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1. Abstract 4 

Well location optimization aims to maximize the economic profit of oil and gas field development 5 

while respecting various constraints. The limitations of the currently available well placement 6 

optimization workflows are their 1) high computational requirements, which makes them 7 

inappropriate for full-field applications where a large number of wells have to be optimized using a 8 

computationally expensive simulation model; and 2) providing a single optimal solution, whereas on-9 

site operational problems often add unforeseen constraints that result in adjustments to this optimal, 10 

inflexible scenario degrading its value.  11 

This study presents a multi-solution, surrogate models (SMs)-assisted optimization framework to 12 

deliver diverse, close-to-optimum well placement scenarios at a reasonable computational cost. 13 

Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is used as the optimizer while 14 

diversity in optimal solutions is achieved by multiple, parallel runs of the optimizer with different 15 

starting points. Convolutional Neural Network (CNN) is used as the SM, to partly substitute the 16 

computationally expensive reservoir model runs during the optimization process. A new, adjusted 17 

Latin Hypercube Sampling (aLHS) procedure is developed to generate initial training datasets with 18 

diverse well placement scenarios while respecting reservoir boundaries and well spacing constraints. 19 

An ensemble of CNNs is pre-trained using the generated dataset to enhance the robustness of the 20 

surrogate modeling as well as to allow estimation of the SM’s prediction quality for new data points. 21 

The ensemble of CNNs is adaptively updated during the optimization process using selected new data 22 

points, to improve the SM’s prediction accuracy. To the best of our knowledge, this is the first 23 

application of ensemble learning strategy to a well placement optimization problem. 24 

The added value of the framework is demonstrated by comparing three optimization approaches on 25 

the Brugge and Egg field benchmark case studies. The approaches are 1) ‘no SM’: using the actual 26 

reservoir model only, 2) ‘Offline SM’: the optimization is performed using SM-only that is pre-trained 27 

using initial training datasets generated by the actual reservoir model, and 3) ‘Online SM’: pre-trained 28 

CNNs are adaptively updated during the optimization process using new datasets generated using the 29 

actual reservoir model. The surrogate-assisted optimization approach substantially reduced the 30 

computation time, while a greater objective value was achieved by employing the adaptive learning 31 

strategy due to the enhanced prediction accuracy of the SMs. Multiple diverse solutions were 32 

obtained with different well locations but close-to-optimum objective values, which allows a more 33 

efficient exploration of the search space at a significantly reduced computational cost. The presented 34 

workflow integrates critical challenges that are correlated, yet often addressed independently, 35 

providing the much-required operational flexibility and computational efficiency to field operators 36 

when selecting from the optimal well placement scenarios.  37 

2. Introduction 38 

Optimization algorithms are employed to maximize field performance by optimizing one or multiple 39 

types of decision variables such as the number, type, or location of new wells (Bangerth et al., 2006; 40 

Wang et al., 2012; Al-Ismael et al., 2018; Tavallali et al., 2018; Ding et al., 2019; Jesmani et al., 2020), 41 
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or the control settings of existing production/injection wells (Haghighat Sefat et al., 2016; Liu and 42 

Reynolds, 2016; Wang et al., 2016; Jiang et al., 2019; Arouri and Sayyafzadeh, 2020; Salehian et al., 43 

2020a) while honoring various operational constraints. This, in general, results in a high-dimensional, 44 

constrained optimization problem with a computationally expensive objective function based on the 45 

simulated reservoir model.  46 

Current optimization workflows can be classified into three main groups based on the employed 47 

optimization algorithm: (1) adjoint gradient-based algorithms (Van Essen et al., 2011; Kahrobaei et al., 48 

2013; Tavallali et al., 2013; Forouzanfar and Reynolds, 2014; Bukshtynov et al., 2015; Volkov and 49 

Bellout, 2018), (2) derivative-free algorithms such as the particle swarm optimization algorithm 50 

(Eberhart and Kennedy, 1995; Panahli, 2017; Wang et al., 2019; Ding et al., 2020) or the genetic 51 

algorithm (Holland, 1975; Almeida et al., 2010; Lu and Reynolds, 2020; Ma and Leung, 2020), and (3) 52 

stochastic approximated gradient-based algorithms such as the Simultaneous Perturbation Stochastic 53 

Approximation (SPSA) (Spall, 1992) or the Stochastic Simplex Approximate Gradient (StoSAG) methods 54 

(Fonseca et al., 2017; Liu and Reynolds, 2020). The adjoint gradient-based methods are 55 

computationally attractive, however, access to the reservoir simulation source code is required to 56 

calculate the gradient, which makes them impractical for use with commercial (black box) simulators. 57 

The derivative-free algorithms have the advantage of the global search for the optimal solution from 58 

all types of decision variables (e.g., categorical, integer, or continuous variables). However, they 59 

typically require a large number of function evaluations, and their performance is degraded rapidly 60 

with the increasing number of decision variables (Zingg et al., 2008). The approximate gradient-based 61 

algorithms overcome the above issues by stochastically estimating the gradient of a black-box 62 

objective function using a reasonably sized ensemble (normally containing between 3 to 5 members) 63 

of simultaneous perturbations of decision variables. These algorithms have been successfully 64 

employed to solve large-scale well placement (e.g. Jesmani et al. (2016) used SPSA), well control (e.g. 65 

Haghighat Sefat et al. (2016) used SPSA and Lu et al. (2017) used StoSAG), or multi-level well 66 

placement and control problems (e.g. Li et al. (2013) and Salehian et al. (2020b) used SPSA). Salehian 67 

et al. (2020a) recently developed a multi-solution optimization framework and showed its value in 68 

providing multiple solutions with close-to-optimum objective values. They recommended that the 69 

diversity of the provided optimal solutions can be increased by performing multiple parallel 70 

optimization runs with different starting points, which however would result in a significantly higher 71 

computational cost.  72 

Surrogate models (SMs, also known as proxy models) are employed as an approximation method in 73 

the optimization process to reduce the cost of objective function evaluations when the underlying full-74 

physics model is expensive to simulate. Three main types of surrogate modeling approaches are 75 

commonly employed in the field development and control optimization problems: (1) physics-based 76 

approaches such as reduced order modeling (Van Doren et al., 2006; Cardoso and Durlofsky, 2010; 77 

Durlofsky, 2010; He and Durlofsky, 2014; Trehan and Durlofsky, 2016) or streamline-based simulation 78 

methods (Thiele and Batycky, 2003; Park and Datta-Gupta, 2011; Salehian and Çınar, 2019; Ushmaev 79 

et al., 2019), (2) Machine Learning (ML) techniques such as support vector machine (SVM) (Drucker et 80 

al., 1997; Guo and Reynolds, 2018; Panja et al., 2018; Zhang et al., 2021), Artificial Neural Network 81 

(ANN) (Jain et al., 1996; Güyagüler et al., 2002; Yeten et al., 2003; Golzari et al., 2015; Rahmanifard 82 

and Plaksina, 2019; Sabah et al., 2019; Sun and Ertekin, 2020; Enab and Ertekin, 2021; Gouda et al., 83 

2021), Gaussian Process Regression (GPR) (Knowles, 2006; Zhang et al., 2009; Horowitz et al., 2013) 84 

methods, and (3) Deep Learning (DL) methods such as Convolutional Neural Network (CNN) (LeCun et 85 

al., 1998; Glorot et al., 2011; Hinton et al., 2012; Chu et al., 2020; Kim et al., 2020; Kim et al., 2021). 86 

Physics-based approaches can approximate the original reservoir behavior with lower-order equations 87 

to reduce the computational cost. However, they have been so far tested on synthetic, box-shaped 88 
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models only (de Brito and Durlofsky, 2020a; de Brito and Durlofsky, 2020b) and can become 89 

unrepresentative in real fields with often complex structures. ML techniques are widely applied within 90 

the context of well control optimization (Ahmadi and Bahadori, 2015; Golzari et al., 2015; Chugh et 91 

al., 2016; Guo and Reynolds, 2018; Chen et al., 2020; Zhao et al., 2020) and are shown to provide a 92 

reasonably accurate, data-driven SM while considering the reservoir simulator as a black box. The 93 

accuracy of ML techniques reduces significantly when the control variables become categorical or 94 

integer (Junior et al., 2021). This lower accuracy is mainly due to disregarding spatial features (e.g. 95 

well location, type, and trajectory) in a large-scale problem and transforming the inputs to a 1D array 96 

(Chu et al., 2020). CNNs methods are an advanced form of ANNs that eliminate the issues associated 97 

with the conventional ML techniques by allowing the direct import of multi-dimensional data to the 98 

network (LeCun and Bengio, 1995; Behnke, 2003). This allows multi-dimensional input variables such 99 

as well locations and types of wells (i.e., injectors and producers) to be directly imported to the 100 

network without losing their spatial information providing greater SM prediction performance (Chu 101 

et al., 2020; Razak and Jafarpour, 2020). Standard feedforward CNNs are used to predict one, single 102 

output while Recurrent Neural Networks (RNNs) such as Long-Short Term Memory (LSTM) can predict 103 

time series (Gers et al., 2002; Hua et al., 2019; Sagheer and Kotb, 2019; Liu et al., 2020; Song et al., 104 

2020). CNNs can be applied for both classification and regression problems (Figueiredo, 2003). In this 105 

study, standard feedforward CNN is employed as a regression tool to estimate the Net Present Value 106 

(NPV) of a reservoir model based on a specified well placement scenario. 107 

The employment of surrogate modelling approaches in optimization frameworks has significantly 108 

reduced the computational cost of objective function evaluations. However, current surrogate-109 

assisted optimization frameworks provide only a single optimal solution, which lacks flexibility due to 110 

often unforeseen operational problems. Hence, the efficient use of surrogate-assisted optimization in 111 

providing operational flexibility at a reasonable computational cost remains a critical challenge. This 112 

study presents a surrogate-assisted, multi-solution optimization framework to achieve diverse, close-113 

to-optimum well placement scenarios at a reduced computational cost. Following Salehian et al. 114 

(2020a), SPSA is used as the optimization algorithm while the diversity in optimal solutions is achieved 115 

by multiple, parallel runs of the optimizer with different starting points. CNN is used as the SM, to 116 

partly substitute the computationally expensive reservoir model runs during the optimization process 117 

by predicting the objective value based on a 2-dimensional map of the location of the vertical wells’ 118 

tops. An adjusted Latin Hypercube Sampling (aLHS) procedure is developed to generate initial training 119 

datasets with diverse well placement scenarios while respecting reservoir boundaries and minimum 120 

well spacing constraints. The ensemble learning strategy is used to enhance the accuracy of the SMs 121 

prediction as well as to allow estimation of the SM’s prediction error for a new data point. The 122 

ensemble of CNNs is adaptively updated during the optimization process using newly generated data 123 

points with large prediction errors, estimated by the variance of SMs’ responses (Cheng and Lu, 2020), 124 

to gradually improve the global prediction accuracy of the SMs. The proposed framework has been 125 

tested on two representative benchmark case studies (Brugge and Egg field models) while comparing 126 

three optimization schemes: 1) “no SM”: using full-physics reservoir model only, 2) “offline SM”: pre-127 

trained SMs are not updated during the optimization process with no further updates, and 3) “online 128 

SM”: pre-trained SMs are updated during the optimization process using new data points with 129 

maximum prediction errors.  130 

This paper is organized as follows: First, problem formulation for well placement optimization using 131 
the surrogate-assisted, multi-solution SPSA (SAMS-SPSA) is presented. Next, the framework is tested 132 
on the benchmark case studies followed by the discussion of the results and conclusions.  133 
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3. Problem Formulation 134 

The objective is to find the optimal values for decision variables (i.e. well locations) that maximize an 135 

objective function. Net Present Value (NPV), considering only oil and water production and injection 136 

over the presumed life of the reservoir, is the selected objective function, defined as:  137 

𝐽
𝑥∈ℝ𝑁𝑥  
𝑚∈ℝ𝑁𝑚

(𝑥, 𝑚) = ∑ {[∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 )

𝑁𝑃

𝑗=1

− ∑(𝑐𝑤𝑖𝑞𝑤𝑖,𝑘
𝑛 )

𝑁𝐼

𝑘=1

] ×
𝛿𝑡𝑛

(1 + 𝑏)𝑡𝑛
}

𝑆

𝑛=1

 (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥 , 𝑖 = 1, 2, … , 𝑁𝑥  138 

, where 𝑥 is the 𝑁𝑥  dimensional vector of the decision variables; 𝑚 is the 𝑁𝑚 dimensional state vector 139 
of the reservoir (e.g. saturation, pressure field); 𝑛 is the 𝑛th time step of the reservoir simulation; 𝑆 is 140 
the total number of simulation steps; 𝛿𝑡𝑛 is the length of 𝑛th simulation step; 𝑡𝑛 is the simulation time 141 
at the end of the 𝑛th time step; the annual discount rate 𝑏 is in decimal; and 𝑁𝑃 and 𝑁𝐼 are the number 142 
of producers and injectors, respectively. The cost coefficients 𝑟𝑜, 𝑟𝑝𝑤, and 𝑐𝑤𝑖 are the oil price 143 

(USD/STB), the water handling cost (USD/STB), and the water injection cost (USD/STB), respectively. 144 
𝑞𝑜,𝑗

𝑛  and 𝑞𝑤,𝑗
𝑛  are the oil and water production rates of well 𝑗 at time step 𝑛 in STB/day. 𝑞𝑤𝑖,𝑘

𝑛  is the 145 

water injection rate of well 𝑘 at time step 𝑛 in STB/day. 𝑥𝑖
𝑚𝑖𝑛 and 𝑥𝑖

𝑚𝑎𝑥 are the lower and upper 146 

bounds for the 𝑖𝑡ℎ component of the decision variable vector 𝑥. Eq(2) is employed to scale the control 147 
variables 𝑥 from the original domain [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥] to [0, 1] to eliminate the problem of different 148 
ranges of decision variables during the optimization process.  149 

𝑢𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛,𝑖

𝑥𝑚𝑎𝑥,𝑖 − 𝑥𝑚𝑖𝑛,𝑖
 (2) 

Table 1 shows the economic values used for NPV calculation. Simulation runs are conducted using a 150 
commercial reservoir simulator (Schlumberger, 2017) to calculate the objective function for the 151 
specified set of optimization variables and state vector of the reservoir. 152 

Table 1 - Economic parameters for calculating NPV. 153 

Symbol Parameter Value 

𝑟𝑜 Oil Price 50 USD/STB 

𝑟𝑝𝑤 Water production cost 6 USD/STB 

𝑐𝑤𝑖  Water injection cost 3 USD/STB 

𝑏 Discount rate 10% /year 

 154 

3.1. SPSA Background 155 

Let 𝐽(𝑢𝑘) to be the objective function value at 𝑢𝑘, the 𝑁𝑥  dimensional vector of the optimization 156 
variables at iteration 𝑘. The steepest ascent gradient 𝑔𝑘(𝑢) is defined as the partial derivatives of the 157 

objective function 𝑔𝑘(𝑢) =
𝜕𝐽

𝜕𝑢
= [

𝜕𝐽

𝜕𝑢1
,

𝜕𝐽

𝜕𝑢2
, … ,

𝜕𝐽

𝜕𝑢𝑁𝑥

]
𝑇

where [. ]𝑇 represents a column vector. SPSA 158 

iteratively maximizes the objective function 𝐽(𝑢) using the following relationship: 159 

𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘�̂�𝑘(𝑢𝑘) (3) 
, where 𝑔𝑘(𝑢𝑘) is the stochastically estimated gradient of the objective function and 𝛼𝑘 > 0 is the 160 
step size in the search direction 𝑔𝑘(𝑢𝑘). To calculate 𝑔𝑘(𝑢𝑘), ∆𝑘 is defined as a vector of mutually 161 

independent, mean-zero random variables {∆𝑘1
, ∆𝑘2

, . . . , ∆𝑘𝑁𝑥
} using symmetric ±1 Bernoulli 162 

distribution (Spall, 1992), meeting the following conditions: 163 

∆𝑘𝑖

−1= ∆𝑘𝑖
 (4) 

𝐸|∆𝑘𝑖

−1| = 𝐸|∆𝑘𝑖
| = 0 (5) 
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, where 𝐸 represents the expected value. The stochastic gradient 𝑔𝑘(𝑢𝑘) is calculated using ∆𝑘 and a 164 
positive scalar 𝑐𝑘: 165 

𝑔𝑘(𝑢𝑘) =
𝐽(𝑢𝑘 + 𝑐𝑘∆𝑘) − 𝐽(𝑢𝑘 − 𝑐𝑘∆𝑘)

2𝑐𝑘  
× [

1

∆𝑘1

,
1

∆𝑘2

, … ,
1

∆𝑘𝑁𝑥

]

𝑇

 (6) 

The convergence of the SPSA depends on the tuning parameters 𝛼𝑘 and 𝑐𝑘, which are particularly 166 
important when the objective function is computationally demanding. Spall (1998) suggested the 167 
following decaying sequences to calculate 𝛼𝑘 and 𝑐𝑘 to ensure a gradually refining search: 168 

𝛼𝑘 =
𝑎

(𝔸 + 𝑘 + 1)𝜗
 (7) 

𝑐𝑘 =
𝑐

(𝑘 + 1)𝛾
 (8) 

, where 𝑎, 𝑐, 𝔸, 𝜗, and 𝛾 are positive real numbers. The values of 𝜗 and 𝛾 are recommended to be 169 
0.602 and 0.101 (Spall, 1992). Following Jesmani et al. (2020), 𝔸 = 100 is used to achieve a more 170 
refined search in order to enhance the convergence of the algorithm in the well placement 171 
optimization problem with discrete decision variables. Haghighat Sefat et al. (2016) recommended 172 
setting 0.1 ≤ 𝛼0 ≤ 0.5 and 𝑐𝑚𝑖𝑛 (i.e. when 𝑘 = 𝑘𝑚𝑎𝑥) between 0.025 and 0.1 based on the 173 
complexity/noise of the search space. Initial sensitivity analysis in this work showed that 𝛼0 = 0.5 and 174 
𝑐𝑚𝑖𝑛 = 0.08 yield a faster convergence and more stable search process. In this work, parallel, 175 
independent optimization runs are performed using SPSA algorithm with 𝑁𝑠 different starting points 176 
in order to achieve 𝑁𝑠 diverse solutions with close to optimal objective values. 177 

3.2. Surrogate Modeling using CNN 178 

In this section, the mathematical configuration of Artificial Neural Networks (ANNs, i.e. neural 179 

networks with one hidden layer) and deep neural networks (DNNs, i.e networks with multiple layers 180 

between inputs and outputs) are discussed. In ANNs, the relationship between input and output is 181 

approximated using three layers of neurons: one input layer, one hidden layer, and one output layer. 182 

Each of these layers is composed of nodes, also called neurons, which are connected to the neurons 183 

of other layers by connections with specified weights. A layer is considered fully connected if all its 184 

neurons are interconnected with all the neurons in the adjacent layers (see example in Figure 1). 185 

Mathematically, matrix multiplications between 1D input data and weights are performed, and the 186 

result is forwarded to the next layer to be used as input. The data flow at a certain layer can be 187 

expressed as follows: 188 

𝑌 = 𝜎(𝑋𝑊 + 𝐵) (9) 
, where 𝑋 is the result from the previous layer; 𝑌 is the output, which becomes the input 𝑋 of the next 189 

layer; 𝜎 is the activation function; 𝑊 is the weight; and 𝐵 is the bias, which is used to shift the 190 

activation function by a constant value (Rumelhart et al., 1985). Note that in ANNs, both 𝑊 and 𝐵 are 191 

1D learnable arrays. Activation function 𝜎 allows to capture the non-linear relationships between 192 

inputs and outputs (Specht, 1990). Table 2 shows four activation functions compared by Chu et al. 193 

(2020): the sigmoid and hyperbolic tangent functions have been commonly used in ANNs, while the 194 

ReLU function has been mainly used in DNNs (Glorot et al., 2011; Maas et al., 2013).  195 

A CNN is a class of DNN, which is commonly used for multi-dimensional regression and image 196 

classification/recognition (Goodfellow et al., 2016). CNN is composed of two stages: (1) a convolution 197 

stage and (2) a full connection stage. The convolution stage itself consists of multiple, consecutive 198 

convolutional layers and pooling layers, where features of the input array are extracted. Batch 199 

normalization is performed after each convolutional layer to re-center and re-scale the data to 200 

accelerate the training by regularizing the model (Ioffe and Szegedy, 2015). The activation function 201 

ReLU is then applied to the convolution outputs of each layer, in the same way as shown in Eq(9). 202 
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Next, a pooling layer is used to reduce the dimension of the feature map by taking a representative 203 

value of each independent sub-cluster covered by the filter, in order to reduce the number of 204 

learnable parameters and avoid overfitting (Scherer et al., 2010). Two typical pooling methods exist 205 

(1) Max pooling: selecting the maximum value of each sub-cluster as the representative value and (2) 206 

Average pooling: calculating the mean value of the elements in each sub-cluster. Following the 207 

recommendation by LeCun et al. (2015), average pooling is used in this work. The whole convolution 208 

stage 𝑓 is defined by  209 

𝑌 = 𝑓(𝑋, Θ) (10) 
, where Θ = [𝑊1, … , 𝑊𝑁𝑐𝑣

, 𝐵1, … , 𝐵𝑁𝑐𝑣
] is the augmented vector of convolution, learnable parameters 210 

including weights 𝑊 (also referred to as a filter) and bias 𝐵; 𝑁𝑐𝑣 is the number of convolutional layers 211 

in the convolution stage (subscript 𝑐𝑣 refers to convolution); and 𝑌 is the convolution output called 212 

feature map, dimension of which depends on that of input 𝑋 and the filter size. At the end of the 213 

convolution stage, the extracted multi-dimensional feature maps are flattened into a 1D array before 214 

being imported to the full connection stage, which consists of a fully connected layer similar to an 215 

ANN. Figure 2 shows a schematic summary of a CNN.  216 

In this study, CNN is used to predict the NPV based on the imported 2D map of well configurations, in 217 

which each grid block with an injector, a producer, or no wells is represented by -1, 1, and 0, 218 

respectively. The set of all weights and biases (i.e. 𝑊 and 𝐵, respectively) in all layers of the network 219 

are optimized using the backpropagation algorithm (LeCun et al., 1989) to minimize the error function 220 

𝐿 between the network output (𝐻) and the true outputs (𝐽, i.e. the objective value calculated using 221 

the reservoir simulator) using the training data sets. Error function 𝐿 is defined as  222 

𝐿 = ‖𝐻 − 𝐽‖2 (11) 
, where ‖. ‖ represents the l2-norm. The trained network is used during the optimization process to 223 
substitute the actual, time-consuming, reservoir simulation runs.  224 

Ensemble learning strategy: Following previous works (Zerpa et al., 2005; Goel et al., 2007; Zhao and 225 

Xue, 2011; Viana et al., 2013; Cheng and Lu, 2020), an ensemble of SMs is trained using different 226 

random seeds and the final output is the average of the individual SMs outputs. This approach is 227 

expected to enhance the robustness of the SM by alleviating the impact of random seeds on the 228 

training performance as well as allowing estimation of the SM’s prediction quality for new data points. 229 

Note that all SMs are trained using the same training dataset. The mean value of the predicted 230 

objective function over an ensemble of SMs (i.e. �̅� according to Eq(11)) is maximized during the 231 

optimization process, as follows: 232 

max
𝑥∈ℝ𝑁𝑥

𝐽(𝑥) ≈ �̅�(𝑥) =
1

𝑁𝑒
∑ 𝐻𝑘(𝑥)

𝑁𝑒

𝑘=1

 (12) 

, where 𝐻𝑘(𝑥) is the output of the 𝑘𝑡ℎ SM based on input 𝑥 (i.e. an iteration of the decision variables) 233 
and 𝑁𝑒  is the number of SMs.  234 
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 235 

Figure 1 – Schematic example of a fully connected ANN with 5, 6, and 3 nodes in the input, hidden, 236 
and output layer, respectively. 237 

 238 

Table 2 – Typical activation functions for neural networks. 239 

Activation Function Formulation 

Sigmoid 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

Hyperbolic Tangent 𝜎(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Linear 𝜎(𝑥) = 𝑥 

ReLU 𝜎(𝑥) = max (0, 𝑥) 

 240 

 241 

 242 

Figure 2 – Schematic example of the architecture of a CNN. 243 
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3.3. Design of Experiments using Adjusted Latin Hypercube Sampling (aLHS) 244 

The initial training of SMs starts with the design of experiments. LHS (McKay et al., 2000) is commonly 245 

used due to its space-filling features to generate random training datasets that are evenly distributed 246 

over the design space to ensure good coverage. In this study the following constraints should be 247 

imposed during both the training datasets generation using LHS, as well as the SPSA iterations: 248 

1. The wells are located inside the reservoir boundaries: Following Salehian et al. (2020a), a 249 

binary matrix with 0 and 1 elements – representing null and active reservoir grids, respectively 250 

– is generated. The well is moved to the nearest active grid if it appears outside the reservoir 251 

boundaries (see Algorithm 1 in Appendix A).  252 

2. A minimum inter-well distance (see Algorithm 2 in Appendix A): Pair-wise distances are 253 

calculated for all wells. If any pair of wells violate the minimum distance limit (𝑅𝑚𝑖𝑛 in 254 

Algorithm 2), a fast optimization problem finds the closest acceptable locations for those 255 

particular wells while respecting the minimum inter-well distance with all other wells and the 256 

reservoir boundaries constraint. In this study, the minimum inter-well distance constraint is 257 

set to 2 grid blocks. 258 

The aLHS is composed of the classic LHS followed by the adjustment steps (i.e. Algorithm 1 and 2) to 259 

respect the abovementioned constraints. The adjusted training data points are then evaluated using 260 

the reservoir simulator to be used for the initial training of the ensemble of SMs. Figure 3 shows the 261 

flow diagram of the initial training process. Note that aLHS is also used to generate 𝑁𝑠 different 262 

starting points for the SPSA as well as for adjusting its solutions during the optimization iterations.  263 

 264 

 265 

Figure 3 – Initial training of ensemble of SMs. 266 

3.4. SM Quality Assessment 267 

In an offline surrogate modeling scheme, the SM is only trained using the initial training dataset and 268 

will be used during the subsequent optimization with no further updates. However, this approach 269 

generally leads to a sub-optimal solution due to the SM prediction error (Jin, 2005; Bouzarkouna et 270 
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al., 2012). The use of an online (also called “adaptive”) surrogate modeling scheme is recommended 271 

by several studies (Jin, 2011; Razavi et al., 2012; Golzari et al., 2015; Sayyafzadeh, 2017), to iteratively 272 

improve SM’s prediction accuracy using new data points generated during the optimization process. 273 

Following Cheng and Lu (2020), the variance of the ensemble of trained SMs’ outputs (𝜎2(𝐻(. ))) 274 

provides an indication of the prediction accuracy for a new data point. In this study, during 275 

optimization process and prior to objective function evaluation for each new data point (𝑥𝑘) the SMs 276 

prediction accuracy (𝜎2(𝐻(𝑥𝑘)) is calculated and compared with a threshold value (𝜎𝑚𝑖𝑛
2 ). If 277 

𝜎2(𝐻(𝑥𝑘)) > 𝜎𝑚𝑖𝑛
2  then the data point (𝑥𝑘) is evaluated using the reservoir simulator and is added as 278 

a new data point to the training dataset, otherwise, the SMs are used for function evaluation. This 279 

approach aims to improve the SMs prediction performance in the search space regions with the 280 

maximum error (i.e. the least explored regions by the prior reservoir simulation runs) while ensuring 281 

accurate and fast objective function evaluation during the optimization process. In this study, 𝜎𝑚𝑖𝑛
2  of 282 

0.02 was selected, which is the average of variances of SMs’ outputs for the initial training dataset. 283 

4. Surrogate-Assisted, Multi-Solution framework based on SPSA (SAMS-SPSA): 284 

Figure 4 shows the summary of the developed SAMS-SPSA framework. First, a set of initial training 285 

points are generated using aLHS method and the corresponding outputs are calculated using the 286 

reservoir simulator. This dataset is employed to pre-train the ensemble of CNNs with different random 287 

seeds. Then, 𝑁𝑠 starting points are generated using aLHS followed by 𝑁𝑠 parallel runs of the optimizer, 288 

to maximize the mean of the ensemble of CNNs’ outputs. If the prediction error of the ensemble of 289 

CNNs (i.e. the variance of ensemble of trained CNNs’ predictions) for a function evaluation is greater 290 

than 𝜎𝑚𝑖𝑛
2 , that point is evaluated using the reservoir simulator, added as a new training data point 291 

followed by re-training the ensemble of CNNs using the updated dataset. The SAMS-SPSA framework 292 

is terminated when the maximum number of optimization iterations is reached (as will be shown later, 293 

this number is by far sufficient to converge to optimal solutions). In this study, three optimization 294 

schemes are compared: 295 

• S1: No SM: classic approach, using full-physics reservoir model only. 296 

• S2: Offline SM: optimization is performed using an ensemble of pre-trained SMs with no 297 

further updates.  298 

• S3: Online SM (proposed approach): pre-trained SMs are updated during the optimization 299 

process when their prediction error is high for a new data point. 300 

All schemes are compared when performing three multi-start, parallel optimization runs (i.e. 𝑁𝑠 = 3) 301 

from identical starting points. For the SM-assisted schemes (S2 and S3) in the Brugge and Egg field 302 

case studies, respectively, 1000 and 700 initial training data points are generated to pre-train an 303 

ensemble of 10 CNNs with different random seeds (i.e. 𝑁𝑒 = 10 in Eq.(12)). Note that 𝑁𝑠 and 𝑁𝑒  are 304 

user-defined, empirical parameters, and the choice of these parameters did not seem to strongly 305 

impact the performance of framework, though further research to formalize this strategy will be 306 

useful. The hyperparameters and architectures for the employed CNNs are shown in Tables B1, B2, 307 

and B3 in Appendix B.  308 
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 309 

Figure 4 – Flow diagram of the SAMS-SPSA framework. 310 

5. Case study 1 – Brugge model 311 

The Brugge field model is a benchmark reservoir model, consisting of 139 × 48 × 9 grid blocks with a 312 

relatively heterogeneous permeability distribution (Chen et al., 2010). The original model consists of 313 

20 producers and 10 injectors. Five vertical producers and five vertical injectors are kept from the 314 

original model in this work, due to the limited computational resources. The wells are completed in 315 

all nine reservoir layers. The total production time is set to 30 years. The producers are each operated 316 

by a fixed bottom-hole pressure of 725 𝑝𝑠𝑖, while the injectors are each operated by a fixed water 317 

injection rate of 6289 𝑆𝑇𝐵/𝑑𝑎𝑦. The producers are shut when their water cut exceeds 90% since they 318 

stop being profitable according to the economic parameters listed in Table 1. Figure 5 shows the top 319 

structure of the model with an initial set of well locations. A single realization (the most likely scenario 320 

corresponding to 𝑃50 recovery based on the initial well locations) of the Brugge model is considered 321 

for this initial testing of the proposed framework. More information on the reservoir rock and fluid 322 

properties of the Brugge model can be found in Peters et al. (2010). The top (𝑖, 𝑗) location coordinates 323 

of the wells (i.e. 10 × 2 = 20 decision variables) are optimized using 100 iterations of the optimization 324 
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algorithm. Note that all wells start operating at time zero, which means that no drilling sequence is 325 

assumed during the optimization process.  326 

 327 

Figure 5 – Top structure of the Brugge model. 328 

Brugge-S1: Figure 6 shows the improvement of the objective value of three parallel optimization runs 329 

during well placement optimization using scheme S1. The oscillations in the NPV are due to the 330 

minimum inter-well distance constraint imposed by the adjustment method (see Algorithm 2 in 331 

Appendix A) in the objective function definition. The NPV of the starting points (i.e. 𝐿1, 𝐿2, and 𝐿3) 332 

respectively, with non-optimal well locations is 1.66 × 109, 1.70 × 109, and 1.81 × 109 𝑈𝑆𝐷, which 333 

was improved to 2.214 × 109, 2.258 × 109, and 2.232 × 109 𝑈𝑆𝐷 after well placement optimization 334 

with total of 2100 reservoir simulation runs (note that the NPV of the base case with initial well 335 

locations shown in Figure 5 is 1.66 × 109 𝑈𝑆𝐷). Figure 7 shows the representative well placement 336 

solutions, named 𝑆1𝐿1, 𝑆1𝐿2, and 𝑆1𝐿3, where 𝑆1 denotes the S1 optimization scheme. It is worth 337 

noting that an optimization run with a lower initial objective value can potentially provide better final 338 

performance (e.g. 𝐽(𝐿2) < 𝐽(𝐿3), but 𝐽(𝑆1𝐿2) > 𝐽(𝑆1𝐿3)), showing the advantage of multi-start 339 

optimization runs in a more efficient exploration of the search space. 340 

 341 
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 342 

Figure 6 - Objective value of three parallel runs during well placement optimization of Brugge model- 343 
using scheme S1. 344 

 345 

Figure 7 - Three optimal well placement solutions for the Brugge model obtained using the S1 346 
scheme. 347 

Brugge-S2: First, 70% and 30% of the initial training dataset (of 1000 points), respectively, are used to 348 

train and validate a single CNN to test the sufficiency of the training data as well as the suitability of 349 

the training process. Note that the training cost of CNN (around 30 seconds) is negligible as compared 350 

to the simulation time, which is in the range of 10 minutes per run.  The high 𝑅2 between the predicted 351 

and the true values (Figure 8) and the declining loss function during the validation process (Figure 9) 352 

indicate that the SM is adequately trained with sufficient data and no overfitting. This assessment was 353 

repeated with two other random seeds, as shown in Table 3. The formulations for 𝑅2 and 𝑅𝑀𝑆𝐸 are 354 

provided in Appendix C. 355 
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After ensuring the adequacy of the training dataset and process, 100% of the training dataset is used 356 

to train an ensemble of CNNs (see Figure 3). Subsequently, 100 iterations of the well placement 357 

optimization are performed in the S2 scheme with no further SM updates. Figure 10 shows the optimal 358 

well placement solutions obtained by three multi-start optimization runs using the S2 scheme.  359 

 360 

Figure 8 – Training (left) and validation (right) performance of a single CNN using 700 and 300 data 361 
points, respectively (Brugge model example). 362 

 363 

Figure 9 – Loss function with training epochs for a single CNN (Brugge model example). 364 

  365 
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Table 3 – Pre-assessment performance of a single CNN (Brugge model example). 366 

Random seed Parameter Value 

Seed 1   
 𝑅2 Training 0.9167 
 𝑅2 Validation 0.8648 
 RMSE Validation 0.1265 

Seed 2   
 𝑅2 Training 0.9178 
 𝑅2 Validation 0.9076 
 RMSE Validation 0.1116 

 367 

 368 

Figure 10 - Three optimal well placement solutions for the Brugge model obtained by the S2 scheme. 369 

 370 

Brugge-S3: Figure 11 shows the objective value of the three multi-start optimization runs using 371 

scheme S3, where the ensemble of pre-trained SMs (same as scheme S2) was updated 42 times (i.e. 372 

42 function evaluations, out of the total number of 1800 objective function evaluations, was 373 

performed using reservoir simulator) during the optimization process, resulting in 1042 total 374 

simulation runs (including 1000 runs for evaluating initial training dataset). Figure 12 shows three 375 

optimal well placement solutions obtained by scheme S3. A very similar final objective value is 376 

observed by multiple optimal solutions while all schemes offer a reasonable degree of flexibility in the 377 

well locations (Figure 7, Figure 10, and Figure 12). Table 4 compares the initial and final objective 378 

values of the solutions obtained as well as the number of full simulation runs required at each scheme. 379 

The SM-assisted optimization schemes (S2 and S3) reduced the number of simulation runs by 52% and 380 

50%, respectively. Very close-to-optimum objective values were achieved by S3 where the average 381 

NPV is only 0.54% lower than S1. The prediction accuracy of the offline SM reduces significantly for 382 

new data points which resulted in the S2 scheme converging to sub-optimal solutions with an average 383 

NPV of 3.85% lower than S1, even when an ensemble of SMs is used. 384 



Multi-solution well placement optimization using ensemble learning of surrogate models 

15 
 

 385 

Figure 11 - Objective value of three parallel runs during well placement optimization of Brugge 386 
model; scheme S3. 387 

 388 

 389 

Figure 12 - Three optimal well placement solutions for the Brugge model obtained by the S3 scheme.  390 
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Table 4– Summary of the initial and final objective values with the number of simulations using each 391 
surrogate modeling scenario in the Brugge model. 392 

  Initial NPV (USD) Final NPV (USD) Number of simulations 

S1: Objective function evaluation using reservoir simulator (no SM) 

 𝐿1 1.66 × 109 2.214 × 109 2100 

 𝐿2 1.70 × 109 2.258 × 109  

 𝐿3 1.81 × 109 2.232 × 109  
S2: Objective function evaluation using an ensemble of offline CNNs 

 𝐿1 1.61 × 109 2.153 × 109 1000 

 𝐿2 1.63 × 109 2.149 × 109  

 𝐿3 1.68 × 109 2.142 × 109  
S3: Objective function evaluation using an ensemble of online CNNs 

 𝐿1 1.63 × 109 2.220 × 109 1042 

 𝐿2 1.81 × 109 2.232 × 109  

 𝐿3 1.91 × 109 2.216 × 109  
 393 

6. Case Study 2 – Egg model 394 

The Egg reservoir model is a publicly available, 3D channelized benchmark case study consisting of 60 395 

× 60 × 7 grid blocks, of which 18553 are active. The model contains 8 injectors and 4 producers. Figure 396 

13 shows the horizontal permeability of the top layer for a single geological realization of the field and 397 

an initial set of well locations. Similar to the previous case study, a single realization corresponding to 398 

𝑃50 recovery, based on the initial well locations, is considered. Detailed information on the reservoir 399 

rock and fluid properties of the Egg model can be found in Jansen et al. (2014). The field production 400 

period is set to 10 years. The producers each operate at the constant BHP of 5727 𝑝𝑠𝑖, and they are 401 

shut when their water cut reaches 90%. The injectors each operate by their fixed water injection rate 402 

of 500 𝑆𝑇𝐵/𝑑𝑎𝑦. The top (𝑖, 𝑗) locations of 12 vertical wells are optimized during 100 iterations of the 403 

SPSA algorithm resulting in 12×2=24 decision variables while assuming no drilling sequences.  404 
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 405 

Figure 13 - Permeability distribution of the top layer and the base case well locations of the Egg 406 
model. 407 

Egg-S1: The scheme S1 was performed using 2100 simulation runs to improve the NPV of the starting 408 

three points 𝐿1, 𝐿2, and 𝐿3, respectively, from 1.55 × 107, 1.43 × 107, and 1.54 × 107 𝑈𝑆𝐷, to 409 

1.76 × 107, 1.81 × 107, and 1.80 × 107 𝑈𝑆𝐷, as shown in Figure 14 (note that the NPV of the base 410 

case with initial well locations shown in Figure 13 is 1.54 × 107 𝑈𝑆𝐷). Figure 15 shows the optimal 411 

well placement solutions (named 𝑆1𝐿1, 𝑆1𝐿2, and 𝑆1𝐿3) obtained by scheme S1.  412 

 413 

Figure 14 - Objective value of three parallel runs during well placement optimization of Egg model 414 
using scheme S1. 415 
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 416 

 417 

Figure 15 - Three optimal well placement solutions for the Egg model obtained by scheme S1. 418 

Egg-S2: Similar to the previous case study, a single SM pre-assessment was first performed by taking 419 

500 and 200 data points (of the 700 initial training dataset) as the training and validation subset, 420 

respectively. The relatively high 𝑅2 in training and validation processes (Figure 16) as well as the non-421 

increasing loss function during the validation process (Figure 17) shows that the SM is sufficiently 422 

accurately trained with no overfitting. The test was repeated with a different random seed and the 423 

results are summarized in Table 3. The initial training of the ensemble of CNNs (see Figure 3) was then 424 

performed using 100% of the training dataset. The ensemble of CNNs was then employed in the well 425 

placement optimization using scheme S2. Figure 19 shows the optimal well placement solutions 426 

obtained by the S2 scheme.  427 

 428 

 429 

Figure 16 - Training (left) and validation (right) performance of a single CNN using 500 and 200 data 430 
points, respectively (Egg model example). 431 

 432 
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 433 

Figure 17 - Loss function with training epochs for a single CNN (Egg model example). 434 

 435 

Table 5 – Pre-assessment performance of a single CNN (Egg model example). 436 

Random seed Parameter Value 

Seed 1 
𝑅2 Training 0.9326 
𝑅2 Validation 0.8372 
RMSE Validation 0.2438 

Seed 2 
𝑅2 Training 0.8206 

𝑅2 Validation 0.7542 
RMSE Validation 0.2817 

 437 

 438 

Figure 18 - Objective value of three parallel runs during well placement optimization of Egg model 439 
using scheme S2. 440 



Multi-solution well placement optimization using ensemble learning of surrogate models 

20 
 

 441 

Figure 19 - Three optimal well placement solutions for the Egg model obtained by the scheme S2. 442 

Egg-S3: The ensemble of pre-trained SMs (same as scheme S2) were used in three multi-start 443 

optimization runs using scheme S3, as shown in Figure 20. Figure 21 shows three optimal well 444 

placement solutions obtained by scheme S3. The ensemble of SMs was updated 154 times during the 445 

optimization process, resulting in 854 total simulation runs (including 700 runs used to evaluate the 446 

initial training dataset). Different optimal well locations with similar final objective values were 447 

obtained by all schemes (Figure 15, Figure 19, and Figure 21). Table 6 shows the initial and final 448 

objective values of the solutions obtained as well as the number of simulations required at each 449 

scheme. In offline SM, multiple solutions were obtained with 66% less computation time but 4.8% 450 

lower average objective values as compared to the no-SM approach, whereas in online SM, closer-to-451 

optimum objective values (3.1% lower compared to S1) were obtained with 59% less computation 452 

time. These results are in line with case study 1, showing the advantage of the proposed SAMS-SPSA 453 

framework in achieving multiple, diverse optimal solutions with reasonable computational efficiency.  454 

Note that at this stage a single geological realization is considered for a proof-of-concept study and 455 

the framework can be extended to perform robust optimization while considering reservoir 456 

description uncertainties via importing multi-dimensional inputs (e.g. porosity, permeability maps). 457 

SPSA is employed as the optimizer, while the developed framework can also be used with other 458 

ensemble-based optimization algorithms. Standard CNNs are used as the SM to partially substitute 459 

the computationally expensive reservoir simulation models during the optimization process, though 460 

further research to apply time series forecasting methods in optimization process will be useful.  461 
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 462 

Figure 20 - Objective value of three parallel runs during well placement optimization of Egg model 463 
using scheme S3. 464 

 465 

 466 

Figure 21 - Three optimal well placement solutions for the Egg model obtained by the scheme S3. 467 

 468 

Table 6 – Summary of the initial and final objective values with the number of simulations using each 469 
surrogate modeling scenario in the Egg model. 470 

  Initial NPV (USD) Final NPV (USD) Number of simulations 

S1: Objective function evaluation using reservoir simulator (no surrogate model) 

 𝐿1 1.55 × 107 1.763 × 107 2100 

 𝐿2 1.43 × 107 1.811 × 107 
 

 𝐿3 1.54 × 107 1.803 × 107 
 

S2: Objective function evaluation using an ensemble of offline CNNs 

 𝐿1 1.48 × 107 1.686 × 107 700 

 𝐿2 1.37 × 107 1.719 × 107 
 

 𝐿3 1.50 × 107 1.710 × 107 
 

S3: Objective function evaluation using an ensemble of online CNNs 
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 𝐿1 1.51 × 107 1.792 × 107 854 

 𝐿2 1.50 × 107 1.711 × 107 
 

 𝐿3 1.51 × 107 1.705 × 107 
 

 471 

7. Conclusions 472 

A surrogate-assisted, multi-solution optimization framework is developed to provide operational 473 

flexibility by offering multiple, diverse well placement scenarios through multi-start, parallel 474 

optimization runs at a reasonable computational cost. The proposed framework was tested on the 475 

Brugge and Egg field benchmark case studies and compared with two alternative optimization 476 

schemes: no SM (i.e. reservoir simulator only) and offline SM. The following conclusions are drawn: 477 

• Multiple, diverse well placement solutions with close-to-optimum objective values were 478 

obtained, demonstrating the advantage of multi-start optimization in a more efficient 479 

exploration of the search space. 480 

• CNN, coupled with the ensemble learning strategy, successfully mimicked the reservoir 481 

simulator in predicting the objective value using the input well configuration maps. 482 

• Both offline and online surrogate modeling approaches significantly reduced the number of 483 

actual reservoir simulation runs required for the well location optimization process. The online 484 

SM approach outperformed the offline one due to the continuous improvement in its 485 

prediction performance during the optimization process when regions of the search space 486 

with minimal prior information were discovered. 487 

• The developed framework provides the much-needed flexibility to field operators by offering 488 

them multiple optimal and diverse well placement scenarios at a significantly lower 489 

computation cost, as compared to the classical approaches of using reservoir simulator only. 490 

8. Appendix A – Algorithms  491 

 492 

Algorithm 1 – Pseudo-code accounting for irregular boundaries during well location optimization 
 
Assume that binary matrix 𝛺 corresponds to a reservoir top’s map, where: 

𝛺(𝑖, 𝑗) = {
1, 𝑖𝑓 (𝑖, 𝑗)𝑖𝑠 𝑎𝑛 𝑎𝑐𝑡𝑖𝑣𝑒 𝑔𝑟𝑖𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟

0, 𝑖𝑓 (𝑖, 𝑗)𝑖𝑠 𝑎 𝑔𝑟𝑖𝑑 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 
 

𝑁𝑤𝑒𝑙𝑙 denotes the number of wells, 𝛺𝛼(𝑖, 𝑗) represents an iteration of the location of well 𝛼. 

 

Do for 𝛼 = 1, 2, … , 𝑁𝑤𝑒𝑙𝑙 

• If Ω𝛼(𝑖, 𝑗) = 1 then 

Well 𝑘 is inside the reservoir boundaries. 

• If Ω𝛼(𝑖, 𝑗) = 0 then 

▪ Find the nearest element of matrix Ω such that Ω(𝑖′, 𝑗′) = 1 and 

𝑑[Ω(𝑖, 𝑗), Ω(𝑖′, 𝑗′)] = √(Ω(𝑖) − Ω(𝑖′))
2

+ (Ω(𝑗) − Ω(𝑗′))
2

is minimum. 

▪ Replace Ω(𝑖, 𝑗) with Ω(𝑖′, 𝑗′). 

End do 

 493 

Algorithm 2 – Pseudo-code for the adjustment procedure for the vector of well locations 
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Assume a vector of decision variables Ψ = [𝜓1(𝑖, 𝑗), 𝜓2(𝑖, 𝑗), … , 𝜓𝑁𝑤𝑒𝑙𝑙

(𝑖, 𝑗)], where 𝜓𝛼(𝑖, 𝑗) 

represents an iteration of the location of well 𝛼. 
 
Do for 𝛼 𝑎𝑛𝑑 𝛽, where 𝛼, 𝛽 = 1,2, … , 𝑁𝑤𝑒𝑙𝑙  and 𝛼 ≠ 𝛽 

Calculate Euclidean distance between two wells: 

𝑑[𝜓𝛼(𝑖, 𝑗), 𝜓𝛽(𝑖, 𝑗)] = √(𝜓𝛼(𝑖) − 𝜓𝛽(𝑖))
2

+ (𝜓𝛼(𝑗) − 𝜓𝛽(𝑗))
2

 

If 𝑑[𝜓𝛼(𝑖, 𝑗), 𝜓𝛽(𝑖, 𝑗)] < 𝑅𝑚𝑖𝑛 then 

Find Ψ̂ = [�̂�1(𝑖, 𝑗), �̂�2(𝑖, 𝑗), … , �̂�𝑁𝑤𝑒𝑙𝑙
(𝑖, 𝑗)] such that: 

𝑚𝑖𝑛(Ψ̂ − Ψ)
2

  

subject to two constraints: 

(1) ∀ �̂�𝛼(𝑖, 𝑗), �̂�𝛽(𝑖, 𝑗) ∈ Ψ̂ and 𝛼 ≠ 𝛽 

𝑑[�̂�𝛼(𝑖, 𝑗), �̂�𝛽(𝑖, 𝑗)] ≥ 𝑅𝑚𝑖𝑛 

(2) ∀ �̂�𝛼(𝑖, 𝑗) ∈ Ψ̂ 
Ω𝛼(𝑖, 𝑗) = 1 (See algorithm 1) 

End if 
End do  

Replace Ψ̂ with Ψ. 
 

 494 

9. Appendix B – Hyperparameters and Architecture of CNN 495 

 496 

Table B1 – Hyperparameters used for CNN in the Brugge and Egg model examples. 497 

Hyperparameter Value 

Max epoch 30 
Number of iterations per epoch 5 

Mini-batch size 128 
Initial learning rate 0.003 

  
 498 

Table B2 – CNN architecture in the Brugge model example. 499 

Layer Number Layer Type Output Dimension 

1 Input Layer 139 × 48 × 1 
2 Convolution Layer 139 × 48 × 8 
3 Batch Normalization 139 × 48 × 8 
4 Activation (ReLU) 139 × 48 × 8 
5 Average Pooling 69 × 24 × 8 
6 Convolution Layer 69 × 24 × 16 
7 Batch Normalization 69 × 24 × 16 
8 Activation (ReLU) 69 × 24 × 16 
9 Average Pooling 34 × 12 × 16 

10 Convolution Layer 34 × 12 × 32 
11 Batch Normalization 34 × 12 × 32 
12 Activation (ReLU) 34 × 12 × 32 
13 Average Pooling 17 × 6 × 32 
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14 Convolution Layer 17 × 6 × 64 
15 Batch Normalization 17 × 6 × 64 
16 Activation (ReLU) 17 × 6 × 64 
17 Average Pooling 8 × 3 × 64 
18 Flatten Layer 1 × 1536 
19 Fully Connected Layer 1 × 1 
20 Regression Output 1 × 1 

 500 

 501 

Table B3 – CNN architecture in the Egg model example. 502 

Layer Number Layer Type Output Dimension 

1 Input Layer 60 × 60 × 1 
2 Convolution Layer 60 × 60 × 8 
3 Batch Normalization 60 × 60 × 8 
4 Activation (ReLU) 60 × 60 × 8 
5 Average Pooling 30 × 30 × 8 
6 Convolution Layer 30 × 30 × 16 
7 Batch Normalization 30 × 30 × 16 
8 Activation (ReLU) 30 × 30 × 16 
9 Average Pooling 15 × 15 × 16 

10 Convolution Layer 15 × 15 × 32 
11 Batch Normalization 15 × 15 × 32 
12 Activation (ReLU) 15 × 15 × 32 
13 Average Pooling 7 × 7 × 32 
14 Convolution Layer 7 × 7 × 64 
15 Batch Normalization 7 × 7 × 64 
16 Activation (ReLU) 7 × 7 × 64 
17 Average Pooling 7 × 7 × 64 
18 Flatten Layer 1 × 3136 
19 Fully Connected Layer 1 × 1 
20 Regression Output 1 × 1 

 503 

10. Appendix C – Regression Assessment Metrics 504 

A root mean squared error (RMSE) and 𝑅2, respectively, is defined as follows: 505 

𝑅𝑀𝑆𝐸 = √∑ (𝐻(𝑥𝑖) − 𝐽(𝑥𝑖 , 𝑚))
2𝑁

𝑖=1

𝑁
 

(C1) 

𝑅2 = 1 −
∑ (𝐻(𝑥𝑖) − 𝐽(𝑥𝑖, 𝑚))

2𝑁
𝑖=1

∑ (𝐽 ̅ − 𝐽(𝑥𝑖, 𝑚))
2𝑁

𝑖=1

 (C2) 

, where 𝑥 is the state vector of input data, 𝐽 is the true output based on the state vector of the reservoir 506 

𝑚, 𝐽 ̅ is the mean of true outputs, 𝐻 is the SM response, and 𝑁 is the number of data points. 507 
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