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ABSTRACT 

Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range 

of healthcare applications, from frontier regenerative medicine and tissue engineering therapies 

through to pharmaceutical advancements, yet must overcome the challenges of biocompatibility 

and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, 

this review highlights the promise of 3D printing for the production of on-demand, personalized 

and complex products that enhance the accessibility, effectiveness, and safety of drug therapies 

and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate 

patient-specific tissues and living cell systems (e.g. vascular networks, organs, muscles, and 

skeletal systems), as well as its applications in delivery of cells and genes, microfluidics and organ-

on-chip constructs. This review summarises how tailoring selected parameters (i.e. accurately 

selecting appropriate printing method, materials and printing parameters based on the desired 

application and behavior) can better facilitate the development of optimised 3D-printed products, 

and how dynamic 4D-printed strategies (printing materials designed to change with time or 

stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-

printed technologies. Comprehensive insights into a critical perspective of the future of 4D 

bioprinting, crucial requirements for 4D printing including programmability of a material, multi-
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material printing methods, and precise designs for meticulous transformations or even clinical 

applications are also given. 
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1 Introduction 

3D printing, or more correctly additive manufacturing, is a technique for the layer-by-layer 

fabrication of 3D objects from digital models, was established 30 years ago through the 

cooperation of various disciplines, including materials science, chemistry, robotics, and optics, and 

has since frequently been used in aerospace, automotive, and consumer goods production (1, 2). 

More recently, 3D printing technology has been adopted by the pharmaceutical industry, with the 

first 3D-printed drug product (Spritam® (levatirecam)) approved by the Food and Drug 

Administration in 2015 (3). 3D printing allows for the direct production of a finished dosage form, 

for example, a capsule or tablet (i.e. active pharmaceutical components and excipients) in a step 

by step manner, rather than requiring the combination of drug elements with excipients and 

processing such as needed in other drug manufacturing methods (4, 5). Research and 

manufacturing interests are now shifting towards these 3D-printed products, as more traditional 

pharmaceutical manufacturing methods, such as granulation or tablet compression, lack 

production flexibility, personalisation and process effectiveness (6). In contrast, 3D printing offers 

advantages in terms of producing on-demand, personalized and complex products that provide 

opportunities for enhancing the accessibility, spatiotemporal release and targeting, effectiveness, 

and safety of drugs (7). For instance, compared with conventional formulations of topical solutions 

or gels that are applied at high doses periodically, a drug-eluting personalized 3D printed oral 
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delivery device that releases the active compound over time would minimize washing away by 

saliva or overswallowing of drugs, thereby boosting treatment efficacy and reducing unwanted 

side effects. In addition, the possibility of controlling the locality of the drug-containing 

compartment in the mouthguard, as reported in Liang’s et.al study, imparts spatial control over 

drug release, enabling preferential targeting of affected regions (8).  

3D printing technologies have revolutionized the field of tissue engineering, which is largely 

focused on establishing new techniques to regenerate, repair and replace injured organs and tissues, 

as well as the creation of in vitro tissue models to evaluate disease development and drug screening 

(9-11). Conventional tissue engineering methods (e.g. porous scaffold development by gas 

forming, salt leaching, freeze-drying, and phase separation) have previously lacked precise control 

over the shape, composition and architecture of a scaffold, as well as control of pore size and 

distribution (12, 13). However, 3D bioprinting has gone some way in addressing these issues, with 

computer-aided design (CAD) software providing the capacity to fabricate patient-specific tissues 

from medical scans such as X-ray, magnetic resonance and computed tomography images. 

Furthermore, living cell systems can be printed by 3D bioprinters using specially designed and 

engineered ‘bioinks’, with or without additional support, which can mimic extracellular matrix 

components (9, 10, 14-17) allowing the additive manufactur of biomaterials and living organisms 

to create composite material-cellular constructs. 4D bioprinting is an emerging procedure that 

takes 3D bioprinting and incorporates a ‘time’ component (18, 19), where constructs undergo 

conformational change that can be triggered by one or more external stimuli including pH, 

temperature, or light (20, 21). 

3D bioprinting is used to reproduce the compartmentalized structure of organs by the deposition 

of multiple biomaterials, cells, and biomolecules in predefined locations within 3D constructs. 
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Additionally, it allows different materials and cells to be deposited simultaneously, which is crucial 

given that the replication of organs and/or tissues requires biomimicry of the multi-component 

native cellular and extracellular components (22); for example, the creation of an extracellular 

matrix or extracellular matrix-like structure, or the inclusion of biochemical or physical cues 

similar to those in the native tissue. Here, the capacity of bioprinting to control the 3D distribution 

of multiple cell types in distinct spatial orientations is a major advantage compared to more 

traditional methods of fabricating tissue engineering scaffolds. However, maintaining cell viability 

(23) and functionality both during and after the 3D bioprinting process is one of the critical issues 

facing the technique (24). Of particular interest is cell arrangement and alignment, as this is a 

crucial factor in determining cellular function and behavior, which is relevant to various tissue 

engineering approaches, from neural to cardiac regeneration (25). Printing vascular networks is 

another challenge that has been studied extensively (14, 26).  Mechanical strain is another 

important parameter that can influence cellular arrangement and affect functional tissue 

development (27-29) as discussed in sections 3 and 5 of the current work. The encapsulation of 

cells in 3D scaffolds or matrices, such as hydrogels, provides a biomimetic 3D microhabitat that 

facilitates cell-to-cell and cell-to-matrix interactions, and is therefore more representative of native 

tissue structures and in vivo conditions than traditional 2D cell culture (27-29).  

The use of microfluidic devices for cell-loaded 3D hydrogels and sensor integrated bioreactors 

also offers significant potential to improve on conventional 2D and 3D cultures for applications in 

biomedical research. 3D printing is also being explored for the advancement of microfluidic 

bioreactors and organ-on-chip technologies, both of which have the ability to monitor cells’ 

physicochemical qualities and provide an appropriate microenvironment for organoid culture. 

Such technologies can influence a broad range of clinical and biochemical studies, including point-
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of-care diagnostics, efficient drug analysis, cancer biomarker screening, drug screening, and 

micro-physiological structure engineering (30-33). It should be noted that the manufacturing of 

microfluidic-based platforms is usually time-consuming, complex, and demands advanced 

cleanroom and costly facilities. As such, 3D printing offers an appealing alternative to 

conventional approaches (i.e. joining glass-polydimethylsiloxane and lithography) as it facilitates 

design duplication in the development phase as well as decreasing the associated costs of apparatus 

installation, physical work areas, and maintenance. The latest advances in 3D printing approaches 

allow for the production of highly complicated microfluidic devices via rapid and one-step 

procedures that lead to convenient accessibility of microfluidics to users (34-38). As 

aforementioned, examples of  the practical application of 3D/4D printing techniques have 

considerably increased over the past decade (Figure 1).  

The pace of development is shown through a considerable increase in publication numbers (Figure 

1) of 3D/4D (bio)printed products, and in the growth of the small sub-fields of 3D/4D (bio)printing 

for “tissue engineering”, “healthcare”, “regenerative medicine”, “pharmaceuticals” and 

“microfluidics.” Throughout this review, a short overview on recent accomplishments, challenges 

and forthcoming perspective application of 3D/4D (bio)printing in these fields are summarized.  

A variety of 3D printing technologies, each employing different operating principles and input 

materials, can be used for a broad range of applications. As mentioned previously, most of these 

techniques follow the same basic fabrication procedure to create final products from digital models 

(39-41). These aspects, common between both 3D printing and 3D bioprinting, are outlined in 

Figure 2.  
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The various 3D printing techniques used for drug product manufacturing, cell and gene delivery, 

tissue engineering, and microfluidic applications are (I) inkjet or binder deposition printers (40, 

Figure 1: Publication trends derived from Web of Science over the last decade (2012-March 2022) 

with terms of “3D printing”, “3D bioprinting”, “4D printing”, “4D bioprinting” in all fields of 

“tissue engineering”, “healthcare”, “regenerative medicine”, “pharmaceuticals” and 

“microfluidics” in combination. 
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42), (II) extrusion or fused deposition modeling (43), (III) material jetting (39, 40), (IV) powder 

bed fusion methods (44-46), (V) stereolithography or photopolymerization technique (47, 48), (VI) 

pen-based 3D printing (49, 50) and (VII) 3D printed molding or indirect 3D printing (35, 51-53). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: (1) Common aspects between various 3D (bio)printing methods: the expected product 

plan is digitally rendered with computer-aided design software, and rendered plans are converted 

to a 3D printer-friendly format, typically STL. Raw materials are then processed and automatically 

printed and solidified layer by layer to form the final product. (2) Schematic example of a 3D 

printing technology: A material jetting printer, consisting of I: Jetting head. II: UV curing light 

(optional). III. Droplets of build materials selectively jetted onto a build bed. IV: in-progress 3D 

printed sample. V: build tray. (3) 3D printing technologies have significant potential for various 

medical applications. Image credit Mr Karim Osouli-Bostanabad. 
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2 3D printing (additive manufacturing) techniques in pharmaceutical industry  

Dosage forms typically comprise an active pharmaceutical ingredient and in most cases 

inactive excipients that ensure active pharmaceutical ingredients absorption, stability, patient 

palatability.  In this field,  additive manufacturing should not be confused with traditional additive 

processes such as film lamination, capsule filling or coating in pharmaceutical manufacturing (54, 

55). 3D printing techniques allow for the direct production of a finished, highly personalised 

dosage form rather than requiring a step-by-step manufacture of active pharmaceutical ingredients 

and excipients (4, 5).  3D printing offers competitive advantages for made-on-demand, 

personalized and complex products that establish opportunities for enhancing the accessibility, 

effectiveness, and safety of drugs (7). The importance and relevance of each of these features is 

outlined below, along with recent trends in 3D printing that utilize these capabilities and may 

further advance drug therapies. 

2.1 On-Demand Fabrication 

3D printers have the ability to fabricate products with a range of defined spatial features on a 

short timescale (minutes to hours), depending on the size of construct, complexity, and type of 

printer utilised. This capability allows the printing of low-stability drugs for immediate intake, 

printing directly into/onto patients (for example, to print on-demand gels with wound healing 

properties, or tissue engineering scaffolds (56-58)), and printing in situations where time and 

resources are limited, such as ambulances, disaster zones, intensive healthcare units, surgery and 

emergency rooms, and military operations (59, 60).  

To improve the development and delivery of drug products in a time-effective manner, 

pharmaceutical industries could feasibly embrace an approach from automotive fabrication, where 

3D printing is employed to manufacture and evaluate numerous product iterations. One possible 



 
 

 10 

strategy is the use of meshes that can be used topically and as an implant, using polymers with 

stimuli-responsive properties to actively release a drug when in contact with the target 

environment. This has been demonstrated in an elastic mesh for topical application as a drug 

delivery ‘bandage’ (61). The bandage consists of antibiotic-loaded nanofibrous meshes with 

embedded PEGylated-chitosan nanoparticles capable of responding to thermal stimuli (~37 °C). A 

flexible heater is also incorporated into the platform to enable control of drug release (Figure 3), 

while the final product is elastic, flexible, and conforms to easily attach to the skin in order to be 

used as either a local patch or as implantable support for wound healing.  

 

Figure 3: Components of an engineered flexible bandage drug delivery system with integrated 

electronics and heater (left and middle), where drug loaded thermo-responsive nanocarriers 

were placed within the nanofibers of the manufactured mesh, and the drug release was 

controlled by adjusting the temperature of the integrated heater. The miniaturized electronic 

control system is presented on the right. This image reproduced from 61 and  used under the 

Creative Commons license permission (CC BY 4.0). Copyright 2017 Springer Nature 
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2.2 Personalisation  

3D printing of drugs enables  pharmacotherapy tailored to the individual characteristics of each 

patient. This technologyenables the rapid formulation of patient-centric medicines i.e. the right 

medicine/dosage form, for the right person, at the right time, in the right dose. For instance, 

paediatric patients are a particular population that needs special attention when designing dosage 

forms because of the necessity for medication adherence and clinical safety (62). In most cases, 

inadequately satisfying the therapy adherence results in sub-optimal health outcomes for these 

patients. Additionally, most therapeutic agents are not recomended for paediatric use, as children 

are excluded in the pre-development stage of clinical trials (63). The administration of tablets is 

the most suitable for paediatric patients (i.e. school age/ infants given Oral dosage forms < 2 mm), 

particularly those that can be effortlessly swallowed and dissolved in the oral cavity (64). 

Organoleptic characteristics, including taste, appearance, smell, or texture are also influential and 

foster adherence in paediatric patients. In addition, for paediatric product development, excipients 

selection should be considered in a way that is approved for these patients and therefore the 

formulation of dosage formats should be carefully designed (64). Ghanizadeh-Tabriz et al. used 

an extrusion-based 3D printer to fabricate fruit-chew designs containing bitter diphenhydramine 

hydrochloride using hydroxypropyl cellulose as a carrier and gelucire 48/16TM as a non-ionic 

surfactant combined with sucralose as a sweetener and strawberry flavor (65). A glass solution 

formation containing molecularly dispersed diphenhydramine hydrochloride inside the 

hydrophilic carriers was confirmed by physicochemical characterisations. The dissolution 

behavior of  diphenhydramine hydrochloride from the 3D printed fruit-chew designs followed a 

burst release with >85% during the first 30 min. The sensory evaluation of the strawberry aroma 

and the sweetener intensity revealed a full taste masking of the bitter diphenhydramine 
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hydrochloride and showed a synergistic influence of the strawberry flavour and the sweetener with 

augmented fruity sweet strawberry, and aftertaste perception. It has been stated that these results 

can be benefited for paediatric dosage forms development with improved organoleptic 

characteristics, medication adherence and palatability (65).  

One factor in the development of patient-centric medicines is palatability, which may have a 

significant effect on treatment outcomes, as well a patient’s willingness to take the drug. Overall, 

the development of such pharmaceutical products with high quality, safety and clinical efficacy is 

extremely challenging and requires the implementation of novel manufacturing technologies 

which can address the aforementioned challenges but also to produce personalised dosage forms 

that fit the patient’s clinical needs (e.g., dose, pharmacokinetics, palatability). However, patient 

willingness to use oral dosage forms, such as tablets in various forms, has yet to be entirely 

investigated. For example, patients prefer to take drugs in tablet forms (66-68), and preferences 

are often influenced by shape and size, but altering a tablet in any way to improve palatability or 

make it easier to swallow (e.g., dividing, crushing) could result in over/underdosing by changing 

the bioavailability. To address this, the effects of drug size and shape on palatability have recently 

been evaluated to determine how to best utilize the versatility of 3D printing to produce different 

drug shapes and formulations for improved patient outcomes. The majority of studies on 3D-

printed drugs investigate the in vitro dissolution behavior of drugs based on their ingredients and 

design (69-72); however, one of the biggest superiorities of 3D printing procedures, the capability 

of producing numerous creative shapes or formulations to enhance patient acceptability, needs to 

be precisely evaluated. The palatability, size and shape design can improve the simplicity of 

swallowing as well as reduce the risk of esophageal injury. The desire and preference of target 

populations can also influence the shape and design of drug products. Goyanes et al. evaluated the 
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influence of size, shape and color of various 3D printed placebo tablets on palatability in 50 

participants (73). Ultimately, patients showed a preference for the torus geometry, and printlets 

with a similar appearance to traditional formulations (discs and capsules) were also selected as 

easy to swallow. This finding highlighted that familiarity is an important quality for printlet 

acceptability. Printlets with smaller sizes were also found to be more desirable, although 

perception of size was found to be influenced by shape. Furthermore, it was found that printlet 

color can also influence patients' perception (73). However, patient willingness to use different 

oral dosage forms, such as tablets, capsules, lozenges, liquids or powders, is yet to be entirely 

investigated.  

Chemotherapy and anticoagulation are amongst some of the most common therapies that require 

adaptable, personalized and on-demand frequent dose modifications to ensure optimal care. The 

accurate manufacturing capability and flexibility of 3D printed technologies permits frequent 

modificaitons of dose while enabling minimum effective dose administration of a the drug (74). 

Taking the example of warfarin, even though it compacts in small doses are available now, and 

doses can be adjusted by ingesting multiple tablets, or splitting or cutting tablets of a higher dose, 

this can lead to over/underdosing of the drug (75-77). To improve upon this current system, 

Vuddanda et al. used inkjet/binder deposition to demonstrate the capability of 3D printing for 

warfarin dosage individualization through engineering of easy-to-reproduce narrow/small-dosage 

warfarin (~ 50 μg) (78). This further supports the idea that ink formulations using appropriate 

solvents or nanosuspensions could lead to individualized and flexible dosage forms by 3D printing 

techniques (5, 57, 60, 68, 71, 75, 79, 80), although additional regulatory criteria must also be met 

for pharmaceutical applications. Additionally, in a study the flexibility of fused deposition 

modeling was utilized to produce personalized solid dosage forms tailored to an animal’s anatomy, 



 
 

 14 

where warfarin therapeutics were fabricated in narrow/small doses and studied in vitro and in vivo 

(81). The study demonstrated that 3D printing methods have potential to engineer a highly 

responsive, accurate and dynamic anticoagulant delivery system capable of responding to even a 

constantly changing clotting profile of a patient. These studies indicate the vast potential of 3D 

printing methods to advance personalized medicine and the pharmaceutical industry more broadly.  

Personalisation of dose ensures that pharmacokinetic and pharmacodynamic parameters are 

individualised for each patient, taking into account factors such as weight and age, to reduce the 

risk of side effects and overdosing (82, 83). To date, liquid oral dosages (for instance, suspensions 

and solutions) have been personalized using various straightforward dosing aids, such as droppers, 

scaled spoons or calibrated syringes. However, while these solutions are inexpensive when 

commercially available, they remain expensive if special manufacturing is necessary for the patient 

and  human error remains an issue (84). As such, researchers have applied 3D printing techniques 

to formulate precise and reproducible liquid oral dosages. For example, fused deposition modeling 

has been used to print capsule shells, with the core of the shell loaded manually during the printing 

process (85). However, the manual loading in this example still risks a degree of human error. A 

fully automated 3D printing method was applied by Tochukwu et al. to print a liquid capsule (86), 

with shells of polymethacrylate polymer. The shell of the capsule was fabricated in a layer-by-

layer manner and filled with a printed liquid dose during the printing process without 

compromising the integrity of the capsule shell or requiring any curing stage. The system was able 

to contain two active pharmaceutical ingredients (theophylline and dipyridamole) at the same time, 

indicating that it is a promising candidate for delivery of multiple solutions or suspensions. 

Furthermore, this method was capable of delivering both immediate and sustained drug doses, with 

release rate easily controlled by manipulating shell thickness and dispensed liquid dose volume 
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via the printing software. In clinical applications, this will enable healthcare workers to prepare a 

specific drug dose and release profile in personalized liquid capsules without the need to alter drug 

formulation.  

We envisage that the utility of 3D printing will expand, enabling the manufacturing of complex 

drug products, for example, personalized implantable or wearable systems with controllable drug 

dissolution rates that exploit the benefits conferred by 3D printing materials. To maximise their 

potential, additive manufacturing can be associated with a 3D scanning system that extracts details 

of a patient’s anatomy to make a customized tool that is specific to the patient such as drug-loaded 

patches that fit specific patient anatomies (87-90). However, current methods are inadequate in 

terms of standardization of approaches and materials, hampering the advancement of scalable and 

consistent 3D-printed drug delivery tools for use in healthcare industries (39, 59, 91, 92). This was 

demonstrated in 3D-printed individualized mouthguards that were manufactured based on 

personalized intraoral scans of dentition impressions with ability to deliver clobetasol propionate 

in the oral cavity and their in vitro drug release behavior was evaluated (Figure 4)(8). The drug 

dissolution behavior in humans was assessed from three kinds of mouthguards in varying material 

composition or design using vanillic acid (food-grade flavourant) instead of clobetasol propionate, 

where a sustained release profile was observed over the 6 h trial. Fused deposition modeling was 

used in this study as it does not use toxic photoactive polymers or organic solvents, which may 

facilitate the translation of these mouthguards to the clinic by restricting potential risks to human 

health (3, 93). Furthermore, polylactic acid and polyvinyl alcohol were selected as the mouthguard 

material, as these have pharmaceutical grades available for fused deposition modeling and clinical 

applications (8). This proof-of-concept study helps to confirm the potential of 3D printing as a 

platform for the translation and advancement of next-generation drug delivery tools for 



 
 

 16 

individualized therapy. However, given that not all therapies or conditions are suited to oral 

release, there is still a need to further expand a more systematic process for other delivery routes, 

for example dermal, ocular, or internal release from implants. 

 

2.3 Complex Constructs 

3D printing in the pharmaceutical industry could facilitate the development of new drug delivery 

systems with unprecedented accuracy and complexity (94), unlike traditional formulation methods 

Figure 4: The 3D printing manufacturing process of wearable individualized oral drug delivery 

mouthguards manufacturing process using 3D printing. This process involves two phases, (I) 

the information acquisition step, in which the maxillary anatomy was acquired by an intraoral 

scan, serving as the pattern for 3D printing, and (II) the fabrication step, where a hot melt 

extrusion technique was used to manufacture the desired drug loaded printable filaments, which 

were then printed into customized devices using fused deposition modelling 8. This image 

reproduced from 8 under the Creative Commons license permission (CC BY-NC-ND 3.0). 

Copyright 2018 Science 
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where fabricating structures with detailed spatial characteristics and controllable dissolution rates 

is difficult or impossible to achieve (95, 96). The flexibility and efficiency of 3D printing could 

propel the healthcare industry toward the goal of printing multi-medicine “polypills” to merge all 

of a patient's drugs into a single daily dose (70, 75, 86, 97). Given that the composition of a drug 

product can affect drug dissolution (98, 99), complex 3D printed structures establish novel 

possibilities for drug delivery systems, producing adaptable and complex geometries to provide 

controlled loading and dissolution behavior (70, 75, 97, 100). For example, dissolution is structure-

dependent, and 3D-printed complex objects can be augmented to increase release rate compared 

to conventional immediate-release compounds, by printing shapes with higher surface to volume 

ratios (100, 101) or amorphous solid dispersions (87, 102-104). Although 3D printing can be 

applied for immediate release systems in this way, the majority of 3D printing studies are focused 

on controlled release systems (69, 79, 105-108). Aside from various 3D-printed drug products with 

complex structures, implants and scaffolds containing complex dissolution behavior can also be 

made using 3D printing technologies (109-112), which is an exciting approach to improve control 

of release patterns and drug targeting. Table 1 gives a summary of some dosage forms development 

using 3D printing techniques.
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Table 1: Different examples of 3D printing techniques for development of various pharmaceuticals  

3D printing 
Method 

Product 
(Dosage 
Form) 

Excipiants/Materials 
Active 

Pharmaceutical 
Ingredient 

Pharmaceutical 
Usage Ref. 

Laser-based 
printing 

Printlet 
Candurin® NXT Ruby Red, 

Kollicoat® IR, Lactose 
monohydrate, Talc 

Lopinavir Solubility 
enhancement (113) 

Oral tablet Kollicoat IR, Eudragit L100-
55, Candurin® gold sheen 

Paracetamol 
(acetaminophen) 

Immediate and 
modified release 

profiles 
(114) 

Inkjet printing 

Immediate-
release 
(fast-

dissolving) 
tablet 

Mannitol, Silicon dioxide 
(colloidal SiO2), Lactose, and 

Polyvinylpyrrolidone K30 
(PVP K30) 

 

Paracetamol 
(acetaminophen) 

and Alizarin yellow 
(dye) 

Fast-
disintegrating 
drug delivery 

devices 

(115) 

Controlled-
release 
tablet 

Beeswax Fenofibrate 

Controlled 
dissolution 
behavior for 
prolonged 

periods 

(116) 

Controlled-
release 
tablet 

Polyethylene oxide (PEO) 
and Polycaprolactone (PCL)  

Alizarin yellow and 
Methylene blue 

(dyes) 

Controlled 
release drug 

delivery devices 
(117) 

Controlled-
release 
tablet 

Polyethylene glycol (PEG) Naproxen 

Tablets with 
controllable 
dissolution 

kinetics  

(118) 

Oral tablet 
Cellulose powder, Eudragit® 

E-100, Eudragit RLPO, 
Lactose 

Chlorpheniramine 
maleate 

Controlled 
release drug 

delivery devices 
(119) 
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Doughnut-
shaped 
tablet 

Hydroxypropyl 
methylcellulose E100, Ethyl 
cellulose, PVP K30, colloidal 

SiO2 

Acetaminophen 
Tablets with 
linear release 

behavior 
(120) 

Extrosion-based 
printing 

Tablet Poly(vinyl alcohol) (PVA) Prednisolone Extended-
release tablets (121) 

Tablet 

Kollicoat® IR, Kollidon® 
VA64, Affinsiol™15 cP, 

Hydroxypropylmethylcellulose 
Acetate Succinate (HPMCAS) 

Haloperidol Rapid-release 
tablets (122) 

Tablet 

Benecel™ 
Hydroxypropylmethylcellulose 
(HPMC) E5, Klucel™ HPC EF 

and LF, Aqualon™ EC N14, 
Soluplus®, Eudragit® L100,  

Acetaminophen Controlled-
release tablets (123) 

Caplet PVA Paracetamol/ 
Caffeine 

Personalized 
oral dosage 

forms 
(124) 

Tablet PVA 

5-aminosalicylic 
acid (5-ASA, 

mesalazine), 4-
aminosalicylic acid 

(4-ASA) 

Tablets with 
Modified-

release profile 
(125) 

 
Intravaginal 

ring 

Polyurethane (Tecoflex™ EG-
100A) Clotrimazole 

Sustained 
release dosage 
forms (delivery 

devices) 

(126) 

Oral 
scaffolds 

Acrylonitrile butadiene styrene 
(ABS) Carbamazepine 

Prolonged -
release scaffold 

(zero-order 
release) 

(127) 

Bilayer 
tablet 

Hydroxypropyl cellulose 
(HPC), HPMCAS 

Isoniazid, 
Rifampicin 

Dual controlled 
release profile (128) 
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Tablet 
(hollow 

structured) 
HPC Domperidone Sustained 

release tablets (129) 

Stereolithography 
printing 

Tablets in 
torus-
shaped 

Poly(ethylene glycol) 
diacrylate (PEGDA), PEG, 

diphenyl(2,4,6-
trimethylbenzoyl)phosphine 

oxide 

4-ASA, Paracetamol 
(acetaminophen) 

Modified-
release 

(customizable) 
tablets 

(130) 

Indwelling 
bladder 
devices 

Elastic Resin, Magnesium 
chloride anhydrous, Urea, 

Gelucire® 48/16, Potassium 
dihydrogen phosphate 

Lidocaine 
hydrochloride 

Prolonged and 
localised 

delivery devices 
(131) 

Polyprintlet 

Hydrochlorothiazide, PEGDA, 
diphenyl(2, 4, 6-trimethyl-
benzoyl) phosphine oxide 

(TPO), PEG 

Irbesartan, Atenolol, 
hydrochlorothiazide, 

Amlodipine 

Controlled 
release profile (132) 
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3 3D printing techniques for biomimetic structures 

Tissue engineering focuses on restoring the structure and function of damaged, dysfunctional or 

lost tissues through the engineering of functional tissue constructs (111, 133). Even with 

noteworthy progress in the field of tissue engineering and regenerative medicine over the last few 

decades, manufacturing of functional and complex tissue constructs capable of mimicking natural 

behavior remains a challenge (22, 134, 135). In particular, the development of 3D interconnected 

vascular networks within these tissue constructs remains a key issue requiring resolution, as it 

plays a vital role in enhancing the function of engineered tissues (135-137).  

3.1 3D printing in tissue engineering 

Adjusting bottom-up processes (i.e. the directed- or self-assembly of a scaffold from smaller 

elements or modules, feasibly with various modules aimed to perform distinct functions) for tissue 

engineering is a major challenge, and numerous attempts to print synthetic 

biodegradable/biocompatible scaffolds have been made since the first use of fused deposition 

modeling for tissue engineering applications (138, 139). Here, 3D bioprinting is a promising recent 

advancement, with the ability to simultaneously deposit single or blended supportive matrices and 

living cells (collectively called bioink), and the potential to assist in the fabrication of well-

organized 3D vascular networks (25, 134, 137, 140). Various types of rapid prototyping methods 

have been established to enable the creation of macroscopic structures of deposited biomaterials, 

including gel deposition using syringe-based approaches, stereolithography, and solid freeform 

manufacturing. While both 3D printing and 3D bioprinting use a 3D prototype to fabricate 

constructs in a layer-by-layer manner, 3D bioprinting encompasses the use of both cell-loaded 

bioinks and other biological agents to build a living cell laden scaffold. Note here that the 
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polymeric 3D printed scaffolds that have a porous structure to allow cell seeding should not be 

confused with 3D bioprinting of cell-loaded bioinks (141, 142). In other words, 3D bioprinting is 

a method of manufacturing cell-loaded bioinks within functional tissue structures and organs from 

3D digital prototypes. 

3D bioprinting has numerous benefits in comparison with traditional tissue engineering 

approaches, which suffer from an inability to produce complex biomimetic constructs, with simple 

structures leading to unrealistic cell microenvironments (143). In contrast to this, 3D bioprinting 

has the ability to manufacture spatially sophisticated multi-modal, multi-component, multi-

dimensional (nano to macro structures), compartmentalized biomimetic tissue constructs able to 

more acuretly mimic native tissue structure and function. In addition, 3D bioprinting inherently 

ensures good manufacturing practice processes via improved accuracy, automated and 

reproducible processing, and geometric freedom. These aspects of 3D bioprinting all combine to 

improve reproducibility and control of morphology, including key material properties such as 

porosity, pore size, compression modulus and general target tissue compliance. Additionally, 

spatial control over deposition of a wide range of biochemical elements, including growth factors, 

proteins, DNA, and drugs, in combination with cells, helps to further facilitate the fabrication of 

functional, precisely-controlled tissue repair constructs (17, 144). Several bioinks composed of 

various hydrogel substances, such as hyaluronic acid, collagen, gelatin, alginate, polyethylene 

glycol, chondroitin sulfate and others, have been used in bioprinting with high reliability, owing 

to their appropriate viscosity and biocompatibility (145-147). These bioinks are discussed in more 

detail in Table 2 and sections 3-6. One example of using several bioinks is the ‘BioPen’ (Figure 5, 

a droplet based bioprinting), developed by Han et al., which is capable of functional material 

deposition in a persistent, predetermined and scalable manner, offering micrometer spatial 
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resolution and nanoliter volumetric resolution (56, 148). As shown in Figure 5, this process is 

based on the ballpoint pen, where multichannel ink sources (i.e., solutions of the functional 

elements) and equipment with the capability of writing nucleic acids, proteins, living cells and 

other entities were substituted with the previously used channels. Point-of-care detectability using 

this method was demonstrated by using the BioPen to apply bioink onto paper, where the ink 

contained nucleic acid probes and gold nanoparticles modified on type-I human immunodeficiency 

virus (56). Furthermore, point-of-care usability of this technique was demonstrated by writing a 

persistent structure of functional living, interlinked cells with a determined extracellular medium 

in tissue engineering. Owing to the simplicity and accuracy along with the portability of this 

method, it can be economically applied for point-of-care biomarker detection, tissue engineering 

and deposition of patterned substances within surgeries.  However, the manual operation of this 

handhold pen device means it is time consuming to use, lacks machine precision, and is not as 

scalable as other technologies, it is still an interesting technology. There may also be niche 

application in field medicine where portability would be a key priority, but these are outside the 

scope of the review. For our purposes, this simple technology highlights the core simplicity and 

attainability of 3D printing. Although often seen and discussed on a manufacturer scale, the 

underlying concept is noteably simple and flexible. 

3D printing of muscle structures, particularly skeletal and cardiac muscles, is extensively 

researched (149, 150). Skeletal muscle damage occurring from surgery, tumour, trama, and 

degenerative disease exceeding 20% leads to denervation, scarring and loss of function (151). 

Independence and mobility restoration is a significant challenge in reconstructive approaches, 

where tissue engineering provides a solution towards the development of a muscle-tendon unit. 

Though numerous researchers have tried to design the muscle and tendon separately, few studies 
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have concentrated on advancing this type of composite construct (152, 153). To develop the 

muscle-tendon unit, Merceron et al. engineered a complex tissue structure using 3D bioprinting, 

fabricating a polymeric, mechanically heterogeneous scaffold structure that was relatively rigid on 

the tendon side and flexible on the muscle side (154). Further, it was capable of tissue-specialized 

cell distribution, with myoblasts on the muscle side and fibroblasts on the tendon side (154). These 

experiments confirmed the versatility of 3D unified organ printing systems to build integrated 

tissue structures with tissue-specialized mechanical and biological characteristics. Recent reports 

have demonstrated engineered 3D musculoskeletal tissues for fundamental research and drug 

screening goals (24, 149, 155-159).  
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Figure 5: (a) The manufactured BioPen, with functional inks substituted into the 

ballpoint pen channels and optimized settings to write the bioink. (b) Multiple 

cartridges containing functional inks can be placed into one BioPen. (c) By 

adjusting the writing speed of BioPen, the functional ink suspension can easily be 

patterned onto various substrates. (d) Excellent connectivity can be achieved 

compared to the inkjet method, due to the continuous nature of the “writing” 

process, unlike the ink separated streams. (e, f) Accuracy and portability are both 

key advantages of this method for point-of-care diagnostics and tissue engineering 
56. This image reproduced from 56 under the Creative Commons license permission 

(CC BY-NC-ND 3.0). Copyright 2014 Springer Nature 
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Researchers are currently focussing considerable efforts on reproducing the highly complicated 

cytoarchitecture of complex functional patterns of the human central nervous system. Despite the 

fact that 2D cell culture approaches with human induced pluripotent stem cells (iPSC-derived 

neural cells) and animal models have presented promising insights into disease progression, 

developmental biology, and central nervous system networks functional dynamics, much of 

intrinsic complications in central nervous system of the human are not recapitulated (160). Lozano 

et al. used an extrusion based 3D printer to print brain-like constructs resemble as those in the 

cerebral cortex, with arginylglycylaspartic acid modified gellan gum hydrogel containing several 

layers of cortical neurons (161). A viability of about 80% has reported for the encapsulated neurons 

and they could differentiate into glia and neurons. A three-layered sandwich construct containing 

neurons in top and bottom layers and no cells in a middle layer was printed to evaluate the 

outgrowth of neurite between adjacent hydrogels from cortical neurons. Following 5 days of in 

vitro culture, the fabricated sandwich structure containing neurons extended axons, which 

penetrated around 100 µm within the middle acellular layer. Despite of the lack of a determined 

architecture in the printed construct, the capability of controlling the organization of extra cellular 

matrix and cells were sufficient to simulate multilayered brain-like neural circuits and to offer a 

way for recognizing neurodegenerative diseases and traumatic injuries of the brain (161). Hinton 

et al. fabricated an alginate-based brain model where complicated anatomy of a human brain, such 

as cerebellum and cortex, were printed with a resolution of 200 µm using CAD models based on  

optical, magnetic resonance imaging and computed tomography data (162). This study as a proof-

of-concept showed the feasibility of fabricating the anatomical architecture of the brain tissue, 

although it should be noted the internal construct of the printed model was not built (162). Qian et 

al. reported an integrated layer-by-layer casting and 3D printing technique in fabrication of multi-



 
 

 27 

layered porous scaffolds composed of polycaprolactone and single- or multi-layered graphene 

(Figure 6) (163). The results showed that graphene incorporated electrically conductive 3D 

scaffolds could greatly enhance expression of neural cells both in vitro and in vivo. Where 

successfully axonal remyelination and regrowth was promoted after peripheral nerve damage.  

Metin et al. printed graphene and gelatin-based nerve regeneration scaffolds/conduits, where 

mesenchymal stem cells (80%) revealed staining markers of Schwann cell and greatly enhanced 

the nerve growth factor secretion in existence of electrical stimulation (164). Additionally, Jakus 

et al. using an extrusion-based 3D printer fabricated a conductive composite scaffold of graphene-

loaded polylactide-co-glycolide. Printed samples depicted high flexibility and mechanical 

strength, while preserving a conductivity more than 800 S/m. In vitro data revealed that 3D printed 

construct supported the human mesenchymal stem cell viability, adhesion, proliferation, and 

neurogenic differentiation, and considerably upregulated neuronal and glia genes (165). It been 

suggested that the electrical cues in the human nervous system could be used to inspire interactions 

between scaffold/neurons and lead those actions mimic that of a native tissue, such as the efferent 

limb: contraction of striated muscle, smooth muscle, and glandular secretion (166). Although 

significant development of novel bioinks has been reported, the viability and feasibility of these 

polymers/bioinks is still a challenge that must be answered, due to the need for printability, 

biofunctionality, biocompatibility, and in some cases, biodegradability. Ouyang et al. studied 

printability of bioinks employing a new semi-quantitative technique (167). This work revealed that 

viability of bioinks enhanced when printed in higher temperatures, high shear stresses, and lower 

concentrations of gelatin. Furthermore, biomaterials to be biofunctional must contain cell 

recognition sequences, consequently they will not immunologically be rejected in vivo.  
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Figure 6: (a) Schematic presentation of layer-by-layer casting/printing of graphene nerve conduit; the interior and 
exterior green layers are mixed layers of polydopamine/ arginylglycylaspartic acid (PDA/RGD), the purple layer 
is a mixed layer of polycaprolactone (PCL) and single-layered (SG) or multi-layered (MG) graphene, and an 
illustration of the nerve conduit in a sciatic nerve injury model in the Sprague Dawley rats. (b) SEM images of 
the multi-layered and nanoporous 3D structure. (c-f) LIVE/DEAD cell staining for cell viability assessment on 
Schwann cells (SCs) by cell counting kit 8; (c) Live/dead/merge pictures for PDA/RGD-SG/PCL, (d) PDA/RGD-
MG/PCL, (e) PDA/RGD-PCL, and (f) PCL (scale bar 50 μm). (g-n) Immunofluorescent staining for F-actin and 
nuclear protein Ki67 (Ki67); Ki67 expression of SC on (g, h) PDA/RGD-SG/PCL, (k, l) PDA/RGD-MG/PCL, 
Phalloidin staining on (i, j)  PDA/RGD-SG/PCL, and (m, n) PDA/RGD-MG/PCL (scale bar 50 μm). (o-z) 
Immunofluorescent staining for glial fibrillary acidic protein (GFAP), class III β-tubulin (Tuj1), and S100; GFAP 
expression of SC on (o, p) PDA/RGD-SG/PCL, (q, r) PDA/RGD-MG/PCL, Tuj1 expression of SC on (s, t) 
PDA/RGD-SG/PCL, (u, v) PDA/RGD-MG/PCL, S100 expression of SC on (w, x) PDA/RGD-SG/PCL, and (y, 
z) PDA/RGD-MG/PCL (scale bar 50 μm). (I-IV) Hematoxylin & Eosin (I, III) and toluidine blue (II, IV) staining’s 
for regenerated nerves after 18 weeks; SC-loaded (I, II) PDA/RGD-SG/PCL, and (III, IV) PDA/RGD-MG/PCL 
(scale bar 100 μm) (163). This image reproduced from 163 under the Creative Commons license permission (CC 
BY 4.0). Copyright 2018 Springer Nature 
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Lastly, the rheological characteristics of these substances (i.e. the balance between fluid and 

solid properties) must be matched to those of the target tissue (168). These limitations in 

combination present a challenging group of variables that restrict the range of biofunctional 

compounds available. Thus, even though many substances are intially considered as promising 

functional materials, they prove incompatible for in vivo applications. Polyaniline is a typical 

example of a previously common biomaterial in bio-related applications, due to its favorable 

persistence and conductivity at a broad range of pH. Polyaniline has the capability to easily create 

thin films, especially on nanostructured materials, which makes it an appealing candidate in 

biomaterial applications, but it lacks biodegradability and flexibility, while is possesses poor 

processibility and has been linked with chronic inflammation after implantation (169). 

3.2 3D printing for gene/cell delivery 

Gene/cell delivery is an integral part in regenerative medicine and tissue engineering research 

and this exemplified in the field of cartilage, bone and fibrous connective tissue (e.g. ligaments 

and tendons) research. (11, 111, 170, 171). There is a growing need for effective bone grafts 

globally, with over five hundred thousand patients suffering from bone defects and receiving 

restoration yearly in the US alone (172) and skeletal tissue manufacturing (e.g., cartilage and bone) 

via 3D bioprinting is a major advancement of regenerative medicine and tissue engineering efforts 

(173), with significant attention to integration of rhBMP-II (recombinant human bone 

morphogenetic  protein-II, one of the most effective growth agents for bone development) within 

the scaffold as the most clinically relevant bone regeneration strategy. However, inconsistent 

results were obtained in clinical applications as rhBMP-II-loaded collagen sponges w showed a 

quick release rate that limited its   osteoinductive activity (174). Additionally, rhBMP-II in high 

doses has resulted in  postoperative problems such as inappropriate bone formation, osteolysis and 
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swelling of soft tissue (175, 176). Several studies have assessed the efficacy of 3D printed scaffolds 

in bone formation when integrated with different osteoinductive stimuli (177-180). Another 

approach to applying rhBMP-II is local gene treatment, which uses transduced cells to convey the 

BMP-II protein. This enables delivery of an osteoinductive growth agent alongside 

osteoprogenitor cells to a particular anatomic area where bone formation can be induced by 

transduced cells. Alluri et al. investigated the osteogenic potency of hyperelastic bone scaffolds 

prepared using 3D printing technology integrated with an extended osteoinductive growth signal 

using lentiviral gene treatment (181). Ex vivo local gene therapy allows for gene incorporation 

within host cells in a laboratory, which are then reimplanted into the host at a target site. Here, the 

osteoinductive BMP-II protein was released in a sustained manner (two weeks) from transduced 

cells, establishing the formation of a new bone.  

Until now, numerous 3D printing techniques have been adapted to enable bioprinting with 

previously developed hydrogels and biopolymers. As the significance of individualized medicine 

is becoming more evident, the demand for new bioinks encompassing patient-specific (autologous) 

biological agents for tissue engineering is growing. Platelet-rich plasma is used as a patient-

specialized resource of autologous growth agents that can be effortlessly integrated with hydrogels 

and printed within 3D structures. Platelet-rich plasma can improve angiogenesis, recruitment of 

stem cells and regeneration of tissue, as it contains a cocktail of growth agents. Faramarzi et.al. 

have engineered an alginate (1% w/v) bioink containing platelet-rich plasma (with concentration 

of 50 U of platelet-rich plasma per mL of the bioink) that, when printed and implanted, undergoes 

cross-linking through exposure to native calcium ions (182). The migration of stem cells and 

vascularization within these printed constructs can be augmented by controlling the release of 
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growth agents associated with platelet-rich plasma, which has been previously reviewed elsewhere 

(183-188).  

Previous studies have indicated significant developments in tissue-engineered conduits 

integration to bridge defects of spinal cord injury using various strategies such as cell transplants, 

degradation products of glial scar or biological cues, and physical guides (189-202). The tissue of 

spinal cord is not structurally homogeneous, but consist of various types of neural cells organized 

in spatially complex orders (203, 204). The locally definite neuronal subtypes firmly affect axonal 

growth (205). Consequently, successfully recreating/fabricating patient-specific structures in 

appropriate clinical shape, size, and structural integrity have been progressed by integrating 

progenitor and neural stem cells with biocompatible 3D printed scaffolds to evaluate novel 

therapeutic cues for injuries in the spinal cord (198, 200, 203, 204, 206-212). 3D printing 

approaches are applied in two distinct fields of spinal cord scaffolds development i) seeding of 

cells on 3D printed scaffolds and ii) 3D printing of bioinks for constructs fabrication. Koffler et 

al. 3D printed a biomimetic hydrogel (PEGDA/GelMa)-based spinal cord scaffold to assist 

regeneration of a single type of neural progenitor cells following spinal cord injury using the 

abovementioned approach (cell seeding on a printed scaffold) (209), where cells were seeded on 

scaffolds with 2 mm in length and multi-channels in diameter of 200 µm. They showed that the 

printed constructs could support axon regeneration and create new neural relays throughout 

completely injured spinal cord sites in vivo in rodents. They found that after 4 weeks damaged host 

axons regenerated into 3D printed scaffolds and synapse onto neural progenitor cells implanted in 

the construct and that implanted neural progenitor cells in turn extended axons out of the printed 

biomimetic scaffold and below the injury, into the host spinal cord to reconstruct synaptic 

transmission and considerably enhanced functional outcomes (209). Studies concerning nerve 
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regeneration and scaffolds have proven that scaffolds with microchannel in diameters around 200 

µm to 300 µm are effective in guiding axons linearly (213, 214), while channels with diameter 

more than about 450 µm led to reduction in nerve regeneration (215). As shown by Koffler et al. 

regenerated host axons indicated a linear pattern during growth guided by the architecture of 

microchannels of the printed scaffolds. On the other hand, acellular scaffolds (without any cell) 

represented only limited growth of host axons in the printed scaffolds, and grafting of neural 

progenitor cells (without scaffolds) extended axons in irregular/random directions (209). The 

biodegradability of implanted scaffolds made of synthetic poly(ethylene glycol) diacrylate enabled 

studying regeneration and remyelination of host axons in rats at 4 weeks. The degradation rate of 

the implanted hydrogel scaffolds was slow, where after 6 months the thickness of scaffolds was 

decreased by 49% and still structure of channels were unbroken completely filled with neural 

progenitor cells. Locomotor activity was determined to evaluate the functional recovery using the 

Bresnahan, Beattie, and Basso locomotor scale for more than 5 months. A compelling functional 

recovery was observed in rats implanted with scaffolds containing neural progenitor cells in 

comparison with scaffolds without any cell. The motor evoked potential responses recovery was 

seen in rats implanted with the cells-filled scaffolds at 5 months after injury, while rats with 

acellular scaffolds showed a baseline noise level, revealing new neural relays formation over areas 

of full spinal cord injury (209). For central nervous system, a few weeks would possibly permit 

move in capability to indigenous oligodendrocyte progenitor cells and the axons myelination 

(216). This biomimetic 3D printed construct could be tailored to be patient-specific in the size of 

spinal cord and geometry of the lesion with high anatomical accuracy by combining it with a 

magnetic resonance imaging. 
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It has recently been shown that the spatial placement of the transplanted neural cells and their 

homology to the host tissue are crucial to have successful specific tracts regeneration of the spinal 

cord (205). This hypothesises that the creation of particular cell kinds in precise orthotopic sites 

may be essential for better regeneration of spinal cord injury. In such a situation, seeding of cells 

in a preprinted scaffold is limited during particular neuron subtypes placing in desired sites, in 

particular onto a multichannel scaffold in micro diameter. Therefore, 3D bioprinting has been used 

to print patient-specific scaffolds with appropriate bioinks containing the required 

biomolecules/cells for positioning them precisely within the scaffold during printing. Using this 

approach particular neural subtypes can be placed in defined areas for best possible axonal 

innervation and orthotopic reconstruction connectivity of the damaged spinal cord (191, 193, 217, 

218). Joung et al. used an extrusion based bioprinting method to fabricate a living model of spinal 

cord. To do so, a multichannel neurocompatible scaffold containing various kinds of stem cells 

derived neural progenitor cells (particularly, oligodendrocyte and spinal neural progenitor cells) 

with accurately positioned cells in specified places was printed (216). Both spinal neural 

progenitor and oligodendrocyte progenitor cells in suspensions of Matrigel were directly printed 

onto multichannel (150 µm in diameter) biocompatible silicone scaffolds. In this work, spinal 

neural progenitor cells were anticipated to differentiate into locally specified spinal neurons that 

thereafter create axons, and oligodendrocyte progenitor cells were foreseen to differentiate into 

oligodendrocytes that subsequently, across the channels of the scaffold, myelinate the axons, 

therefore forming a system of neural relays throughout the injury site. Both spinal and 

oligodendrocyte progenitor cells differentiated quickly and the spinal neural progenitor cells 

produced axons in channels of the bioprinted scaffold during 4 days. Additionally, this strategy 

allowed multiple kinds of neural cells to be printed simultaneously in a particular channel (clusters 
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of oligodendrocyte progenitor and spinal neural progenitor cells were positioned in a channel with 

a spatial distribution of around 200 µm). The printed spinal neural progenitor cells were indicated 

the ability to produce functionally active neuronal networks, which is a key for this therapy (216).  

To mimic structurally and mechanically the 3D environment of the native spinal cord, 

biodegradable composite of alginate-methylcellulose (6% (w/v) of low viscosity alginate and 18% 

(w/v) of medium viscosity methylcellulose) was used for multilayered scaffolds bioprinting 

containing dispersed cells in channels of the printed scaffold (216). As a polysaccharide-based 

hydrogel, alginate might lack the necessary protein components required for adhesion of cells, 

where cell attachments could be enhanced for long term survival using short peptide motifs, 

including arginylglycylaspartic acid, laminin-derived peptide (YIGSR), laminin alpha 1 chain Ile-

Lys-Val-Ala-Val (IKVAV), RYVVLPR, and RNIAEIIKDI (219). It has been reported that 

mechanical cues resulting from extracellular matrices have significant influences on cellular 

characteristics, and therefore, are of importance in biomaterial’s designing. A DNA cross-linked 

hydrogel with tunable stiffnesses (100 Pa to 30 kPa) was used to study cellular responses of 

neurons of spinal cord to substrate compliances. It was revealed that although primary dendrite 

lengths were not significantly affected by stiffness, more primary dendrites of spinal cord neurons 

extended; however, with rising stiffness, axons tended to shorten (220). When neurons were faced 

with stiffer substrates, there was a remarkeable decrease in focal adhesion kinase, suggesting its 

response to stiffness and involvement in neuronal neuritogenesis and mechanosensing (220). 

Khandaker et al. used poly(ethylene glycol) diacrylate with optimal rheological characteristics and 

revealed that the photoinitiator used for the polymerization process of this polymer is toxic for the 

printed samples containing DP147 dermal fibroblast cells (221). Cells viability tests for both 

poly(ethylene glycol) diacrylate gels having 0.2% and 0.6 wt% photoinitiator showed significant 
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differences after 7 days of incubation. Many unresolved issues remain in repair of central nervous 

system injuries regarding transplantation approaches and cell survival. Successful direct printing 

of various kinds of signaling molecules and neural progenitor cells onto channels of a particular 

scaffold will create a promising engineering approach for multicellular neural tissue developments, 

where the ability to control the differentiation, growth, and position of transplanted cells will be 

helpful in regenerating/repairing the damaged tissue. This progress not only reveals new 

opportunities in in vitro studying of interactions of multiple cell identities to model appropriate 

configuration of cell grafts, but even also enables the possibility of fabricating high quality 

organotypically organized, and spatially distributed cell transplants. Furthermore, considering 

inherent 3D structures of 3D printed scaffolds could even enable to print user-defined constructs 

using 3D bioprinting approaches and culture them as an organoid to grab more of the complicated 

interactions created within the development and cell identities. 

A summary of commonly used bioinks and bioprinting methods in tissue engineering 

applications is outlined in Table 2. Printing accuracy or dimensional tolerance of a method less 

than ± 0.1 mm,  less than ± 0.5 mm, and greater than ± 0.5 mm is considered as high, medium, and 

low, respectively. Scalability (i.e. capability to print constructs in various dimensions (build 

volume)) of different 3D-printed constructs depend on the selected printing material, printer 

model, and manufacturer. For instance, a printer scalability with a build volume greater than 103 

cm3, less than 1 cm3, and 125 cm3 could be considered as high, low, and medium. However, it 

should be considered that scalability and Printing accuracy depend on the selected printing 

material, printing device, and its manufacturer. Therefore, the range of available products/outputs 

was assessed and compared with each other. Cost was considered to include the printer cost  and 

the entire process cost (from materials preparation to start printing and post-printing processings).   
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Table 2: Comparison of different 3D bioprinting methods in terms of printing accuracy, mechanical integrity, scalability, cell viability, 

and cost. 

3D bioprinting 
methods Example Bioink Printing accuracy* Scalability Viability of 

cells (%) Cost Ref. 

Laser-based 
bioprinting  

Bone Collagen–/ polycaprolactone- 
nano hydroxyapatite 

H L > 95 H 

(21, 
109, 
173, 
222, 
223) 

Skin 

Alginate hydrogel- human 
blood plasma and 

Ethylenediaminetetraacetic acid 
(EDTA) 

Inkjet bioprinting  

Bone 

Gelatin methacryloyl (GelMA)- 
PEG/ polylactic-co-glycolic 

acid (PLGA)/ PCL/ β-
tricalcium phosphate (β-TCP) 

M H > 80 L 

(10, 
149, 
154, 
155, 
173, 
224-
232) 

Cartilage Alginate / Nanocellulose/ 
PEGDA/ PEG-GelMA 

Muscle Polyurethane (PU)/PCL/ 
gelatin-methacryloyl 

Lymphatic 
tissue Modified collagen-alginate 

Neural 
tissue 

GelMA-poly(3,4-
ethylenedioxythiophene) 

(PEDOT)-polystyrene sulfonate 
(PSS)-PEG 
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Liver 
tissue 

Galactosylated alginate/ 
Collagen/ liver decellularized 

extracellular matrix 

Skin 
Poly (N-isopropylacrylamide-
co-acrylic acid) (p(NIPAAm-

AA) 

Extrusion based 
bioprinting  

Bone 

Alginate /Gelatin/Gellan gum-
GelMA/ Nanosilicate/ 
magnesium phosphate-
strontium/ PLGA/ PCL 

L H 40 - 95 L to 
M 

(10, 
87, 
110, 
173, 
181, 
223, 
226, 
233-
241) 

Cartilage 

Collagen 

Alginate/Nanocellulose/Agaros
e/ Polyethylene glycol 

monomethacrylate (PEGMA) 

Muscle Fibrinogen/Gelatin glycerol 
hydrogel/ hyaluronic acid 

Neural 
tissue Forkhead box D3 modified PU 

Endocrina
l tissue 

Collagen/Gelatin / 
Alginate/PLA 

Skin 
Alginate/ Gelatin/ Collagen 

fibrinogen hydrogel/ 
polyvinylpyrrolidone (PVP) 

Stereolithography 
bioprinting  Bone GelMA/ Graphene reinforced 

PU H M 25- 85 M (47, 
48, 
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Neural 
tissue 

Graphene nanoplatelets / 
GelMA 

242-
244) 

H: high; M: medium ; L: low. 

* Refers to how closely the fabricated constructs correspond dimensionally to the original CAD design 
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4 3D-Printed Microfluidics devicess/organ-on-chips   

Microfluidic devices are a group of designed and manufactured microchannels that enable 

mixing of small amounts of reagents for various biological  and chemical applications. These tools 

have been developed for point-of-care diagnostics, to analyze biological and chemical procedures,  

and for cell culture  in a completely controllable microhabitat. Microfluidic devices significantly 

decrease the required volumes of biological samples and reagents (less invasive diagnostics), 

operation and manufacturing costs, as well as improving productivity, due to their ability to 

perform detection and separation with high sensitivity and resolution (245, 246). Alhtough to date, 

3D bioprinting has been predominantly developed for therapeutic tissue engineering purposes (i.e. 

bone, skin, liver, blood vessels, cartilage and heart tissues) (154, 184, 247-253), engineered tissues 

in microfluidic devices can be used to simulate more complex physiological processes, functions 

and responses (34, 254). Furthermore, it is possible to imitate immune cell movement throughout 

the perfusable vascular system produced in the tissue prototypes (255), helping to clarify immune 

responses and behavior in the human body. 3D printing techniques for organ-on-a-chip 

technologies are an emerging area allowing the functional replication of tissues to improve 

biological analysis and drug screening (256). Organ-on-a-chip technologies are micro-designed 

biomimetic apparatuses that can replicate the crucial active units of human tissues by incorporating 

micro-manufacturing with microfluidics (257). Researchers have used soft lithography methods to 

develop organ-on-a-chip platforms that aim to reproduce various tissue functions, such as those 

performed by the gut, lung, brain, blood vessels, and heart (255, 258-260). These investigations 

have confirmed that organ-on-a-chip technologies can closely replicate native organ function, 

allowing for accurate predictions of drug and tissue behavior, and provide a valuable preclinical 

analysis tool for the progression of novel medicines. However, the complex and multistage chip 
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production procedures, including secondary cell seeding, glass-polydimethylsiloxane 

polymerization and chip bonding, make it laborious to produce chips for multiple cell types or to 

replicate different native extracellular matrix habitats with spatial heterogeneity similar to that of 

native tissues (261). Instead, 3D printing may provide an ideal method to solve these technical 

problems via an on-demand production process; for example, researchers have engineered vascular 

systems by creating perfusable channels within 3D tissue prototypes, by both direct and indirect 

printing with endothelial cells and fugitive bioink (262). Bioinks encapsulating parenchymal cells 

or, for instance, muscle or bone cells, have been used to fabricate vascularized, functional 3D 

tissue prototypes (254, 262, 263). A summary of advantages and disadvantages of commonly used 

bioprinting methods is outlined in Table 3, with comparisons between different features of the 

methods. 
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Table 3: Comparison of different 3D bioprinting methods in terms of printing resolution, speed, pros and cons. 

Printing methods Print 
resolution Print speed Pros Cons Ref. 

Laser-based 
bioprinting ~ 20–100 µm ~ 106 mm3.h−1 

Higher resolution 

Relatively higher fabrication 
speed 

Able to print metals 

Powders can act as a support 
base 

High porosity 

Formation of a second phase 

Reletively poor mechanical 
strength because of high 

porosity 

Stair-step effect 

Due to high power laser (high 
temperature) 

High specific energy density 

 

(21, 
109, 
173, 
222, 
223, 
264, 
265) 

Inkjet bioprinting ~ 50–400 µm 
~ 5 ×105 

m3.h−1 - 25 
mm.h−1 

High speed 

In a layer fabrication support 
constructs are included 

Relitevly high printing speed 

Printability of multiple materials 

Different kinds of raw materials 
can be used 

Capability to print reletively 
high porous constructs 

Low process cost 

Post-processing is needed 

Relatively  high waste of 
materials 

Trapped support removal 
from internal cavities is 

difficult 

Low viscous inks required 

(~ <0.25 Pa s) 

Reletively poor mechanical 
strength because of high 

porosity 

(10, 
149, 
154, 
155, 
173, 
224-
232, 
264, 
265) 
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Lower specific energy density 

Capability to fabricate ceramic 
molds 

Incapability to precisely 
control the size and direction 

(directionality) of droplets 

Grainy or rough surface 
finishing 

 

Extrusion based 
bioprinting ~ 100-300 µm ~ 105 mm3.h−1 

Relatively low cost of process 
and the entry-level machines 

Different kinds of raw materials 
can be used 

Easy and versatile to customize 

Printability of multiple materials 

 

Relatively low level of 
resolution, precision and long 

fabrication time 

Incapability to print sharp 
external corners 

Printed parts have relatively 
anisotropic nature 

Supporting structures are 
required 

Fusion of interlayers can be 
affected in process by the 
filament circular cross-

section 

Frequent clogging of the 
nozzle 

Relatively rough surface 
finishing 

 

(10, 
87, 
110, 
173, 
181, 
223, 
226, 
233-
241, 
264-
266) 
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Stereolithography 
bioprinting ~ 50–200 µm ~ 106 mm3.h−1 

Relatively higher resolution and 
fabrication speed 

Relatively smoother surface 
finishing 

Relatively low specific energy 
density 

Post cleaning to remove the 
resin is required 

Low strain at break and 
opacity for advanced 

applications 

Fabrication of ink rheology 

Limitation on resin choice 

Possible cytotoxicity of 
residual 

photoinitiator and uncured 
resin 

(47, 
48, 

242-
244, 
264-
266) 
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5 4D printing for biomimetic biofabrication 

Recently, in vitro tissue prototypes have received growing interest for application in drug trials 

and screening, providing a means of more precisely forecasting the behavior of and physiological 

responses to pharmaceutical compounds, and subsequently expediting the drug discovery 

procedure (111, 140, 256, 267, 268). Here, 3D bioprinting has emerged as a versatile method that 

can be successfully conducted to build biomimetic tissue structures with some degree of spatial 

accuracy (177, 183, 233, 269, 270). 4D printing is categorized as a procedure that links time with 

additive manufacturing. Actually, it has proposed that this method involves printing of a 3D 

construct capable of tolerating a controllable shape alteration (271, 272). In other words, 4D 

printing describes an evolution in 3D printed constructs, in terms of functionality, size, properties, 

and shape (272) that can be outlined as fabricating structures using additive manufacturing 

approaches with the ability to self-transform, in function or form, upon exposure to a 

predetermined stimulus such as heat, moisture, pressure, light, and electricity among others (273-

275). The 4D bioprinting process, based on 3D bioprinting, but with embedded stimuli responsive 

capability (e.g. shape alteration), allows printed objects to more closely imitate the dynamics of 

native tissues. To achieve this, biomaterials with stimuli-responsive behavior can be incorporated 

into the 3D bioprinting strategy to create biologically functional structures that can adjust form in 

response to appropriate stimulation (276, 277). This shape transformation ability is considered to 

be the added ‘4th dimension’ to printed 3D objects. Crucial requirements for 4D printing include 

programmability of a material, multi-material printing methods, and precise designs for meticulous 

transformations (278). Remarkable further levels of complexity in a construct can be created using 

4D printing approaches (e.g. changeability in functions and shapes) that cannot be achieved using 

any other current manufacturing techniques, including mechanical machining or focused ion beam 
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(279). While both 3D and 4D processes are almost similar and start with a 3D design and a printing 

stage, various key dissimilarities can be found between these two printing approaches that is 

illustrated in Figure 7, where 3D printing uses one or multiple materials to fabricate a static 

construct and 4D printing uses functional materials as well as some additional operating conditions 

to print structures with dynamic nature (able to respond to external stimulus).  Firstly, 4D printing 

requires a facility with the capability of printing multi-materials since the variations in the material 

features (e.g. thermal coefficient or swelling ratio) are the base of creating stimuli responsive 

constructs. Secondly, to predict the alterations in the 4D printed structure and to consider it within 

the design step, mathematical modeling needs to be done to achieve a desired final product. 

Thirdly, an accurate stimulus is required to trigger functional or morphological changes in the 4D 

printed constructs. Common stimulus used in this regards are humidity, heat, light, electricity, or 

a combination of these stimuli. Finally, to achieve an effective 4D printed construct considering 

interaction mechanisms among used smart/functional materials as well as printing procedure is 

essential (e.g. to select appropriate printing device based on materials, to have knowledge about 

the stimulus duration and its intensity among others, and eventually if more than one stimulus is 

applied to know the order in the application of them) (19, 271-275, 279, 280). Additionally, 

printers need modifications (e.g. different binders or lasers based on the employed approach and 

material, modified nozzles) that enable multi-material printing and it is worth to mention that 4D 

printing approaches expands the range of additive manufacturing applications to those fields with 

a necessity of dynamical configurational changes (19, 271-275, 279, 280). Considering these, 

smart design and materials are vital in 4D printing, as 4D printed constructs need a comprehensive 

design including deformations prediction and analysis (i.e. digital data of the response) as well as 

smart materials with the ability to respond a particular stimulus by morphological or functional 
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changes. As is detailed in this section, these materials include hydrogels or polymers able to alter 

their size, structure, shape, or function in response to external stimuli (274, 275, 280-284). 
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Figure 7: The general shematic of 3D and 4D printing including both (1) materials, (2) processes (A, an extrusion-

based 3D printer using I: solid polymeric filament, which is processed through II. an automated gear system, 

forcing it through a nozzle at the base of the print head. III: This heated nozzle melts the filament and IV: molten 

extrudate is printed and fuses with the in-progress product upon cooling. B, Powder bed (binder deposition) 

printing using I: a powder roller that pushes thin and level layers of powder to the print surface under the inkjet 

print head (IV) II: powder composed of API. III: a height adjustable plate (moves in Z direction) to continuously 

provide new layers of powder at the appropriate height (moves in Z direction). IV: inkjet print head that 

selectively binds only powder in specific locations in the layer. V: unbound powder.) and (3) products (i.e. a 3D 

bioprinted static construct and a 4D stimuli responsive bioprinted construct with the capability to change its 

functionality, shape, or size. Image credit Mr Karim Osouli-Bostanabad 
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5.1 4D Materials  

Autonomous structures that respond to their surroundings require mechanisms for actuation and 

sensing. There is equally a great need for new materials that are biodegradable and can be 

eliminated or cleared by the body without any adverse effects. Subsequent innovative studies in 

this field have developed biologically relevant tissue responsive materials, and led to the 

development of resorbable biomaterials, which experience resorption and chemical cleavage in 

body, allowing for the integration of native tissue as the structure breaks down (285).  

Biomaterials must satisfy sophisticated conditions or requirements, which vary for different 

applications. As such, selection of an appropriate material with desired functions for a specific 

application is vital, and materials with tunable properties are therefore particularly desirable, as 

they can be adjusted as required. The fabrication of multifunctional biopolymers, which combine 

biodegradability and shape-memory effects, have received significant attention, particularly for in 

vivo applications (286, 287). Manufacturing and use of these biodegradable polymers (particularly 

those produced using renewable resources) have also increased due to the environmental 

challenges linked with polymeric materials usage (288). The most commonly used biodegradable 

polymers are composed mainly of polyesters, especially aliphatic polyesters, whose monomers can 

be derived from renewable resources, in addition to commonly used petrochemical sources (288). 

5.1.1 Polymers with shape-memory characteristics  

Polymers with shape-memory characteristics are finding applications in various sectors 

including biomedicine, healthcare, and engineering. These compounds have multi-shape (dual, 

triple, or more) memory based on their temporal or permanent shape transition number, when the 

material is subjected to an external stimulus. Light, pH, temperature, and redox conditions are the 

chief stimuli capable of initiating the material response, amongst others (289). However, the most 
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commonly investigated polymers with shape-memory characteristics react to temperature change, 

where the material changes from its temporary to permanent shape at the “transformation”, 

“transition” or “switching” temperature (Ttrans). The Ttrans of a shape-memory polymer is dependent 

on the polymer’s primary transitions, occurring either at the melting temperature (Tm) or the glass 

transition temperature (Tg), where polymers with shape-memory characteristics can be classified 

as Tm- or Tg-based polymers (290). Chemical and physical interactions (e.g., covalent bonds, 

physical bonds, or interpenetrating network formation) can fix the permanent shape of a polymeric 

material. The network that has formed by these interactions is able to develop a shape memory 

behavior, where the bonded areas are generally called net-points. Although both chemical and 

physical interactions could effectively create a polymer with shape-memory characteristics, 

polymers that are cross-linked chemically demonstrate a permanent shape with more stability. It 

is crucial to consider that any polymer with shape-memory characteristics shows two vital 

elements that could establish the triggering zones and permanent shape; these are the switching 

domains and net-points. Polymerization and crystallization of polymers with shape-memory 

characteristics can cause switching domain fixation, relying on Tg and Tm as the primary thermal 

transition temperatures (for detailed discussion readers are referred to (291, 292)). Various 

polymeric substances have been employed to produce polymers with shape-memory 

characteristics; however, biodegradable polymers have emerged as the most appealing compounds 

for biomedical applications, particularly for temporary devices (e.g., catheters, stents, and sutures) 

where biodegradability eliminates the need for detachment and removal from the treatment site. 

Another appealing aspect of these materials is that optimized synthesis of biodegradable polymers 

with shape-memory characteristics could allow for fabrication of polymers with a transition 

temperature similar to the temperature of the human body (293). One of the most commonly used 
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biodegradable polymers with shape-memory characteristics is polylactide/polylactic acid, and its 

derivatives. Poly(L-lactide) is a widely studied Tg-shape-memory polymer that has shown 

significant advantages including excellent biodegradability and biocompatibility, and facile 

processability where its crystalline part has been used as a permanent physical system (294). 

Additionally, shape-memory characteristics of physically cross-linked poly(L-lactide) and its 

copolymers, such as poly(lactide-co-glycolide), have been reported (236, 295, 296).  

Another commonly used polymer with shape-memory characteristics is polycaprolactone, a 

biodegradable member of the polyester family with a relatively low Tm (60°C) and Tg (−60°C). 

Lorwanishpaisarn et al. fabricated a novel biodegradable blend of polycaprolactone/epoxy with 

dual self-healing and responsive shape-memory characteristics, indicating that the compound 

could be used as a coating or dual-triggered sensor for different applications, including medical 

devices (297). Both crosslinking and/or copolymerization methods have been reported to produce 

polycaprolactone with adjusted shape-memory and mechanical characteristics. Since the glass 

transition temperature is below zero, the shape-memory behavior is activated at the melting point. 

Therefore, adjusting the melting point of polycaprolactone using copolymerization, blending, or a 

covalent network addition alters the shape-memory characteristics of polycaprolactone (298-300). 

Other polymers used in this field are polyurethane, natural polysaccharide, starch and chitosan-

based polymers, with numerous formulations used to advance or improve biodegradable 

substances (301-304). 

5.1.2 Piezoelectric materials 

Another example of these multifunctional materials is piezoelectric compounds, a class of 

materials that have electric responses (e.g., accumulation of electrical charge on the material 

surface) to mechanical stimuli. It has been revealed that this phenomenon is tightly linked with 
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crystalline structure of materials (305) and analysis of various materials from a crystallographic 

perspective has shown that a central symmetry absence in the unit cell results in the direct 

piezoelectric effect (306). Novel organic and inorganic piezoelectric substances with sophisticated 

characteristics and wider functionalities have recently been described (307, 308).  

Biomaterials with piezoelectric characteristics are a particular group of smart/multifunctional 

materials that offer numerous benefits in comparison with common biomaterials, as they can 

readily transduce electricity to living systems in response to various procedures (e.g. body 

movements, cell migration, or external stimulation (e.g. vibration and ultrasound)). Additionally, 

materials can also provide reverse piezoelectricity, or the transformation of electrical stimuli to 

mechanical stresses (309). Numerous biomaterials with piezoelectric characteristics have been 

discovered for various biomedical applications, including collagen, polyvinylidene fluoride, 

poly(L-lactide), and poly (D-lactic acid) (310, 311). Examples of applications of these materials 

are given in section 5.2. 

Different parameters influence piezo-transducer/material sensitivity, such as material selection, 

fabrication, activation, and post-treatment conditions. Furthermore, due to the processability, 

biocompatibility, and versatility of piezoelectric polymers, the application of these polymers is 

spreading in various fields such as tissue engineering and self-powering implantable instruments. 

The development of piezoelectric polymers that are compatible as cell culture surfaces or 

structures may further expand the relevance of these materials in tissue engineering and 

regenerative medicine. Piezoelectric biomaterials are also gaining considerable interest in 

healthcare industries for their associated mechano-electrical characteristics applicable in intriguing 

and novel approaches to cure, repair, and improve body functions. To reach these goals, the 
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fundamentals of the piezoelectricity of polymeric nanocomposites must be fully and methodically 

characterized, and their multifunctional design considered. 

5.1.3 Thermoresponsive biomaterials 

Polymers whose solubility changes in accordance with the ambient temperature are named 

thermoresponsive polymers. This solubility alteration is associated with conformational changes 

in the structure of the polymer. The solubility alteration temperature occurs at Ttrans, which can 

also be called the critical solution point/temperature (Tcrit). Thermoresponsive biomaterials are 

multifunctional compounds that can be used in various aspects of regenerative medicine and tissue 

engineering. Based on the substance, they can be employed as injectable in situ gelling compounds, 

as hydrogels for 3D printing, or as a biomaterial surface modifier for the engineering of cell sheets. 

Several thermoresponsive biomaterials have been used in biomedical applications and in 

thermoresponsive surface development including poly(N-isopropylacrylamide), its copolymers 

and derivatives, elastin-like polypeptides, pluronics, and poly(N-vinylcaprolactam) (312-315). 

Examples of applications of these materials are given in section 5.2. 

5.1.4 Electrically conductive polymers 

Electrically conductive polymers have optical and electrical characteristics similar to those of 

inorganic and metal semiconductors; however, they also show appealing characteristics 

comparable to those of regular polymers (e.g., easily synthesized and good processability), unlike 

metals (316). This is an important consideration for biomaterial applications, as it has been shown 

that endogenous electric fields have an important role in tissue regeneration (i.e. early embryonic 

advancements) and it is established that bioelectricity is an integral part of living systems (317); 

for example, developmental imperfections in the embryonic stage may appear because of slight 



 

 53 

deviations from the embryo field potential (318). Endogenous electric fields may affect cellular 

operations including migration, chemotaxis, differentiation, and proliferation of cells. 

Furthermore, endogenous electric fields also influence intracellular communication, cell division, 

mechano-transduction, neuronal activities, epithelial/bone healing and ion transport (319, 320). 

Considering the importance of bioelectricity, electrotherapy has been advanced for stimulation 

of deep brain, accelerated wound healing, improvement of musculoskeletal conditions, tissue 

regeneration, and bone fracture recovery (321). Electrically conductive polymers present supreme 

electrical characteristics and have been investigated in recent decades in different biomedical 

applications such as tailored release systems, neural prostheses, neural probes, and bio-sensors 

(322-325). Furthermore, researchers have demonstrated that cellular activities could be tuned via 

electrical stimulation (i.e. conductivities 10-4 -10-9 S/cm) of electrically conductive polymers. 

These activities, including cell migration, cell growth and controlled cell differentiation, resulted 

in significant attention on the use of these polymers and their derivatives in tissue engineering 

(326-330), which commonly deal with electrical stimulation responsive cells including bone, 

nerve, muscle and cardiac cells (323, 331, 332). Compatibility of electrically conductive polymers, 

such as polythiophene, polyaniline, polypyrrole and their derivatives, with biological molecules 

was revealed both in vivo and in vitro (323, 333). Electrical conductivity is the most significant 

property of these materials; accordingly, studying biological responses related to these electrical 

properties is important for biomedical applications. Usually, neurons using particular nerve 

endings or dendrites receive electrical signals and transmit them by means of nerve fibers (axons) 

to the body cells. Consequently, early works concentrated on the electrical stimulation of neurons 

using electrically conductive polymers as electrodes. The results revealed that these polymers 

could be employed as biological electrodes, and the growth of neurons could be increased using 
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an electrical field (334, 335). Recently, electrically conductive polymers have been used in 

nanocomposite design for tissue engineering (336, 337), with conducting nanocomposites shown 

to have the ability to adjust the rate of proliferation of various cell types, such as chromaffin cells 

(338), nerve cells (339), and endothelial cells (340). However, one of the main barriers to 

implementing these materials in tissue engineering is their inability to degrade, and as a result, 

maintaining electrically conductive polymers in vivo for a long period of time may provoke an 

inflammatory reaction and require surgical removal. Future work should focus on developing 

materials with both biodegradable and electroactive properties, as these would be extremely useful 

to and highly advantageous in the biomedical field. 

5.2 4D printing for Biomedicine 

4D printing has received significant attention both academically and industrially since 2013, 

although there is still a need for further research and development to commercialize this technology 

(341, 342). 4D bioprinting has great promise for applications in both therapeutic delivery and 

tissue engineering.  

5.2.1 4D bioprinting application for therapeutics delivery  

As previously discussed, a major point of interest in pharmaceutical research is the development 

of drugs that can be released in a clinically-relevant manner, in terms of both location and time. 

4D bioprinting methods can be used to optimize control over temporal and spatial delivery of 

medicines, with, for example, the ability to print various apparatuses that can self-unfold or self-

fold to release or encapsulate cells and/or therapeutic agents in a programmable way. For this 

purpose, multisomes (small oil drops encapsulating water-based droplets) were developed, which 

can be printed in water (343, 344), and then the encapsulated contents in the droplets can be 
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released by altering the temperature or pH of the surrounding solution. 4D printed materials can 

perform therapeutic functions via their responsive material properties, and could later be further 

enhanced with the inclusion of existing pharmaceutical compounds in the printed material. For 

instance, some mechanically robust, thermoresponsive hydrogels have shown up to 49% 

reversibility in their length at a heating/cooling cycle between 60 and 20 °C (i.e. when these 

hydrogels cooled from 60 to 20 °C, they swelled to their initial equilibrium conditions due to 

thermally induced actuation) that can be used to print cardiac valves with the ability to close the 

valve and reduce flow rate (~ 99%) by heat stimulation. Additionally, for treatment of heart disease 

or valve protection, the hydrogel can be loaded with desired drugs (345, 346). The same strategies 

can be applied to manufacture other micro- and nano-structures that are responsive to different 

micro-environmental alterations including osmolarity, light, humidity, or magnetic and electric 

stimuli (166). In one attempt, a composite of pentaerythritol triacrylate, poly(ethylene glycol) 

diacrylate, and magnetic nanoparticles (i.e. Fe3O4) was used to develop a biodegradable, 

biocompatible, and magnetically actuated hydrogel‐based microstructure potentially applicable for 

targeted drug delivery (347). Another magnetically controlled and powered, hydrogel-based, 

enzymatically degradable double-helical structure responsive to the pathological markers was 

fabricated by Ceylan et al. for delivery of drugs or other therapeutics. It showed that matrix 

metalloproteinase-2 (MMP-2), at typical physiological concentrations, could fully degrade the 

designed structure in 118 h to nontoxic soluble products, where the sample quickly responds to 

MMP-2 by swelling and consequently releasing the embedded molecules. Furthermore, magnetic 

nanoparticles tagged with anti-ErbB2 were released from the completely degraded double-helical 

structure for targeted labelling of human breast cancer cells in vitro (i.e. SKBR3), with the aim of 

potentially using this construct further in medical imaging of cancerous tissues after drug delivery 
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(348). Using a similar approach, Bozuyuk et al. have proposed a double-helical, magnetically 

powered, polymer-based microswimmer that could release doxorubicin on-demand in response to 

stimulation of an external light source (349). In research to develop more versatile materials with 

a shape memory function, Liu et al. developed a chemically crosslinked polycaprolactone structure 

containing hydroxyapatite nanoparticles to deliver growth factor BMP-II in a controlled manner. 

In vivo evaluation of this construct in a rabbit mandibular injury revealed that BMP-II loaded 

scaffolds promoted regeneration of new bone and that the scaffold recovered its initial shape by 

body temperature stimulation after implantation (350).  

In addition to printing existing materials to carry common therapeutics, another key aim of 4D 

printing is to improve existing therapeutic strategies by providing on-demand delivery of 

therapeutic agents, facilitating ongoing tissue repair or regeneration after treatment. One means of 

achieving this is printing carriers with shape-memory characteristics, which can be manipulated 

for easy ingestion or injection, and can then recover their initial shape in the body, serving as a 

drug depot. For example, Melocchi et al. have proposed a poly(vinyl alcohol)-based expandable 

drug delivery system with shape memory behavior and easy ingestion capability for gastric 

retention. Prototypes were printed in compacted form to be swallowed easily and it was reported 

that the prototypes recovered their original shape within a few minutes at body temperature in a 

0.1 N hydrochloric acid solution, and that this approach prolonged the drug release (approximately 

2 h) independent of manufacturing procedures and original shapes (351). 

Although much research has been done to develop drug delivery systems and improve control 

over their shape deformation, drug localization, and biological functionality, few advancements 

have been made in translating these systems to the clinic. For 4D printed therapeutic delivery 

systems, there are rigorous criteria for clinical applications, such as high sensitivity and selectivity, 
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and accurate and rapid responses to stimuli. There is also a need to demonstrate robust efficacy 

and safety of 4D printed products, particularly for commercialization, approaches to scaling-up 

production. Consequently, while 4D printing techniques provide novel opportunities to effectively 

and efficiently manufacture drug, cell, or growth factor delivery systems, there is still much work 

to be done before these systems can be used in real world applications. 

5.2.2 4D bioprinting application for tissue engineering 

4D bioprinting technologies have the ability to create dynamic reprogrammable tissue structures 

that can encourage cellular growth and distribution uniformly. For instance, 4D polymeric-based 

cardiac constructs with adjustable curvature, on-demand light responsive shape changeability, and 

aligned microstructures were developed to imitate and repair myocardial tissue (352). 

Microgroove arrays with optimal widths were found via culturing mesenchymal, cardiomyocytes 

stem, and endothelial cells on the surface of the printed constructs, and evaluating their 

differentiation and proliferation profiles. The results revealed that 4D printed constructs have the 

ability to promote a remotely controllable and dynamic spatiotemporal transformation, distribute 

aligned cells uniformly, and promote myocardial maturation efficiently (352). Using the same 

strategy, Constante et al. reported the fabrication of shape-morphing scaffolds based on a 

combination of melt-electrowriting of polycaprolactone fibers and 3D printing of methacrylated 

alginate (353). The combination of these two methods permitted deposition of various compounds 

in a programmed way and manufacturing of high resolution constructs. It was also shown that the 

geometric shape, environment media, and concentration of calcium ions in the scaffold, as well as 

the patterns generated on its surface by polycaprolactone fibers, highly affect shape-morphing and 

cell alignments (353).  



 

 58 

4D bioprinting is also demonstrating positive outcomes in the in vitro manufacturing of blood 

vessels, which has previously faced numerous challenges due to the physiological and anatomical 

characteristics of vasculature, particularly vessel reperfusion and structure. A combination of 

various cells, such as fibroblasts, mesenchymal stem cells, and endothelial cells, can be printed 

with hydrogels to form tubular constructs that imitate vasculature. Cell migration, proliferation 

and maturation occurs throughout the printed structures and consequently leads to vascularized 

constructs in which endothelial-specific definitive adhesion proteins and genes are expressed (25, 

354). Heo et al. used gelatin methacryloyl hydrogels containing dorsal root ganglion to print 

conductive constructs for neurovascular applications. To achieve samples with a high electrical 

conductivity, an aqueous solution of polystyrene sulfonate:poly(3,4-ethylenedioxythiophene) was 

blended with polyethylene glycol diacrylate. These fabricated conductive structures provided 

sufficient structural support to transfer electrical stimulation toward encapsulated dorsal root 

ganglion cells and promote neuronal differentiation (231). Despite these advances, manufacturing 

of small-scale vascular constructs remains limited due to the restrictions on resolution using this 

approach. Other major challenges to the bioprinting of structures with capacity for vascularization 

include providing adequate nutrient exchange for the printed vasculature and the integration of 

these structures and vessels with host vasculature after implantation (355). 

4D bioprinting can also be used for printing hard, morphologically rich yet macroscale structures 

like trabecular bone. For example, a combination of β-tricalcium phosphate, polycaprolactone, and 

poly(lactic-co-glycolic acid) was used to fabricate tailored synthetic scaffolds with a cell- laden 

mineralized extracellular matrix to mimic bone tissue and promote the biological activity of the 

printed structure (224). A flask bioreactor was used to culture the bone grafts with mesenchymal 

stromal cells derived from human nasal turbinates to stimulate a bone-like microenvironment. This 
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patterned bone-like structure indicated increased calcium deposition, cell differentiation, and 

upregulated expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 

(RUNX2), osteopontin and osteocalcin genes. Additionally, greater bone formation was observed 

in vivo in comparison to scaffolds that were not tailored (i.e. bare scaffolds).  Prasopthum et al. 

have also demonstrated the versatility of 4D bioprinting for hard tissues, developing conductive 

and degradable polymer scaffolds to foster chondrogenic differentiation of chondroprogenitor 

cells. They demonstrated the feasibility of 4D-printed flexible, electroresponisve scaffolds in 

cartilage tissue regeneration (356). Despite promising research in this area, further work is still 

required to strengthen structures mechanically and improve their biomechanical characteristics. 

4D bioprinting approaches have also been used to design and manufacture gland structures; a 

major unanswered oncological question is how to develop constructs to mimic efficiently the 

complex environments of a tumor in vitro for cancer studies. By using a self-folding approach, 

curved microstructures made of bilayers of photopatterned gelatin/co-polymerized poly(ethylene 

glycol) diacrylate were fabricated to accurately imitate acinus and duct geometries in the mammary 

glands, which, compared with existing flat dishes or 3D block-like models, showed that the 4D-

printed structures are more reliable models for acini and ducts (357). The versatility and 

biocompatibility of this approach was highlighted by either culturing SUM159 human breast 

cancer cells after printing (i.e. postfabrication seeding) or encapsulating MDA-MB-231 human 

breast cancer cells in hydrogels, where cell viability was confirmed over 9 and 15 days, 

respectively (357). Amongst various 3D models including biopolymer scaffolds, ex vivo tissue 

slices and spheroid cultures, 4D bioprinting has a competitive superiority because of its ability to 

meticulously define and control the appropriate structure, print materials with shape 
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transformation ability to mimic the native tissue, and deposit multiple cell types in a high-

throughput approach. For detailed information in this area, readers are directed to (358-361).  

Taking into account the nanostructural characteristics of human tissues (362), 4D printing 

approaches have benefited from nanomaterials and smart/functional nano-bioinks for printing of 

tissue scaffolds (19, 273, 280). The incorporated nanomaterials may have interactions with 

functional materials that enhance 4D effects of the printed bio-tissues. For example, Cui et al. 

printed a brain model using smart nanocomposites (responsive to near-infrared light) to study 4D 

transformations, controllability of these transformations, and to explore the possibility of 

modifying behavior of neural stem cells using photothermal stimulation (280). In this work, 

nanoplatelets of a photothermal graphene were embedded in a shape memory thermo-responsive 

polymeric matrix, where the graphene acted as a thermal energy source by absorbing photons from 

a near-infrared light that eventually led to an observable transformation of the printed models. In 

comparison to direct thermally triggered shape shifting procedures, this smart nano-bioink is 

especially effective in fabrication of tissue scaffolds due to the fact that a long-wavelength, near-

infrared light can penetrate efficiently into human tissues and is human benign (280). In future 

studies, it may be required to print the cell subtypes of the brain tissue, containing defined 

vascularization, and gradients of signaling factor for development of sophisticated brain models 

and their applications. Additionally, electroactive materials similar to other stimuli responsive 

materials can be integrated with a multiple responsive 4D printing approach, as a proof of-concept 

a graphene hybrid 4D structure was fabricated using stereolithography-based 4D printing as a 

smart nerve guidance conduit for nerve regeneration showing remarkable multifunctional 

properties, such as chemical cues, physical guidance, seamless integration, and dynamic self-

entubulation (363). Additionally, the printed structure possesses shape memory characteristic. The 
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results of neurogenic differentiation of human mesenchymal stem cells on nanohydrid 4D printed 

conduits and their photo-cured counterpart revealed, while both had excellent neurogenic 

capability, the nanohydrid 4D printed constructs presented a remarkable aligned topography 

because of the microfeatures induced from printing. Moreover, it was found that the nanohydrid 

4D printed conduit can considerably enhance neurogenic differentiation of human mesenchymal 

stem cells (363). By employing this printing approach, fabricating multiresponsive smart 

constructs, and demonstrating feasible application, 4D printing is thus an attractive promising 

candid in different high-value research fields, including spinal cord injury, neural tissue 

engineering, and peripheral neuropathy leading to muscular atrophy, but definitely not limited to, 

biomedical devices, and soft electronics. 

Over recent years, other organs and micro-tissues have also been designed and fabricated by 4D 

bioprinting methods. For instance, cell-laden hydrogels for bio-artificial pancreases have been 

manufactured, where these cell-loaded structures must support and maintain cell viability while 

providing appropriate permeability and stability characteristics (364). Successful translation of this 

type of construct to the clinic may diminish or even eliminate the need for immunosuppressive 

drug therapies to avoid rejection of a transplant, as well as addressing donor tissue scarcities by 

using cells derived from xenogeneic or allogeneic sources (365, 366). Other works include the 

manufacturing of cardiac micro-tissues (25, 367), 3D human cancer structures or spheroids by cell-

laden hydrogels, and tracheal-bronchial shape-memory stents (368, 369). These tracheal-bronchial 

miniature implants adjust their configuration and contours according to different micro-

environmental variables, facilitating their physiological adaptation to the native tissue. In one 

study, three weeks after implantation in a child with tracheobronchomalacia, assisted ventilation 

of the site was avoided (370). Each of these examples highlights the enormous potential of 4D 
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printing strategies for clinical applications; however, further research and optimization of 4D 

bioprinting approaches is required before these technologies can be implemented. 

5.3 3D and 4D bioprinting: Challenges and Opportunities 

3D printing, which is a versatile technique, has been widely employed in numerous fields, 

including mechanical, biomedical, and electrical engineering. However, there are many associated 

challenges in applying this technology to biomedicine. For instance, bioink selection must be 

specifically tailored to a given application and printing technique, to ensure that the bioink retains 

adequate functionality in 3D, and that the integrated cells remain viable and are homogeneously 

distributed (371). Different bioprinting techniques have some issues on printing of cells, including 

enforced shear/mechanical stresses, laser or heat radiation induced changes, which subsequently 

result in cells viability decrement. Some studies reviewed the requirements of  materials in cell 

printing, from rheological, structural fidelity, design parameters, and  mechanical stability 

perspectives of printable inks (372-377). These reviews clearly discuss the issue from bioinks 

prespectives yet, there is a need to explore the challanges linked with cell printing methods. It has 

been mentioned that in droplet or extrusion based printing techniques, the droplet size should be 

at least larger than the cell wall diameter, even for a single cell printing, where the nozzle diameter 

for achieving a better resolution should be minimized, which it causes an increase in shear strains 

and consequently cell damages (378, 379). In conventional stereolithography methods, printing 

resolution relys mainly on laser exposure time and power, where focusing the laser beam for free 

radicals activation and better resolution achievement could lead to cells damage and reduce cellular 

viability. However, printing using two-photon polymerization approach is appropriate in 

comparison with stereolithography methods as infrared lights applied in this procedure are more 

safe to live cells (380, 381). The resolution enhancement also relies on shape fidelity preservation. 
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In extrusion based 3D printing methods, the shape fidelity could be disrupted by fusion or 

distortion of adjacent filaments from their overhang position. Consequently, cell distributions 

nonhomogeneously would be progrossed in the printed platform, and because of lack of a nutrient 

flow and oxygen, proliferation and cell viability decrease (379). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Besides that, there is a direct correlation between cell distribution and its density with 

printability, as dense cell-laden hydrogels lead to impaired growth of cells and nonhomogenous 

distribution of cells in a hydrogel creates density variation in printed constructs with most resides 

population of cells at structures periphery  as well as  occurrence of a nonhomogenous oxygen 

distribution that affects the growth of cells (382). For instance, a cell density of about 5 -10 × 106 

cells/mL serves as an ideal loading density in bone tissue engineering (382). Usually, hydrogels 

Figure 8: Effects of a) cell density and b) conical nozzle size on cell viability and printing 

resolution. This image reproduced from 382 under the Creative Commons license permission 

(CC BY-NC-ND 4.0, License Number: 5310690569636). Copyright 2019 Elsevier 
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with low modulus (<1 kPa) offers an ideal environment as bioink in 3D printing methods with an 

optimal proliferation ability and adhesion (382). It has been mentioned that strengthening of a 

polymer matrix could be influenced by cells in a high concentration (>5 × 106 cells/mL) while 

compromising interactions of cell-to-cell (Figure 8a) (382). 

Cells in a very low concentration (<1 × 106 cells/mL) lead to the polymer matrix relaxation 

and decreased in vivo integration (382). However, the excessively low viscosities of some bioinks 

may cause heterogeneous cell densities within bioprinted constructs (383). In contrast, bioinks 

with high viscosity may result in augmented shear stresses within the printing procedure, 

influencing cell functions and viability (384). In order to solve these challenges, a microfluidic 

process has recently been suggested to deposit bioinks with low viscosity, by which the sheath 

flow of a carrier was used to aid bioink extrusion through the print head core (385). Additionally, 

a more recent strategy named embedded bioprinting allows for direct 3D prototype writing in an 

anti-gravity manner on a supporting platform, from which the printed objects can be selectively 

removed or retrieved (386-388).  

Figure 8b shows the impact of nozzle diameter and its effects on the viability and 

distribution of cells. Nozzles in large diameters (> 800 µm) ascertain minimal cell-to-nozzle wall 

and cell-to-cell interactions that subsequently reduces the shear stress at the nozzle orifice and 

enhances cell survival rate chances. However, larger droplets are created using a larger nozzle, 

which hinder the printing resolution and nozzles in narrower diameters (< 250 µm) provide better 

printing resolution, while causing more shear stresses that result in the cell viability reduction. 

Nozzles with medium sizes (250–800 µm) offer a balance between the cell viability and print 

resolution (382). Cells selection for incorporation in bioinks relies on several parameters, including 

cells capability to withstand and tolerate printing modalities as well as postprinting crosslinking 
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mechanisms; proper proliferation ability of cells and their differentiation controllability in the 3D 

bioprinted platforms. The highest care should be given to cellular functions maintenance after 

printing and their biological signal paths identification within interactions with multiple cells at 

the host tissue during choosing the appropriate cell type for using in bioprinting techniques. 

Besides that, before starting the bioprinting, cells should reach to an appropriate confluency during 

the in vitro culture. An ideal cells selection would leads to obtain cellular homeostasis and enhance 

the probability of printed constructs biocompatibility with the organ or host tissue (389).  

Furthermore, extrusion pressure has a correlation with printing speed that ultimately 

influences cell viability. A higher extrusion pressure is often correlated with higher printing speed 

that results in lower cell viability. In this regard, Fakhruddin et al. have optimized a printing speed 

of 4 mm s−1 for their ink formulation on the extrusion-based bioprinting technique (390). In 

extrusion-based bioprinting, shear stress generation inside the nozzle wall is expressed by a power 

law function for non-Newtonian fluids that correlates apparent shear rate with shear stress. 

However, the shear rate on nozzle wall is directly proportional to the deposition velocity and 

inversely proportional to the nozzle radius (391). The detrimental effect of shear stress on cell 

viability has been already mentioned. 

As previous studies dealing with stem cells have mostly been done in 2D, there is a need 

to investigate and address the unknowns about culturing stem cells in 3D environments (e.g., cell 

viability, homogeneous distribution of cells). These techniques can then be used for high-

efficiency organoid printing, for predictive disease modelling and personalized drug screening 

(392-398). In bioprinting applications, stem cells are promising candidates due to their stress-

induced differentiation capability. It has been shown that high shear forces or mechanical pressures 

of extrusion-based or inkjet bioprintings, promote mesenchymal stem cell differentiation. Laser-
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assisted bioprinting techniques can maintain stem cell multipotency and ultimately use other 

mechanisms for stem cell differentiation. Furthermore, stem cells’ differentiation ability can also 

be regulated by scaffolds elastic modulus, where scaffolds with modulus in the range of 0.1–5 kPa 

are useful for adipose tissues and neuronal cell differentiation. Comparably, scaffolds with 

modulus between 8-30 kPa are favorable for bone tissue, cartilage, and muscle (399). Three types 

of stem cells (i.e. embryonic, induced pluripotent, and mesenchymal stem cells) are used in 

bioprinting techniques each with particular supremacies and limitations. Among them, 

mesenchymal stem cells are broadly employed because of their procurement simplicity. However, 

in comparison with embryonic stem cells, they lack in multipotency. Ethical challenges and issues 

linked with immunogenicity have limited the application of embryonic stem cells on a broad range 

of applications. Compared to mesenchymal stem cells, induced pluripotent stem cells have 

enhanced multipotency. However, some works showed there is a possibility of tumorigenesis 

promoting using these stem cells (399). Mesenchymal stem cells offer the differentiating 

advantage into other cell types, including adipocytes, osteoblasts, smooth muscle cells, cardiac 

cells, chondrocytes, endothelial cells, neural, and hepatocytes cells (389). Literature reviews 

showed that although high density of stem cells initially results in tissue formation enhancment, in 

the long run it decreases proliferation and viability of cells after printing. In contrast, a low density 

of stem cells is also not practically beneficial as it results in poor functionality. High cell density 

provides superior cell-to-cell interactions that help the differentiation toward sought cell types. 

However, seeding of stem cells in a high density needs a large amount of expansion in vitro that 

alleviates the alteration risk in cells phenotype. Additionally, high loading raises the bioink 

viscosity and negatively affect the capacity of waste removal and nutrient exchange of 

encapsulated cells. Consequently, the cell density selection also relies on the employed bioink to 
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achieve a desired functionality and directly correlates with the bioink viscosity of and considerably 

influences the printability (382, 400). 

Generic cell types, including stromal cells, neurons, and endothelial cells are omnipresent 

in multiple organs. The coexistence of multiple cell types is also visible in the native organs. The 

need to imitate the process of incorporating multiple cell types with bioprinting is endurable. It has 

the self-organization capabilities, especially in the organoids. However, the coexistence depends 

on a defined line of inclination within the guest cells, along with an optimum host and guest cell 

ratio (401). Maiullari et al. constructed multicellular heterogeneous cardiac 3D constructs through 

3D bioprinting. It is well established that myocardial functions are also governed by nonmuscular 

cells like fibroblasts and vascular cells. Hence, bioprinting of heterotypic human umbilical vein 

endothelial cells  and induced pluripotent stem cells derived cardiomyocytes provide enriched 

vascular networks. Human umbilical vein endothelial cells impose a high orientation index through 

different geometries and helps in the integration of the host's vasculature (402). Kuss et al. 

mentioned that commonly cocultured endothelial cells with mesenchymal stem cells possesses 

limited regeneration capabilities for craniofacial constructs (403). Bourget et al. experimentally 

proven that in laser-based bioprinting of endothelial cells and mesenchymal stem cells, 

mesenchymal stem cells provide the flexibility of maintaining the printed pattern over time. This 

study is useful for the selective migration of cells along with the study of the trophic factors (404). 

Datta et al. highlighted that complex dynamic cancer microenvironments can be imitated by 

utilizing bioprinting with multiple cell types. Bioprinting provides the advantage of controlling 

and observing multiple cell types behavior in 3D architecture. This multiple cell type for tumor 

model includes fibroblasts, adipocytes, patient-derived cancer cells, endothelial cells (405). 
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The inability of many 3D bioprinting systems to produce biological constructs with integrative 

biomimetic complexity is another major barrier. Therefore, in recent years many attempts have 

been made to facilitate multi-material bioprinting (406-410). While these two problems demand 

more technological advancement in instrumentation and materials, the third challenge represented 

here has led to the emergence of 4D printing.  That is, the established bioprinted 3D systems do 

not have the capability to show appropriate biological reactions, since the constructs are largely 

static, unlike the extremely dynamic morphologies of native tissues that respond to endogenous 

stimuli (411, 412). Thus, it has been necessary to create novel strategies for bioprinting of objects 

that can cope with the transformations required, by effectively integrating current 3D bioprinting 

systems with various biomaterials that are known to respond to stimuli, leading to the emergence 

of 4D bioprinting; however, more work is required to optimize this technology.  

This capacity for material shape transformation, along with degree of application-defined 

programmability of a material, multi-material printing methods, and precise designs for meticulous 

transformations, are crucial requirements for 4D printing (278). The opportunity to manufacture 

artificial bio-structures with function and configuration that better imitate the physiological 

characteristics of natural tissues may revolutionize tissue regeneration and therapeutic production 

approaches in the future (Figure 9). However, despite significant progress, there are still several 

challenges for 4D printing technology compared to 3D alternatives in terms of affordability, 

scalability, manufacturing, and ease of application; 4D printing techniques are more expensive 

than their 3D alternatives, and the use of tissues, smart materials, and viable cells is still limited. 

In the coming years, the development of more novel stimuli-responsive bioinks and smart 

biomaterials for 4D bioprinting and in vivo demands will be required to broaden the therapeutic 
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opportunities of 4D printing. Overall, the 4D bioprinting field is still emerging and we envision its 

rapid expansion in the coming years.  

 

 

Figure 9: Schematic illustration that is highlighting the potential impact and future research 

directions that will likely occur in application of 3D/4D bioprinting techniques. In vitro/in vivo 

and 2D assays nowadays can be approached using various 3D assays as well as on chip models 

thanks to 3D/4D printed constructs. The opportunity to manufacture artificial bio-structures with 

various embedded cells, therapeutic agents and growth factors having functions and configurations 

that better imitate the physiological characteristics of natural tissues may revolutionize tissue 

regeneration and therapeutic production approaches in the future and gain numerous clinical 

applications. Image credit Mr Karim Osouli-Bostanabad. Chromosome adapted from 
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https://www.verywellhealth.com/chromosome-16-disorders-2860706. 

6 Conclusion and Perspectives 

3D printing and 3D bioprinting are emerging strategies that have facilitated the development of 

new drug delivery systems, implants and scaffolds with high accuracy and complexity, for 

applications in the biomedical and pharmaceutical industries. Moreover, recent advances in 3D 

printer aided gene/cell delivery, tissue engineering and regenerative medicine have provided the 

ability to create various human organ constructs (e.g. skeletal, vascular, and muscular systems). In 

addition, the combination of 3D printing technologies in microfluidics applications and the 

emergence of 4D bioprinting to mimic the dynamics of a native tissue have created novel 

opportunities to effectively and efficiently manufacture dynamic reprogrammable tissue structures 

and organ-on-a-chip systems, as well as allowing for the delivery of drugs, cells, or growth factors. 

Recently, there has been substantial advancement in the 3D printing arena, but despite numerous 

publications highlighting successful 3D printing/bioprinting of drug products, organ-on-a-chip 

systems, tissue types and microfluidic apparatuses, taking the procedure from the bench to the 

bedside demands concentrated attempts on numerous fronts. There remain several limitations that 

must be overcome before these strategies can be successfully translated to clinical applications, 

including: 

I. Computational analysis for tissue fusion or its growth assay 

II. Improved scalability of these methods to produce tissue at human-scale quantities 

III. Advancement of hybrid systems by integrating or combining various 3D 

printing/bioprinting modalities 

IV. Novel bioink formulation with adjustable rheological and mechanical qualities 

V. Evaluation of cell and bioink interaction by mechano-biological methods 
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VI. Use of stimuli-responsive (smart) hydrogels in 4D bioprinting for bioprinting of 

personalized medicines  

VII. Further study regarding the social, regulatory, and ethical aspects of 3D/4D bioprinting 

techniques. As 3D/4D printing becomes more clinically relelvent, existing social and 

ethical issues around the use of stem cells may require further attention 

Once these challenges are addressed, we believe that the improved functionality and utility of 

3D and 4D bioprinted structures have the potential to be used in various applications, including 

regenerative medicine, tissue engineering, bioelectronics, actuators, robotics, medical devices, and 

even personalized medicine. 
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HPC: Hydroxypropyl cellulose 
MMP-2: matrix metalloproteinase-2 
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PEGDA: Poly(ethylene glycol) diacrylate 
PU: Polyurethane 
PLGA: polylactic-co-glycolic acid 
PCL: Polycaprolactone 
PSS: Polystyrene sulfonate 
PVP: Polyvinylpyrrolidone 
PVP K30: Polyvinylpyrrolidone K30 
PEG: Polyethylene glycol 
PEDOT: Poly(3,4-ethylenedioxythiophene) 
PEO: Polyethylene oxide 
p(NIPAAm-AA): Poly (N-isopropylacrylamide-co-acrylic acid) 
RUNX2: Runt-related transcription factor 2 
rhBMP-II: Recombinant human bone morphogenetic protein-II 
SiO2: Silicon dioxide 
TPO: diphenyl(2, 4, 6-trimethyl-benzoyl) phosphine oxide  
Ttrans: Transformation”, “transition” or “switching” temperature 
Tm: Melting temperature 
Tg: Glass transition temperature 
Tcrit: Critical solution point/temperature 
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