short sparks has resulted in an even and smooth surface due 
to the ideal overlapped micro craters. 

FIGURE 9. SEM IMAGE COMPARISON WHEN (AS+SS) IS (A) 0.6 (B) 0.2 

In situations where AS+SS is higher, material removal 
rate could be higher but with compromised part quality. 
This is evident from the plot for cutting speed and Ra in 
FIGURE 10. Apart from causing inferior machined surfaces, 
the predominance of short and arc discharges in a pulse 
cycle is an indicator of potential instability which may lead 
to wire breakages. In the figure, it can also be noted that a 
predominance of AS + SS (over 80 %), leads to wire 
breakages. Several researchers have attempted to develop 
failure prediction models based on this idea, however the 
inaccuracies in the pulse classification have limited the 
functionalities of such monitoring systems.   

FIGURE 11 shows the effect of different pulse 
proportions on machining failures. During wire breakage, 
short sparks were predominating and during spark absence, 
open sparks were predominating the pulse cycle.  

V. CONCLUSIONS 
The study proposes a pulse classification model and 

investigates the effects of different pulse types on wire 
EDM responses and failures. Four different pulses, namely, 
normal, arc, short and open are identified through pulse 
train analyses. Various ML models were compared and 
among them, ANN model with 98.3 % accuracy was found 
to have the maximum pulse classification accuracy. During 
verification tests, the ANN model performed with an 
overall accuracy of 98 %. The short and arc pulses were 
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found to have a detrimental effect on the part quality with 
74.1 % increase in Ra at higher arc and short spark ratios. 
At more than 80 % short and arc sparks, machining failure 
was reported.  

FIGURE 10. VARIATION OF SURFACE ROUGHNESS AND CUTTING SPEED 
WITH RESPECT TO ARC AND SHORT SPARK PROPORTIONS 

FIGURE 11. EFFECT OF PULSE PROPORTIONS ON MACHINING OUTCOMES 
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