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Abstract: Deep learning (DL) enables the creation of computational models comprising multiple
processing layers that learn data representations at multiple levels of abstraction. In the recent past,
the use of deep learning has been proliferating, yielding promising results in applications across a
growing number of fields, most notably in image processing, medical image analysis, data analysis,
and bioinformatics. DL algorithms have also had a significant positive impact through yielding
improvements in screening, recognition, segmentation, prediction, and classification applications
across different domains of healthcare, such as those concerning the abdomen, cardiac, pathology, and
retina. Given the extensive body of recent scientific contributions in this discipline, a comprehensive
review of deep learning developments in the domain of diabetic retinopathy (DR) analysis, viz.,
screening, segmentation, prediction, classification, and validation, is presented here. A critical
analysis of the relevant reported techniques is carried out, and the associated advantages and
limitations highlighted, culminating in the identification of research gaps and future challenges that
help to inform the research community to develop more efficient, robust, and accurate DL models for
the various challenges in the monitoring and diagnosis of DR.

Keywords: deep learning; machine learning; diabetic retinopathy; medical imaging; color fundus
images; image processing; image recognition; computer vision; segmentation; classification

1. Introduction

Diabetic Retinopathy (DR) is a harmful disease and the main cause of blindness among
the working-age population. Moreover, DR is the most feared complication of diabetes
and increases the chance of the onset of other diseases, such as kidney disorders [1], heart
disease [2], and mortality [3]. The onset and progression of DR are most significantly
associated with three risk factors: an increase in blood pressure, poor glycemic control,
and long periods in a diabetic condition [4]. Figure 1 shows the eye structure of a healthy
person and that of a DR patient.

According to World Health Organization (WHO) [5], 422 million people suffer from
DR, with the number of patients expected to reach epidemic levels worldwide in the next
few decades. In 2017, ~425 million DR patients were reported globally, estimated to reach
642 million by 2040. Patients with diabetes type-1 mellitus and ~60% of patients with
diabetes type-2 mellitus will develop DR within 20 years post the onset of the condition [6].
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DR is a costly disease. According to the national study AusDiab, the total direct cost owing
to the treatment of DR in Australia was AUS$ 4.8 billion over ≥30 years [7]. In summary,
DR has significant public health, clinical, and economic consequences.
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Figure 1. (a) Eye structure of Non-DR patient; (b) Eye structure of DR patient.

Traditionally, color fundus photographs (CFPs) have been used for the analysis of
DR, executed by a trained grader or retina specialist. Due to the low adherence and
access to retina screening, a large proportion of undiagnosed patients have not received
timely and appropriate medical support [8,9], the result being the continual increase of
the DR population towards pandemic levels [10–12]. The early detection of the onset and
progression of the disease are central to the mitigation of the threat of DR, allowing time to
render the most impactful treatment before reaching criticality.

The risk of blindness can be reduced markedly through evidence-based treatment,
with clinical studies showing that a reduction of over 90% of the risk is achievable [13]. For
example, laser photocoagulation has been proven to be the most effective technique for
the treatment of early-stage DR, which is core to the prevention of vision loss. However,
patients with diabetes are not sufficiently aware, nor do they have knowledge, of DR. The
rate of awareness is highly dependent on the region, country, and the duration of the
diabetes condition, but, in general, it is low globally, e.g., the rates were 65%, 27%, and
42–60% in the USA, India, and Pakistan, respectively [14,15]. Additionally, at the early
stage of the onset, visual symptoms are negligible (or indeed non-existent), a major factor
that impedes awareness. As a consequence, the WHO recommends eye examinations for
diabetes patients annually, as timely and accurate analysis based on relevant data helps
to reduce the economic burden on health service providers. A recent study in Germany
evaluated the cost as a function of the progression of DR [16], showing that the early
non-proliferative management of DR is significantly more cost-effective compared to the
management of proliferative DR.

The prevalence of DR has been increasing consistently over the recent years in both
developing and developed countries. Moreover, the implementation of annual eye ex-
aminations is challenging in remote or rural geographies due to limited access to trained
ophthalmologists. Specific programs are required to target these regions; otherwise, the
successful treatment of DR will remain compromised. The USA and Europe have imple-
mented DR management programs, examples being the USA 2000 diabetes program [17],
and the France [18] and UK [19] DR screening programs. Most programs are founded on
the use of CFIs for the analysis of DR. A specialist examines the images and assigns grades.
On the whole, the successful delivery of the programs not only increases the workload
burden on ophthalmologists, but also increases the cost of the analysis and treatment. The
combination of limited access to experienced ophthalmologists coupled with the growing
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number of patients inevitably results in a prohibitive overall burden for existing healthcare
systems. Consequently, the scope of these challenges has motivated extensive research and
the development of techniques that provide a decision support capability for the analysis
and early identification of the onset of DR automatically, primarily driven by the need to
reduce the cost of the management of the condition [20].

Advancements in medical technologies have supported the universal goal of optimiz-
ing the efficiency of healthcare systems [21,22]. For example, e-health systems are being
used successfully in a number of healthcare pathways [23,24]. Computer vision-based
applications are gaining more importance in the field of biomedical imaging, providing
decision support information of value to the radiologist that enhances the diagnosis and
better informs medical staff on the most effective treatments for key medical conditions. In
the specific application domain of medical imaging, different image modalities, such as
color fundus images (CFIs), 7-field color fundus photographs (CFPs), and ultra-wide-field
scanning laser ophthalmoscope (UWF-SLO), have been used for the analysis and treatment
of DR.

Several approaches based on hand-engineered features have been shown to yield
effective results in the recognition of the signs of DR in the regions within retinal fundus
images. A number of traditional machine learning models using hand-engineered features
for the analysis of DR have been reported [25–28]. For example, in [25,28], the performance
of the diagnosis of DR was compared as a function of a number of different methodolo-
gies, such as mathematic morphology, thresh-holding and deformable models, retinal
lesion tracking, matched filter models, clustering-based models, and hybrid approaches.
In [26], the authors presented an overview of the algorithms that extract lesions from
color fundus images, including features such as hemorrhages, blood vessel texture, and
micro-aneurysms. The research related to exudate detection has been reviewed in [27], and
an overview related to the segmentation of retinal vessels algorithms has been presented
in [29]. Furthermore, [30,31] reviewed the different methods for optic disc segmentation
and the analysis of glaucoma. However, expert knowledge is necessary in order to select the
most appropriate hand-engineered features and, thus, these techniques are not generalized.

In recent years, a large body of research targeting the development of deep learning
applications in e-healthcare has been reported, fueled by the ready availability of appro-
priate (large) data sets and low-cost access to computing resources [32–34]. DL-based
solutions have been shown to offer outstanding performance for a range of computer vision
tasks, and superior performance with respect to traditional, manual techniques. Similarly,
a large number of DL-based models and algorithms have also been developed to analyze
retinal fundus images as part of the goal to develop automatic computer-aided decision
support systems that aid in the diagnosis of DR. DL-based applications for the processing
of medical images have been developed and tested to extract DR-related signs. Several
computer-aided systems that combine advanced algorithms and telemedicine technologies
have been proposed for the early identification of the onset of DR and have been evaluated
within DR screening programs. An automatic DR grading system provides the early detec-
tion and analysis of the DR, thereby triggering a referral to an ophthalmologist. The value
proposition of these systems is the reduction in the workload of the ophthalmologists and,
in turn, an increase in the cost-effectiveness of the analysis and treatment.

Given the extensive body of recent research, a wide-ranging review of the advance-
ments in the state-of-the-art techniques for the application of deep learning to the analysis
of diabetic retinopathy is timely. This review distinguishes the key tasks inherent to the
analysis of DR, specifically the retinal blood vessel segmentation, the prediction and identi-
fication, the recognition and classification in both applications, and methodology-driven
perspectives. Reported deep learning-based models/algorithms, techniques, methodolo-
gies, systems, architectures, frameworks, and clinical studies for DR analysis are considered
together, with an overview of the feature extraction techniques, tools, data sets, languages,
and libraries used for the development of recognition, simulation, and evaluation frame-
works. The review culminates with the identification of the research challenges that remain,
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such as open issues related to the definition and establishment of monitoring and treatment
regimens for patients. The review adopts the PRISMA approach, illustrated in the form
of a flow diagram depicted in Figure 2. Relevant research has been reported in a range
of journals and conferences, and the breakdown of the body of research related to DR
analysis using deep learning is captured in Figure 3, showing the total number and the
yearly growth in the number of publications in different databases. Recent publications are
presented in tabular form in an effort to assist readers in gaining an overview of the field
simply.
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Figure 3. (a) Breakdown of recent research publications on DR analysis using deep learning in
different databases; (b) Year-wise breakdown of recent research publications on DR analysis using
deep learning.

A large number of predominately peer-reviewed publications reporting on an exten-
sive variety of deep learning applications for the analysis of DR have been considered.
The (“Diabetic Retinopathy” AND “Deep Learning”) query was performed regarding the
title and abstract for the identification and selection of the most relevant publications. In
summary, this review provides:

• A wide-ranging overview of the state-of-the-art techniques for deep learning de-
velopment in the field of diabetic retinopathy that will help to inform the research
community on future research in this domain.

• A description of the different tasks inherent to the analysis of DR, including retinal
blood vessel segmentation, prediction and identification, and recognition and classifi-
cation. Also provided are the most appropriate datasets aligned to the need to develop
algorithms for DR analysis.

• Extensive bibliographic reference sources on deep learning algorithmic research for
the analysis of DR.

• Deep learning-based algorithms, methods, models, architectures, systems, frame-
works, and approaches for the analysis of DR are considered

• The most successful DL-enabled solutions for DR analysis are highlighted
• The performances of reported techniques are compared, research gaps are identi-

fied, and the future evolution of the application of deep learning for DR analysis is
addressed.

2. Deep Learning for the Analysis of Diabetic Retinopathy

DR analysis is segmented according to established clinical practices into five categories:
(i) screening and recognition, (ii) retinal blood vessel segmentation, (iii) lesion detection,
(iv) lesion classification, and (v) validation. The state-of-the-art deep learning development
for each category is presented.

2.1. Screening and Recognition

The quality of fundus retinal images has a significant impact on the development and,
in turn, the performance of DL models for the analysis of DR. The automatic detection of
image quality during the acquisition process has been proven to enhance the performance
of models.
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VariSeeTM is a deep learning-based software proposed for the screening of DR [35]. A
convolutional neural network (CNN) was used in the learning stage of VariSeeTM, with
the training comprising two phases: pre- and fine-tune training. In the first phase, an
Inception-V4 network architecture, proven to yield the best performance in the screening of
referable and of any DR, was used to speed up the training process. The CNN was trained
using 31,612 color fundus images. The base model was then trained using 5649 color
fundus images on the same network architecture during the fine-tune phase. Finally, to
further improve the screening performance, the combination of two different Inception-
V4 networks were deployed. The CNN model with Inception-V3 based software was
developed for the automatic screening of DR, as reported in [36], and is founded on the
detection of either the absence or presence of referable DR and non-DR. The algorithm was
trained and evaluated using the EyePACS and MESSIDOR datasets.

A DL Inception-V3 model with transfer learning, which used 7-field color fundus
photographs (7F-CFP), was proposed in [37] for the automatic screening of severe non-
proliferative DR (NPDR). The model operates at the image level for all seven fields of view,
according to the diabetic retinopathy severity scale (DRSS), with the prediction at the eye
level, performed through the average predictions across all fields view of.

The method presented in [38] targets the determination of the quality of fundus images
during acquisition. A deep CNN (DCNN) architecture consisting of five convolutional and
two fully connected layers, along with a binary classification layer, were trained to grade
the image quality automatically. The first convolutional layer of the DCNN comprised 96
filters of size 11 × 11, the second layer 256 filters, the third and fourth layers 384 filters,
and the last layer 256 filters. The activation size of the first and final fully connected
layers consisted of 4096 filters. Thus, the final output fully connected layer produced a
4096-dimensional image.

Publicly available data sets offer a limited number of fundus images, which in turn
compromises the performance of the models. However, the authors of [39] detailed a data
set consisting of 13,673 fundus images collected from 9598 patients. The images were
divided into six different classes through seven graders according to quality, resulting in a
data set entitled DDR, an enabler of the development of algorithms for the classification,
detection, and semantic segmentation of DR lesions. A range of well-known DL algorithms,
such as GoogleNet [40], ResNet-18 [41], VGG-16 [42] SE-BN-Inception [43], and DenseNet-
121 [44], have been evaluated using the DDR data set for DR grading.

A deep visual features (DVFs)-based approach was proposed in [45] to automatically
grade the severity level of DR (SLDR). The system does not need to perform pre- nor
post-processing on images and learns through DVFs. The gradient location orientation
histogram (GLOH) [46] and DColor-SIFT [47] techniques are used for the extraction of the
DVFs. The latter method describes the color content and color variations of the retinal
image. The GLOH feature method is used to improve the classification performance, and
principal component analysis, PCA, together with GLOH, is used to reduce the size of the
descriptor. The mathematical formulation of these methods is as follows:

h(x, y) = arglog− polar
n

∑
k=0

Rg(x, y)kG_H(x, y) = arg maxPCA[h(x, y)] (1)

A min–max scaling approach is then used to combine the features of both DColor-SIFT
ad GLOH. Equation (2) is the visual feature vector constituted by the deep learning neural
network (DLNN) algorithm in the creation of the DVFs:

f (x, y) = argmin−max{h(x, y), G_H(x, y) } (2)

A new compression layer and fine-tuning steps were added to a development deep
learning NN (DLNN) framework in order to learn the most appropriate DVFs features. The
DLNN consisted of three active layers, viz., the base, compression, and prediction layers.
Restricted Boltzmann machines (RBMs) [48] were deployed at the base layer to increase
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the unsupervised power for the learning of features. The compression layer was generated
with the aid of Shannon entropy constraints (SECs) [49] that compute the effective weights,
unsupervised, using the output of the base layer, thus refining the weights of the features.
Finally, the linear soft-max classifier [50] was used in a supervised manner within the
prediction layer to output the final label for the DR. A comparison of the performance of
the abovementioned methods is given in Table 1.

2.2. Retinal Blood Vessel Segmentation

The early detection of changes in the fine retinal blood vessels is important, as patho-
logical retinal damage causes vision impairment. However, blood vessel segmentation is a
challenging task due to the low contrast of retinal images, the presence of pathologies, such
as HMs and micro-aneurysms (MAs), and variations in morphology in noisy background
images. State-of-the-art deep learning developments in the segmentation of retinal blood
vessels are reviewed in the following section.

2.2.1. Convolutional Neural Networks (CNNs)

A framework based on a contrast limited adaptive histogram equalization (CLAHE)
was proposed for the segmentation of morbid retinal images in [51]. The approach was
successful in the elimination of the background from the input image and in enhancing the
pixels of blood vessels in the foreground. Furthermore, evidence was provided to show
that the tandem pulse coupled neural network (TPCNN) model is effective in the automatic
generation of feature vectors. Finally, a DL-based support vector machine (DLSVM) model
has been shown to predict and identify the class of the blood vessels. The firefly algorithm
is used for the fine-tuning of the DLSVM parameters. The mathematical representation of
the firefly is given in Equation (3):

distij =
‖xi − xk+1

j ‖√
∑n

l=1 (xil − xk+!
jl )

2
(3)

where xi and xk+1
j represent the number of firefly swarms, and xil and xk+!

jl represent
the brightness of the corresponding fireflies. distij is the distance vector between the
attractiveness of the fireflies and l is the candidate index of the fireflies. Equation (3)
indicates that the attractiveness between xi and xk+1

j is proportional to the firefly.
A total of 12 CNN models have been employed [52] for the segmentation of the

non-vessel and vessel pixels. Every model consists of two fully connected and three
convolutional layers. The DRIVE dataset was used for the evaluation of the method.
Maninis et al. [53] used a pre-trained visual geometry model (VGG-net) for the image-
to-image level segmentation of the blood vessels. The model was modified by removing
the fully connected layers, with the extra convolutional layers added after the first four
convolutional blocks of VGG, before the pooling layers. STARE and DRIVE datasets were
used for the evaluation.

Wu et al. [54] reported the first use of a CNN for the extraction of the discriminative
features, a PCA-based nearest neighbor search for the estimation of the local structure
distribution, and a generalized probabilistic framework for the segmentation. The DRIVE
dataset was used for the evaluation. A seven-layer CNN model that simultaneously
segments the blood vessels, fovea, and optical discs (OD) was proposed by Tan et al. [55].
After the normalization and pre-processing of the images, a classification problem was
formulated rather than carrying out a segmentation. Assuming the four classes for the
blood vessels, fovea, OD, and background, 25 × 25 neighborhood pixels were used for each
pixel classification. This model is complex and time consuming, as every pixel is classified
independently.
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Table 1. A comparison of reported deep learning techniques for screening and recognition.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation of

Performance

Yi-Ting Hsieh
et al. [35]

CNN and Inception-V4
network-based software named

VariSeeTM
Not Mentioned

Custom-developed at National
Taiwan University Hospital

between July 2007 and June 2017 +
EyePACS

39,136 Color fundus images Maximum accuracy =
98.4%

Silvia Rego
et al. [36]

CNN model with Inception-V3
based software Not Mentioned EyePACS 350 Color fundus images

Sensitivity = 80.8%
Specificity = 95.6%

PPV = 77.6%
NPV = 96.3%

Fethallah
Benmansour

et al. [37]

Inception-V3 model with transfer
learning based automatic

screening approach
Not Mentioned Custom-developed at Inoveon

Corporation, Oklahoma City, UK 1,790,712 7-field color fundus
photographs (7F-CFP)

Area under the receiver
operating characteristic
(AUROC) curve = 96.2%

Sensitivity = 94.2%
Specificity = 94.6%

Sajib Kumar
Saha et al. [38]

Deep convolutional neural
network-based approach Not Mentioned EyePACS 7000 color fundus images

Accuracy = 100%
Sensitivity = 100%
Specificity = 100%

Tao Li et al. [39]

DL framework consisting of
VGG-16, ResNet-18,

GoogleNet, DenseNet-121, and
SE-BN-Inception

Nvidia Tesla K40C GPU

Custom-developed, collected
from 147 hospitals from 2016 to
2018, covering 23 provinces in

China, 84
of which are grade-A tertiary

hospitals.

13,673 color fundus images Maximum accuracy =
95.74%

Qaisar Abbas
et al. [45]

Gradient location orientation
histogram (GLOH), DColor-SIFT,

deep learning neural network
(DLNN), restricted Boltzmann

machines (RBMs), and Shannon
entropy constraints (SECs)-based

system

MATLAB R2015a, Core
i7 64-bit Intel

processor system with 8
GB DDR3 RAM

DIARETDB1, MESSIDOR, and
custom-developed at Private

Hospital Universitario Puerta del
Mar (HUPM,
Cádiz, Spain)

750 color fundus images

Sensitivity = 92.18%
Specificity = 94.50% Area

under the receiving
operating

curves (AUC) = 92.4%
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A fully convolutional network (FCN) in tandem with structured prediction was used
for segmentation, the task being formulated as a multi-label inference [56]. The green
channel of the color fundus images was pre-processed by contrast, normalization, gamma
adjustment, and intensity scaling between 0 and 1. The DRIVE dataset was used for the
evaluation of the method. Fu et al. [57] formulated the segmentation task as a boundary-
detection task and proposed a method utilizing the fusion of the fully connected conditional
random field (FCCRF) and FCN. First, the FCN was used to generate the probability maps
of the blood vessels, and then FCCRF was used to combine these probability maps with
long-range pixels for the segmentation. In [58], the authors used an FCN incorporated with
some auxiliary classifiers at intermediate layers to make the features more discriminative at
the lower layers. Transfer learning was used to train the FCN model in order to overcome
the limited number of samples available.

In [59], a deep CNN-based method for the pixel-wise supervised vessel segmentation
was proposed. The model was trained using color fundus images that were pre-processed
with zero-phase whitening and contrast normalization, and gamma corrections and a
geometric transformation process were used for the augmentation. The evaluation of the
model was executed using STARE, DRIVE, and CHASE data sets. The performance results
indicate that the model is sensitive with respect to the detection of fine vessels and robust
against the central vessel reflex.

A principle component analysis (PCA) approach has been used to improve the picture
splendor and contrast for the segmentation of the eye veins [60]. This technique performs
the vein division and is known as tale solo calculation. The standard cut division chart
along the curvelet change is used to segment the thickness of the vein, with a multi-goal
curvelet change supporting the division of the veins. The PCA calculation provides the
picture’s slope for the vein division. In the retinal images, the optic circle is a critical
component for the occurrence of DR. This technique also uses Hough change, which helps
one to recognize the elliptic state and roundabout of the optic plate and focus on the ROI
that contains it. The adjusted assumption amplification calculation is used for the fragments
of hard exudates from the fundus image. The bandlet change and gray level co-occurrence
matrix (GLCM) are used for the computation of the highlight arrangements in the image.
Finally, the CNN segments the highlighted regions of the image for DR. Another DL system
for the identification and detection of proliferative-stage diabetic retinopathy (PDR) was
proposed in [61]. The hallmark features can also be used for the detection of PDR, and
this is called neovascularization. The aim of the system is to correctly detect the presence
of neovascularization using color fundus images. If the neovascularization is found in
the eye, this means that the eye is affected by PDR. Neovascularization is also known
as the formation of new abnormal blood vessels in the retina. Thus, the formation of
neovascularization may lead to partial or complete vision loss. This system is based on
CNN, which is modeled with VGG-16 Net architecture and segments the abnormal vessels
of the retina. DRIVE and STARE datasets were used for the evaluation of the system.

2.2.2. Stacked Auto Encoder (SAE)

A hybrid DL architecture, which consists of unsupervised stacked de-noising autoen-
coders (SDAEs), was proposed by Maji et al. [62] for the segmentation of blood vessels
in the fundus images. The structure of the architecture has two DAEs; the first DAE has
400 hidden neurons, and the second DAE consists of 100 hidden neurons. The RF is used
for the classification of features and, after that, SDAE learns those features. In this approach,
a patch of size k ± k is used around each pixel in the green channel for the segmentation of
the vessels. The authors used the DRIVE dataset for the evaluation of their architecture.

Roy and Sheet [63] proposed a stacked auto-encoder (SAE)-based deep neural network
(DNN) model for the segmentation. For the training of this model, the domain adaptation
(DA) approach was used. This model consists of two hidden layers, and supervised learning
and auto-encoding mechanism are used for the training of these layers. After that, the DA
is applied in two stages: supervised fine-tuning and unsupervised weight adaptation. In
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the unsupervised weight adaptation stage, the unlabeled samples from the target domain
are used with the auto-encoding mechanism and node dropouts for the re-training of the
hidden nodes. In the supervised fine-tuning stage, a small number of labeled samples from
the target domain are used for the fine-tuning of the SAE-DNN. The results show that the
performance of the SAE-DNN model can be increased by using DA domain.

A supervised DL-based approach that segments the blood vessels from the green
channel was proposed by Li et al. [64]. This approach labels the pixel in a patch form
instead of a single pixel. In this approach, the DNN, which consists of DAEs, is used to
transfer the retinal image to a vessel map for the segmentation.

A two-level ensemble of SDAEs was proposed in [65]. In the first level of the ensemble,
N number of SDAEs are composed to form a same structure network (E-net). Each SDAE
has two hidden layers and a SoftMax classifier. Bootstrap training samples are used to
train the SDAEs, which is followed by auto-encoding mechanism. After that, the fusion
strategy is used to combine different SDAEs and this produces probabilistic maps of images.
In the second level of the ensemble, the convex weight average (CWA) is used to merge
the decisions from the two different e-nets, which have different architectures, to further
explore the diversity for the segmentation.

Fu et al. [66] formulated the blood vessel segmentation problem as a boundary de-
tection task and proposed a deep-vessel segmentation method by integrating conditional
random field (CRF) and CNN as a recurrent neural network (RNN). A summary of the
reported techniques for retinal blood vessel segmentation is given in Table 2.

2.3. Detection
2.3.1. Convolutional Neural Networks

An automatic CNN-based DR grading system [67] has been reported for the classi-
fication of retinal images into four severity levels. The CNN combines the input images
through an appropriate weight matrix to extract the specific features of the images without
losing the spatial arrangement information. Another automatic DL-based model for the
detection of DR severity that also includes pre-processing, recognition, and detection is
presented in [68]. Blood vessel extraction, the green channel extraction, and the optic disc
(OD) removal are performed at the pre-processing stage, and the green channel extraction
enhances the contrast of the images. A morphological operation removes the OD and the
kernel fuzzy c-means method is used for the extraction of the blood vessels. The recognition
of DR features is achieved at the second stage. The recursive region growing segmentation
(RRGS) algorithm is used to recognize the hard exudates; a Laplacian–Gaussian Filter
(LGF) and matched filtering and mutual information are applied for the recognition of
micro-aneurysms (MA) and hemorrhages (HEM); and the extracted features, such as the
MAs counts, area and exudate counts, perimeter, and the area and perimeter of the blood
vessels are then inputted into the CNN for detection.

The CNN-based automatic diabetic detection model for retinal images was presented
in [69] and consists of five modules, including pre-processing, exudates segmentation, blood
vessel segmentation, texture features extraction, and DR detection. In the pre-processing
step, adaptive histogram equalization (AHE) is used to enhance the quality of the input
retinal images. In the second step, the tasks of exudate and blood vessel segmentation
are performed by fuzzy c-means clustering (FCM) and CNN, respectively. The texture
features are then extracted from the exudates and blood vessels, followed by a support
vector machine (SVM) implementation for the detection of DR.
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Table 2. A summary of the reported techniques for retinal blood vessel segmentation.

Study Proposed Solution

Languages/Libraries
Software’s/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Kevis-Kokitsi
Maninis et al.

[53]

Deep convolutional neural
networks

(DCNNs) and VGG net-based
model

NVIDIA TITAN-X GPU
is 85 milliseconds (ms) DRIVE and STARE 60 Color fundus images Maximum precision = 83.1%

Aaron Wu et al.
[54]

Deep convolutional neural
network (CNN) and principal

component analysis (PCA)-based
framework

Not mentioned DRIVE 20 Color fundus images AUC = 97.01%

Jen Hong Tan
et al. [55] Seven-layer CNN model

MATLAB, Intel Xeon
2.20 GHz (E5-2650 v4)

processor and a 512 GB
RAM

DRIVE 40 Color fundus images Accuracy = 94.54%

Huazhu Fu
et al. [57]

Fully connected conditional
random field (FCCRF) and

FCN-based method

Caffe library, NVIDIA
K20 GPU DRIVE and STARE 60 Color fundus images Maximum accuracy = 95.45%

Sensitivity =71.40%

Juan Mo and
Lei Zhang [58]

Multi-level hierarchical
features-based fully convolutional

network (FCN) model
NVIDIA GTX Titan GPU DRIVE, STARE, and

CHASE_DB1 88 Color fundus images

Maximum accuracy = 96.74%
Sensitivity = 81.47%
Specificity = 98.44%

AUC = 98.85%
Kappa = 81.63%

G. Nallasivan
et al. [60]

Principle component analysis
(PCA), gray level co-occurrence

matrix (GLCM), and CNN-based
technique

Not mentioned DRIVE 40 Color fundus images
Accuracy = 96%
Sensitivity = 96%
Specificity = 94%
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Table 2. Cont.

Study Proposed Solution

Languages/Libraries
Software’s/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

P. Saranya et al.
[61]

CNN and VGG-16 net-based
architecture

Python, Keras version
2.3 and TensorFlow
version 1.14, Intel(R)

Core (TM) i7-6700HQ
Cpu@2.60 gHz, 16 GB
RAM, Nvidia GeForce

GTX 960 GPU

DRIVE, STARE, Kaggle
database 2260 Color fundus images

Maximum accuracy = 96%
Specificity = 99%
Sensitivity = 95%
Precision = 99%
F1 score = 97%

Debapriya Maji
et al. [62]

Deep neural network
(DNN) and stacked ne-noising

auto-encoder-based hybrid
architecture

Not mentioned DRIVE 40 Color fundus images

Maximum average accuracy =
93.27%

Area under ROC curve = 91.95%,
Kappa = 62.87%

Abhijit Guha
Roy and

Debdoot Sheet
[63]

Stacked auto-encoder
(SAE)-based deep neural network

(DNN) model
Not mentioned DRIVE 40 Color fundus images Area under ROC curve = 92%

Qiaoliang Li
et al. [64]

Deep neural network (DNN) and
de-noising auto-encoders
(DAEs)-based supervised

approach

MATLAB 2014a, AMD
Athlon II X4 645CPU
running at 3.10 GHz
with 4 GB of RAM

DRIVE, STARE, and
CHASE_DB1 88 Color fundus images

Maximum accuracy = 96.28%
Sensitivity = 77.26%, specificity =

98.44%
AUC = 98.79%

Avisek Lahiri
et al. [65]

Stacked de-noising auto-encoders
(SDAEs) and convex weight

average (CWA)-based two-level
ensemble approach

Not mentioned DRIVE 40 Color fundus images
Maximum average accuracy =

95.33%
Kappa = 70.8%

Huazhu Fu
et al. [66]

Conditional random field (CRF)
and CNN as a recurrent neural
network (RNN)-based method

Caffe library, NVIDIA
K40 GPU

DRIVE, STARE, and
CHASE DB1 88 Color fundus images

Maximum average accuracy =
95.85%

Sensitivity = 74.12%
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A hybrid approach consisting of CNN and a linear support vector machine (LSVM)
was presented in [70]. The CNN model extracts the features from the input fundus images,
and these features are subsequently inputted into the to LSVM for binary classification as
DR or non-DR. In another study [67], the authors concluded that most errors occurred in
the misclassification of the mild disease as normal, as the developed CNN model was not
capable of detecting the subtler features of the disease. As a consequence, the contrast limited
adaptive histogram equalization (CLAHE) was used to ensure the fidelity of the dataset for the
verification of the class labels and, in turn, to enhance the model’s capability to recognize subtle
features. These subtle features were then inputted into pre-trained AlexNet and GoogleNet
models for the final detection of DR. Another hybrid model fuses the Inception-ResNet-v2 and
CNN models [71]. The former, trained on the ImageNet dataset, is used for transfer learning,
whilst the latter is a customized convolution block followed by fully connected layers. This
approach removes the last layers of the Inception-ResNet-v2 and adds the CNN custom block
followed by fully connected layers, global max-pooling, and SoftMax.

A CNN-based method consisting of seven blocks of two layers accepting 3 × 640
× 640 images was presented in [72]. The size of the images was progressively reduced
until a receptive field of 64 × 5 × 5 was attained for the extraction of features. Every
layer had a stack of 3 × 3 convolutions, along with a 1 × 1 stride and 1 × 1 padding,
followed by batch normalization and ReLU activation function. The final vector had the
64 values derived from 4 × 4 average pooling layers. At the final layer, a linear classifier
and a SoftMax function operated on the 64 features for the grading and detection of DR,
according to the international clinical diabetic retinopathy severity scale (ICDR) [22]. The
quadratic weighted kappa (QWK) was used as a loss function for the optimization of the
CNN parameters. Another DL system consisting of three CNNs (ResNet-50) and relying
on transfer learning was presented in [73], using data acquired from ultra-wide-field scan
laser images instead of fundus images for the training. An ensemble of an orthogonal
learning particle swarm optimization (OLPSO)-based model and CNN model (OLPSO-
CNN) consisting of three main processes, including pre-processing, feature extraction,
and detection, was presented in [74]. The noise of the input image was removed at the
pre-processing stage, followed by the segmentation of the pre-processed image using the
watershed algorithm. The OLPSO-CNN then extracted the features from the segmented
image, and these extracted feature vectors were fed into the DT for classification. The
MESSIDOR dataset was used for the evaluation of the performance of the method. A DL
model consisting of different pre-trained CNN architectures, coupled with transfer learning
and hyper parameter tuning treating different imbalanced classes of retinal images, was
proposed in [75]. The model gives better results when presented with imbalance data.

DR is also characterized by features such as bright lesions, red lesions, and neovascu-
larization. The former are clinically observable lesions occurring after the appearance of
red lesions. Also important to the diagnosis are the exudates (hard and soft exudates) and
cotton wool spots. A CNN-based DL framework that detects bright lesions was proposed
in [76]. At the pre-processing stage, the background removal of images, OD elimination,
and segmentation of candidate lesions were performed, with the segmented bright lesions
fed into a CNN for detection. The MESSIDOR dataset was used for the evaluation of
the framework. A modified version of CNN with a standard VGG-16 network was pro-
posed [77]. An originally trained VGG network on the image-net dataset was used for the
modification of the CNN, with transfer learning on VGG-16 improving the generalized
capabilities of the CNN in DR detection.

A CNN independent adaptive kernel visualization technique introduced in [78] con-
verts the original input image into smaller sub-images by applying a sliding window sized
28 × 28 pixels with a stride of 3 pixels, thereby producing a 172 × 172 (i.e., [(544 − 28)/3]
× [(544 − 28)/3)]) features map. The sub-images were also useful for the further training
of the model. The model also has a threshold adjustment scale to achieve the optimal
heat maps. In [79], the performance of the CNN was evaluated using the original fundus
photographs and entropy images. The original images were transformed into entropy
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images using block size 9, following the scaling of the pixel value of the original image
between 0 and 1, from 0 and 255, creating downsized images with a standard resolution
of 100 × 100 pixels. The spatial entropy is a function used to compute the probability
distribution for the local gray values. The local entropy for the original image can be
computed as follows (Equation (4)):

Elocal = −∑i P(i)× log2P(i) (4)

where P(i) represents the relative frequency of the i-th gray level of an n × n block. The
statistical characteristics of the local regions generated by local entropy were used to learn
the local structural information about the image [80]. Finally, the entropy images were fed
into a CNN architecture for feature extraction and detection.

Multiple instance learning (MIL) techniques have been proven to yield improved
performance compared to supervised learning approaches. Image-level annotation is only
needed for the detection of lesions. However, these techniques do not exhibit acceptable
performance with respect to hand-crafted features. As a consequence, a deep MIL-based
detection model that jointly learns the features and classifiers to improve the detection
performance for DR images and their lesions was proposed in [81]. Furthermore, a pre-
trained CNN network was used for the estimation of the patch-level DR prior to the
application of a global aggregation to detect the images. An end-to-end multi-scale scheme
was also proposed to better treat irregular lesions.

A trilogy of skip-connection deep networks (Tri-SDN) architecture was proposed [82]
for the identification of the relationship between the baseline, the follow-up information on
the retinal fundus images, and the electronic medical record (EMR)-based attributes. The
architecture also extracts valuable clinical information, along with the aforementioned systemic
attributes from fundus images. The architecture comprises: (i) a CNN followed by the global
average pooling (GAP) and a subsequent DNN with skip-connection blocks (SCB) that encode
the salient features of the lesions existing in both the follow-up and baseline images; (ii) SDN
extracts the latent features and shows an inter-relationship between the systemic attributes
of interest, as well as the intra-relationship between the follow-up and baseline values of
each parameter which exists in the EMR; and (iii) another SDN that classifies the risk of
DR progression through the concatenation of EMR-based and fundus-based features. The
skip-connection blocks are the key components of the Tri-SDN, rendering the end-to-end
flow of the signals more efficient during the feed-forward and back-propagation processes.
An AlexNet DNN-based computer-aided diagnosis (CAD) system has been applied for the
optimal identification of DR [83]. The method is founded on the CNN model and consists of
modules that included pre-processing, segmentation, feature extraction, and classification. The
Gaussian mixture model (GMM) and adaptive learning (AL) was used for the segmentation.
Connected component analysis was used for the localization of the region of interest (RoI).
The AlexNet-based DNN model was used for the extraction of the high dimensional features,
the selection of which was performed by linear discriminant analysis (LDA) and principle
component analysis (PCA). An SVM was used for the optimal classification.

A DL algorithm which quantifies the non-perfusion area (NPA) on montaged wide-
field OCT angiographies (OCTA) through the segmentation of the NPA at three different
locations, including the macular, nasal, and temporal scans, for the assessment of the
DR severity was detailed in [84]. A residual module from ResNet improved the training
of the model, yielding faster convergence and higher accuracy using identity short cut
connections [85]. The U-Net architecture was also used for the backbone of CNN, providing
several adaptions for the detection of NPA in wide-field images. The OCT reflectance
images of the inner retina and the inner retinal thickness were combined and fed into a
subnet to reduce the computational complexity. A subnet segmented the shadow artifact-
affected areas of the images, and another subnet extracted the retinal capillary features from
the face images. The subnet outputs for the vessel and shadow detection were then inputted
into three parallel subnets that learned the features from these three regions (macular, nasal,
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and temporal). Finally, the results of these three parallel subnets were concatenated for the
assessment of the true and the artifacts shadow-affected NPA area.

A number of CNN-based models were explored in [86]. The results showed that an
Inception-V3 model provided better results as compared to traditional CNN models. Multiple
filter sizes at the same level, label smoothing, RMS-Prop batch normalization factoring, and
dimensionality reduction were then used to improve the performance further. Inception
ResNet-V2, a combination of ResNet and Inception-V4, was developed to exploit deep
residual learning. The ResNet-V2 contains hybrid inception modules, in which residual
connections add the output of the convolutional operation of the module to its input.

A validation of the commercially available RetCAD v1.3.0 system that executes the
joint automatic detection of age-related macular degeneration (AMD) and DR was pre-
sented in [87]. The color fundus image was the input to the system, executing a conversion
into RGB and contrast-enhanced (CE) images. The inner structure was composed of two
ensembles based on three CNN architectures (CNN1, CNN2, CNN3), followed by multiple
convolutional blocks, and pooling and dense block layers. Moreover, each ensemble con-
sists of six other CNNs, in which an RGB image was inputted into three CNNs, and a CE
image was input to the other three. A final score between 0 to 100 was computed by the
average of all the scores generated by the networks in each ensemble.

2.3.2. Deep Convolutional Neural Networks (DCNN)

A deep convolutional neural network (DCNN)-based model trained and tested using
a retrospective development dataset consisting of 1,28,175 retinal images graded between
three to seven times was reported in [88]. An ensembles approach that extracted rich
features from the retinal image to improve the detection accuracy consisted of five deep
CNN models that included Inception-V3 [89], Resnet50 [90], Dense-121 [44], Dense-169 [44],
and X-ception [91] was proposed in [92]. The iterative optimization (fine tuning) of the
CNN models reduced the empirical loss, formulated as (Equation (5)):

L(w, Xi) =
1
n ∑

x∈Xi ,y∈Yi

l(h(x, w), y) (5)

where h(x, w) represents the CNN model, x is the input, y is the predicted class given by w,
and l is the categorical cross-entropy loss penalty function.

The authors of [93] harnessed ultra-wide-field images [93–95] that capture up to
82% of the retinal surface, as compared to the convention fundus images, to develop a
detection system. The system segmented the region of interest (RoI) to remove undesirable
components, such as skin and eyelashes, using the residual network, which consisted of
34 layers (ResNet-34). A deep DR system, able to provide the detection of early- to late-
stage DR was described in [96]. The system comprised three DL subnetworks (all consisted
of ResNet [41] and Mask-RCNN [97]), including image quality assessment, lesion-ware
assessment, and DR grading. The image quality assessment subnetwork executed a binary
classification of the image, viz., a determination of whether the image is recognizable and
gradable by assessing the clarity, artifacts, and other problems of the retinal images; the
lesion-aware subnetwork, used to label retinal lesions for the segmentation and detection
of hard exudates, micro-aneurysms, and hemorrhages; and the grading subnetwork, the
fine-tuning of which was performed on a pre-trained ImageNet network. Finally, the lesion
features extracted by the lesion-aware subnetwork and features extracted by the grading
subnetwork were concatenated to improve the grading performance of the system.

The densely connected convolutional network (DenseNet-169) proposed in [98] as-
signed weights to the entire network instead of solely assigning them to the last (or top)
layer. The last layer was designed using global average pooling 2D (GAP-2D), along with a
0.5 value set dropout layer. GAP-2D considers the whole input block as a pool size, with the
dropout layer resolving the issue of over-fitting. The Adam optimization algorithm (AOA)
was used to optimize the weights of the model, a sequential modelling methodology used
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for customizing and adding more layers, such as the dropout, convolutional, optimizers,
and dense. The authors of [99] introduced the Inception-V3 based architecture, which
applies multiple convolution filters to the input image. At the same time, a pooling process
is initiated, followed by a concatenation of all the generated results. This architecture has
the capability to extract multiple features from the same input image for classification.

An ultra-wide-field fundus image-based deep convolution neural network
(DCNN) [100] using a VGG-16 DCNN to learn the local features of the image and gener-
ate a detection was detailed in [101,102]. The model resized the original input retinal images of
an aspect ratio of 3900× 3072 pixels to create images of 256 × 192 pixels. The resized images
were fed into the VGG-16, which consisted of five blocks with two fully connected layers.

Another study [103] presented a deep learning system (DLS) which used the low
fraction of high-resolution images for the training. Each retinal image was graded into
three categories, viz., the macular edema, diabetic retinopathy, and grade-ability. The image
grade ability was examined further by the two stage-system that determined whether the
image is gradable or not. A DCNN was used for the extraction of the features from the
color fundus images, with the Inception-V3 architecture used for the prediction of the class
or grade of the retinal image. The network accepted 2095 × 2095 pixel input images for
the training, with a mini-batch size of 1. The batch normalization layers were replaced
with instance normalization layers, with the weights of the parameters updated by the
accumulation of the 15 mini-batches.

A data-driven deep learning algorithm, the features of which—along with their
metadata—were extracted from color fundus images, was reported in [104]. These deep
features were fed into a tree-based model to obtain the final classification. The 75,135 color
fundus images from the EyePACS dataset were used for the training and testing of the
model. Image scaling was performed in the range from 0 through to 1, and the images were
also converted to the standard resolution 512 × 512 pixels by cropping the inner retinal
circle. Furthermore, the invariance between the color contrast of the images was encoded,
and a brightness adjustment method was also proposed. The latter method adjusts the
brightness of the images using a random scale α = [−0.3, 0.3] for each image, formulated as:

y = (x−mean)× (1 + α)

The contrast of the images was adjusted using a random scale β = [−0.2, 0.2], formu-
lated as:

y = (x−mean)× (β)

After pre-processing, the customized DCNN was used for the automatic learning
of the deep features. The convolutional layer parameters of the network were used for
learning and the filters were also used iteratively for the transformation of input images
into hierarchical feature maps. The discriminative learning of the features depends on the
spatial levels of the image and, thus, this obviated the need to tune the parameters manually.
The convolutional layers were positioned successively, with the input image transformed
at each layer, with the resultant output information propagated to the next layer. Deep
residual learning (DRL) was used for the development of the custom convolutional network,
the model being formulated as (Equation (6)):

xl = convl(xl−1) + xl−1 (6)

where convl is the convolutional layer l, which returns the sum of both its output and the
output of the previous convolutional layer. The summation of the convolutional layers
facilitated the incremental learning for a polynomial function that, in turn, enhanced the
characteristics of the retinal fundus image for the training of the DCNN, improving the
overall performance of the identification model.

A two-stage model that used color fundus photographs (CFPs) was presented in [8]
that aimed to predict the progression of the DR. At baseline, a set of seven CFPs images
were given as inputs to the first-stage DCNNs, trained for each type of CFP field to establish
the pillars. Random forest (RF) models then combined the probabilities of the individual
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pillars, and both the RFs and single pillars were trained to generate a binary outcome. The
InceptionV3 architecture was used to create field-specific pillars, and a cascade transfer
learning strategy was adopted to create the initial weights obtained by the training of
ImageNet-40. The generated weights were also used to initialize the training of the pillars
for the prediction of the DR progression. A DCNN-based system that analyzes micro-
aneurysms in the fundus images was introduced in [105]. Maximum Gaussian–Laplacian
(LoG) and mutual information (MI) filters were integrated for the identification of a range
of lesions, regardless their scale, form, and texture. A band-pass Filter (BPF) was applied to
enhance the contrast of the exudates after the lesions were extracted. A sparse principal
component analysis (SPCA) was also deployed to obviate data imbalance issues.

2.3.3. Deep Belief Networks (DBNs)

A framework which consisted of feature extraction and detection stages was proposed
in [106]. In the former phase, input image features such as the local vector pattern (LVP), local
binary pattern (LBP), and local tetra patterns (LTPs) were extracted. A deep belief network
(DBN) then used those extracted features for the detection. In addition, the self-improved
gray wolf optimization (SI-GWO) was applied as an activation function for the optimal tuning
of hidden neurons in the network, which improved the overall accuracy of the framework.
An automatic model which performed a number of tasks, including pre-processing, optical
disk removal, blood vessel removal, abnormality segmentation, feature extraction, optimal
feature selection, and detection, was detailed in [107]. The contrast limited adaptive histogram
equalization (CLAHE) was used to pre-process the input image. The open-close watershed
transformation was used for the removal of the optic disc, and the segmentation and removal
of the blood vessels was performed using gray level threshold. Once the removal of the blood
vessels and optic disc was completed, Gabor filtering and top-hat transformation were used for
the segmentation of abnormalities. The feature extraction phase comprises four features, viz.,
the texture energy measurement, local binary pattern, and Kapur’s and Shannon’s entropy.
The meta-heuristic algorithm, modified gear and steering-based rider optimization algorithm
(MGS-ROA), was applied for the selection of the optimal features, also used to update the
weight of the DBN. The selected features were fed into the DBN for detection.

2.3.4. Transfer Learning

An Inception-V3 network deep transfer learning-based approach reported in [108]
consisted of five convolutional layers, eleven inception modules, two max-pooling layers,
one average pooling layer, and one fully connected layer that generated the image-wise
categorization. Inception-V3 generates clusters of the same sparse nodes and positions
them into a dense layer to increase both the width and length of the network and to reduce
the computation burden efficiently. The associated known label and pixel intensities of
each retinal image were fed into the network, and the features of the network automatically
adjusted to provide an accurate detection. A transfer and ensemble learning-based tech-
nique proposed in [109] utilized pre-trained models, InceptionV3, X-ception, and Inception
Resnet-v2. The IDRiD dataset was used for the evaluation of the performance.

A deep transfer learning (DTL)-based framework using optical coherence tomography
(OCT) images presented in [110] consisted of 11 pre-trained DL models that included
ResNet-18 [41], VGGNet16 [42], Google-Net [40], AlexNet [111], ResNet-50 [41], DenseNet-
201 [44], InceptionV3 [89], Squeeze-Net [112], VGGNet-19 [113], ResNet-101 [41], and
Inception-ResNet-v2 [85]. Amongst them, the training of the DenseNet-201 was optimized
by freezing the layers of the network, performed by setting the learning rate to zero for all
the initial layers. The weights of the frozen layers were not updated during the training of
the network. The optimized DenseNet-201 was then used for the extraction of features that
were core to the training of the ANN to accurately compute the classification. An Inception-
V3 network, based on two versions of a DL system and aimed at patients with tele-retinal
diabetic retinopathy in a primary care setting, was proposed [114] to support the monitoring
and prediction of the likelihood of progression. In the first realization, the system operated
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on a primary field as the input (one field), and in the second implementation, nasal, primary,
and temporal images were taken as the inputs (three fields). An identical Inception-V3
module with shared weights was used to process each field, and the classification layer
concatenated the output features. Both versions operated using a color fundus image
of 587 × 587 as the input and generated an output between 0 and 1 that indicated the
likelihood for the development of the DR within 2 years. In [115], deep neural network-
based GoogleNet, using manually modified Davis grading images, was proposed. This
model used the retinal area of the images that is not typically visualized on the fundoscopy.

2.3.5. Other Variants of Deep Learning Models

A multi-self-attention deep learning network proposed in [116] consisted of a fea-
ture extraction phase and a detection phase. The Inception-V3 model was used for the
extraction of image features, automatically generating feature maps. The generated feature
maps that replicate the condition of the retina were then used as an input to the network,
which calculated the multi-self-attention features of the images. The connected stages and
convolution layers detected the DR.

In another study [117], an optical coherence tomography (OCT) image-based automatic
detection deep model, referred to as OCTD_Net, that generated a grade between 0 and 1
was presented. This detection model, known as OCTD_Net, consisted of two networks,
Org_Net and Seg_Net, of which the former, Org_Net, used DenseNet blocks [44] integrated
with squeeze-and-excitation blocks [43] for the extraction of the features from the OCT
images, while the Seg_Net comprised a ReLayNet [118] layer, convolution block, and
segmentation block used for the extraction of the features. The detection block combined
the features extracted by both networks and added these bitwise to classify the OCT image
as normal or as denoting the early onset of DR. The output of the system provided decision
support, by indicating that grade-1 patients have significant changes in the thickness of
the eye and certain reflections in the retinal layers, while patients with grade 0 do not have
certain changes in eye. Furthermore, the model also provided evidence that patients with
early DR exhibit different textures around the ellipsoid zones and the myoid, photoreceptor
outer segments and the inner nuclear layers.

Another study that used optical coherence tomography angiography (OCT-A) images
instead of color fundus images [119] compared the impacts of different feature engineering
approaches on the detection performance of a DNN with unprocessed OCT-A images. The
effect of a lower resolution on the detection was investigated and a generative adversarial
network (GAN) was used to recover the lost features of the image. The relationship between
the lateral resolution and the detection of the severity of DR was also explored.

A fully automated DL-aided framework, which detected vision-threatening and refer-
able DR using the face structural, volumetric, and optical coherence tomography angio-
graphic (A-OCT) data was proposed by Pengxiao et al. [120]. The framework used 3 × 3
macular image scans obtained from a spectral-domain OCTA system (Optovuelnc, Avanti
RTVue-XR). The referable DR was graded at level 35 or worse, and the vision-threatening
DR was graded at level 53 or worse, for any level of DME. The framework was constructed
using 3D (EfficentNet-3D-Bo) and 2D (DcardNet-36). A deep neural network (DNN)-based
algorithm that produced grades for retinal fundus images according to the international
clinical diabetic retinopathy (ICDR) severity scale trained and validated in real time data
that was reported in [121]. A low-cost system deep DR-Net amenable to implementation on
a small embedded board was presented in [122]. At the core of the model was a cascaded
classifier network encoder, integrated in a residual style to ensure an appropriately sized
implementation. The different convolutional layers help to ensure the richness of network
features for the grading of DR. A smartphone-based automatic model in [123] used models
such as AlexNet, Google-Net, and ResNet-50 with transfer learning. The RestNet50 model
was deployed in a smartphone-based model to explore the classification of DR using syn-
thetic images, the major aim is to validate the performance of the DL models for a specific
application. Table 3 summarizes the reported body of research on the detection of lesions.
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Table 3. Summary of reported techniques for lesion detection.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Filippo Arcadu et al. [8]

Deep convolutional neural
network (DCNN), Inception-V3
network, and Random forests

(RFs)-based model

Keras using Tensor Flow

Custom-developed in
the RIDE

(NCT00473382)33–35
and RISE (NCT00473330)

14,070 7-field color fundus
Photographs (CFPs)

Maximum area under
the curve (AUC) = 79%

Sensitivity = 91%
Specificity = 65%

Carson Lam et al. [67] CNN and weight matrix-based
method

Tesla K80 GPU hardware
device, Tensor Flow, and

OpenCV
MESSIDOR-1 36,200 Color fundus images

Maximum accuracy =
74.1%

Sensitivity = 95%

K. V. Maya and K. S.
Adars [68]

Recursive region growing
segmentation (RRGS),

Laplacian–Gaussian filter (LGF),
and CNN-based model

Not mentioned MESSIDOR 1200 Color fundus images
Accuracy = 98.25%
Sensitivity = 96.99%
Specificity = 96.51%

C. Rajaa and L. Balaji
[69]

Adaptive histogram equalization
(AHE) + fuzzy c-means clustering

(FCM) and CNN-based model

Intel (R) Core i5
processor, 3.20 GHz, 4

GB RAM, Microsoft
Windows 7, and Matlab

Diabetic retinopathy
database 76 Color fundus images

Accuracy = 93.2%
Specificity = 99%

Sensitivity = 98.1%

Shikhar Seth and Basant
Agarwal [70]

CNN and Linear support vector
machine (LSVM)-based model Not mentioned EyePACS 35,126 Color fundus images Sensitivity = 93%

Specificity = 85%

Akhilesh Kumar
Gangwar and Vadlamani

Ravi [71]

Inception-ResNet-v2 and
CNN-based model Keras framework MESSIDOR and APTOS

2019 4862 Color fundus images Accuracy = 82.18%

Marc BagetBernaldiz
et al. [72] CNN-based method Not mentioned

Custom developed at
healthcare area

(University Hospital
Saint Joan, Tarragona,

Spain) and MESSIDOR

16,186 Color fundus images

Maximum accuracy =
99.75%

Sensitivity = 97.92%
Specificity = 99.91%

Positive Predictive Value
(PPV) = 98.92%

Negative Predictive
Value (NPV) = 99.82%
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Table 3. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Tang F et al. [73] CNN (ResNet-50) and transfer
learning-based system Not mentioned Custom-developed 9392

Ultra-Wide Field
Scanning Laser

OphthalMoscope
(UWF-SLO)

Area under the receiver
operating characteristic

curve (AUROC) =
92.30%

Sensitivity = 86.5%
Specificity = 82.1%

Phong Thanh Nguyen
et al. [74]

An ensemble of orthogonal
learning particle swarm

optimization (OLPSO)-based
CNN model (OLPSO-CNN)

Python 3.6.5 MESSIDOR 1200 Color fundus images
Accuracy = 98.47%
Sensitivity = 96.43%
Specificity = 99.02%

P Saranya and K M
Umamaheswar [76] CNN-based framework Not mentioned MESSIDOR 1200 Color fundus images

Accuracy = 97.54%
Sensitivity = 90.34%
Specificity = 98.24%

Nagaraj G et al. [77] CNN and VGG-16 network-based
framework Not mentioned EyePACS 35,126 Color fundus images Maximum accuracy =

73.72%

Stuart Keel et al. [78] CNN independent adaptive
kernel visualization technique Not mentioned

The images were
collected from different

hospitals in China
between March 2017 and

June 2017

100 Color fundus images

True positive ratio (TPR)
= 96%

False positive ratio (FPR)
= 85%

Gen Min Lin et al. [79] CNN-based architecture for
entropy images Matlab EyePACS 33,000 Color fundus image and

entropy images

Accuracy = 86.10%
Sensitivity = 73.24%
Specificity = 93.81%

Lei Zhou et al. [81] CNN-based multiple instance
learning (MIL) technique

4 NVIDIA GeForce GTX
TITAN X GPUs

Diabetic retinopathy
detection dataset on

Kaggle, MESSIDOR, and
DIARETDB1

36,415 Color fundus images
F1-score = 92.4%

Sensitivity = 99.5%
Precision = 86.3%
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Table 3. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Cam-Hao Hua et al. [82] Skip-connection deep networks
(Tri-SDN) architecture

Pytorch, Scikit-learn and
NVIDIA 1080TI GPU

Custom-developed at
Kyung Hee University
Medical Center, Seoul,

South Korea

96 Color fundus images

Accuracy = 90.6%
Sensitivity = 96.5%
Precision = 88.7%

Specificity = 82.1%
Area Under Receiver

Operating
Characteristics = 88.8%

Romany F. Mansour [83]
AlexNet DNN-based

computer-aided diagnosis (CAD)
system

MATLAB 2015a DR image Kaggle 35,126 Color fundus images
Accuracy = 97.93%
Sensitivity = 100%
Specificity = 93%

Yukun Guo et al. [84] U-Net and CNN-based
assessment model Not mentioned

Custom-developed at
Oregon Health and
Science University

1092
Montaged wide-field

OCT angiography
(OCTA)

Gaurav Saxena et al. [86] Inception-V3 and
ResNet-V2-based hybrid model

2 x Intel Xeon Gold 6142
processor, 2.6 GHz, 22

MB cache, 384 GB
memory

EyePACS and
MESSIDOR-1 58,039 Color fundus images

Maximum accuracy =
95.8%

Sensitivity = 88.84%
Specificity = 89.92%

Cristina
Gonzalez-Gonzalo et al.

[87]

CNN-based Ret CAD v1.3.0
system Not mentioned

DR-AMD and
age-related eye disease

study (AREDS)
8871 Color fundus images

Maximum AUC = 97.5%
Sensitivity = 92%

Specificity = 92.1%



Sensors 2022, 22, 6780 22 of 48

Table 3. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Varun Gulshan et al. [88] Deep convolutional neural
network (DCNN)-based model Not mentioned EyePACS MESSIDOR 128,175 Color fundus images

AUC on EyePACS =
99.1%

Sensitivity on EyePACS
= 97.5%

Specificity on EyePACS
= 93.4%

AUC on MESSIDOR =
99%

Sensitivity on
MESSIDOR = 96.1%

Specificity on
MESSIDOR = 93.9%

SEHRISH QUMMAR
et al. [92]

Ensemble approach which
consists of five different deep

CNN models that include
Inception-V3, Resnet50,

Dense-121, Dense-169, and
X-ception

NVIDIA Tesla k40
containing 2880 CUDA,

core CuDNN, Keras,
Tensor Flow

Kaggle 35,126 Color fundus images

Maximum accuracy =
80.8%

Recall = 54.5%
Specificity = 86.7%
Precision = 63.8%
F1-Score = 53.7%

Kangrok Oh et al. [93] Residual network with 34-layer
(ResNet-34)-based model Not mentioned

Custom-developed at
Catholic Kwandong

University International
St. Mary’s Hospital,

South Korea

11,734 Ultra-wide-field fundus
Images

Accuracy = 83.38%
AUC = 91.50%

Sensitivity = 83.38%
Specificity = 83.41%

Ling Dai et al. [96] ResNet and Mask-RCNN-based
deep DR system

x86 compatible CPU, 10
GB free disk space, at

least 8 GB main memory,
Python version 3.7.1

Custom-developed at
Shanghai Integrated

Diabetes Prevention and
Care Center

666,383 Color fundus images
AUC = 94.2 %

Sensitivity = 90.5%
Specificity = 79.5%

Gazala Mushtaq and
Farheen Siddiqui [98]

Densely connected convolutional
network (DenseNet-169)-based

system

OpenCV, Tensor Flow
and Scikit-learn

Aptos 2019 blindness
detection and diabetic
retinopathy detection

7000 Color fundus images
Accuracy = 90.34%

Cohen kappa score =
80.40%
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Table 3. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Yashal Shakti Kanungo
et al. [99] Inception-V3-based architecture Python, OpenCV EyePACS 40,000 Color fundus images

Accuracy = 88%
Specificity = 87%
Sensitivity = 97%

Toshihiko Nagasawa
et al. [100]

Ultra-wide-field fundus
image-based deep convolution
neural network (DCNN) model

Python, Keras, Tensor
Flow

Custom-developed at
the ophthalmology

departments of Saneikai
Tsukazaki Hospital and
Tokushima University
Hospital from April 1,

2011, to March 30, 2018

378 Ultra-wide-field fundus
images

Sensitivity = 94.7%
Specificity = 97.2%

AUC = 96.9%

Jaakko Sahlsten et al.
[103]

DCNN and Inception-V3
network-based deep learning

system (DLS)
Not mentioned

Custom-developed at
Digifundus Ltd., which

provides diabetic
retinopathy screening

and monitoring services
in Finland

41,122 Color fundus images
AUC = 98.7%

Sensitivity = 89.6%
Specificity = 97.4%

Rishab Gargeya and
Theodore Leng [104]

DCNN and deep residual learning
(DRL)-based data-driven deep

learning algorithm

Intel dual-core processor
running at 2.4 GHz

MESSIDOR 2, EyePACS
and E-Ophtha databases 75,135 Color fundus images

AUC = 97.0%
Sensitivity = 94%
Specificity = 98%

Noushin Eftekhari et al.
[105]

DCNN and band-pass filters
(BPF)-based system

Keras libraries based on
Linux Mint operating

system with 32 G RAM,
Intel (R) Core (TM)
i7-6700 K CPU, and

NVIDIA GeForce GTX
1070 graphics card

Retinopathy Online
Challenge and
E-Ophtha-MA

248 Color fundus images Sensitivity = 77.1%

Ambaji S. Jadhav et al.
[107]

Modified gear and steering-based
rider optimization algorithm
(MGS-ROA) and deep belief

network-based model

MATLAB 2018a DIARETDB1 89 Color fundus images
Accuracy = 93.18%
Sensitivity = 86.36%
Specificity = 95.45%
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Table 3. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Feng Li et al. [108] Inception-V3 network-based deep
transfer learning approach

Intel Core i7-2700 K
4.6-GHz CPU (Intel

Corp., Santa Clara, CA),
NVIDIA GTX 1080 8-Gb
GPU (Santa Clara, CA),

Dual AMD Filepro
512-GB PCIe-based flash

storage (AMD Corp,
Sunnyvale, CA), and

32-GB RAM

MESSIDOR-2 19,233 Color fundus images
Accuracy = 93.49%
Sensitivity = 96.93%
Specificity = 93.45%

Kh Tohidul Islam et al.
[110]

Deep transfer learning
(DTL)-based framework which

consists of ResNet-18,
VGGNet16, Google-Net, AlexNet,

ResNet-50, DenseNet-201,
InceptionV3, Squeeze-Net,

VGGNet-19, ResNet-101, and
Inception-ResNet-v2

MATLAB, Intel Xeon
Silver 4108 CPU

Processor (11 M Cache,
1.80 GHz), NVIDIA

QuADro P2000 (5 GB
Video Memory), RAM 16

GB, and Microsoft
Windows 10

OCT image database 109,309
Ultrasonography, and

optical coherence
tomography (OCT)

Effective results
achieved by

DenseNet-201
Accuracy = 97%
Specificity = 99%
Precision = 97%

Ashish Bora et al. [114] Inception-V3 network-based
system Not mentioned

EyePACS and
custom-developed at

National Diabetic
Patients Registry in

Thailand

575,431 Color fundus images AUC = 79%

Hidenori Takahashi et al.
[115]

Deep neural network-based
Google-Net

TITAN X with 12 GB
memory

Medical University
between May 2011 and

June 2015
9939 Color fundus images Kappa = 74%

Accuracy = 81%
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Table 3. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation
Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Xuechen Li et al. [117]

DenseNet blocks and
squeeze-and-excitation

block-based optical coherence
tomography (OCT) deep network

(OCTD_Net)

Keras toolbox, and
trained with a

mini-batch size of 32,
using four GPUs

(GeForce GTX
TITAN X, 12 GB RAM)

Custom-developed at
Wenzhou Medical

University (WMU) using
a custom-built spectral
domain OCT (SD-OCT)

system

4168 Optical coherence
tomography (OCT)

Accuracy = 92.0%
Sensitivity = 90%
Specificity = 95%

Varun Gulshan et al.
[121]

Deep neural network
(DNN)-based algorithm Python

Custom-developed at
Aravind Eye Hospital
and Sankara Nethralay
between May 2016 and

April 2017

103,634 Color fundus images

Sensitivity = 92.1%
Specificity = 95.2%

Area Under the Curve
(AUC) = 98%

Igi Ardiyanto et al. [122] ResNet-20-based low-cost
embedded system

Linux PC with GTX
1080, FINDeRS 315 Color fundus images

Accuracy = 95.71%
Sensitivity = 76.92%
Specificity = 100%

Recep E. Hacisoftaoglu
et al. [123]

AlexNet, Google-Net, and
ResNet-50-based transfer learning

approach
MATLAB

EyePACS, MESSIDOR-1,
IDRiD, and

MESSIDOR-2, University
of Auckland Diabetic

38,532 Color fundus images
Accuracy = 98.6%
Sensitivity = 98.2%
Specificity = 99.1%

ZUBAIR KHAN et al.
[124]

VGG16, spatial pyramid pooling
layer (SPP), and

network-in-network (NiN)-based
model

NVIDIA Tesla k40,
Keras, and Tensor Flow EyePACS 88,702 Color fundus images

Maximum accuracy =
85%, recall = 55.6%
Specificity = 91%
Precision = 67%
F1-score = 59.6%
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2.4. Classification of the Lesions

The medical community has established a classification standard for DR based on four
stages of severity [23], determined by the number and type of lesions (as exudates, micro-
aneurysms, and hemorrhages) in the retina. Class 0 relates to no apparent retinopathy,
class 1 to mild non-proliferative diabetic retinopathy (NPDR), class 2 to moderate NPDR,
class 3 to severe NPDR, and class 4 to proliferative DR. The success of the deep learning
techniques and methodologies in a range of applications has stimulated extensive research
for the classification of diabetic retinopathy.

2.4.1. Convolutional Neural Networks (CNNs)

A DL model comprising pre-processing and classification stages was proposed in [125].
Retinal images from different data sets were extracted to standardize their size in the
pre-processing stage, and a CNN algorithm was used to generate the classification. In
traditional methods, feature sets are created manually, but the proposed method executed
the training phase of the DL models in a relatively rapid time using significant computing
resources. An end-to-end CNN model was proposed in [126] for the grading of the severity
of diabetic macula edema (DME). After cropping and re-sizing the image, the red, green,
and blue channels were scaled to zero mean and unit variance. The model comprised three
convolutional blocks and one block of fully connected layers, and the number of training
samples was enhanced through data augmentation techniques.

Ting et al. [127] used the CNN model for the analysis of AMD and other DR com-
plications, providing evidence that the proposed CNN was more effective compared to
other reported models. However, the model was unable to identify all classes of DR com-
plications using color fundus images. The classification model for AMD was trained using
72,610 images and tested on 35,948 fundus images from different ethnicities. A two-stage
method consisting of a cascaded fully convolutional residual network (FCRN) with fused
multi-level hierarchical information was reported in [128] to generate the segment axis and
associated probability map. Pixels with maximum probability were then cropped from the
segmented regions and fed into another residual network for classification.

An interpretable model based on a fully convolutional neural network (FCNN) that
classified retinal images into severity levels and also provided additional information on
the results of the classification by assigning a score to both the input and hidden layers in
the network was proposed in [129]. The class was computed using the score of the pixel
contributions, obtained by a pixel-wise propagation model that divided all neurons into
scores. A score for each neuron was computed using Equation (7):

SL =
L

∑
i=1

(
∑ ski

)
+
(
∑ sInput

)
(7)

where SL is the score of the last layer, ski represents the constant tensors for each layer,
∑ ski is used to compute the element-wise sum of the scores, and ∑ sInput represents the
sum of the pixel-wise scores of each input neuron. The generated visual maps support
the ophthalmologist in the interpretation of the statistical regularities inherent to the
classification.

A deep learning architecture that consisted of two modules, including a memory
module and a central CNN, was proposed in [130]. The system firstly scanned and then
pre-processed the fundus images of the eye. The maximal principal curvature (MPC)
was applied to extract the branching blood vessels, using the maximum Eigenvalues of
the Hessian matrix. Morphological opening and adaptive histogram equalization (AHE)
were performed to eliminate and enhance the falsely segmented regions of the image. The
segmented image was subsequently fed into the memory module that squeezed the features
of the image. The max-pooling blocks were the major components of the squeeze process,
suppressing the inefficient and enhancing the informational features. Batch normalization
and bottleneck layers were also deployed to reduce the complexity and improve the
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stability of the architecture, respectively. The excitation, squeeze, and bottleneck processes
within the memory module provided a robust feature extraction and reduced the overall
complexity of the architecture. The extraction of the optimal features is fundamental to
the accuracy of the CNN performance, with a minimal increase in the number of total
parameters. Finally, a ReLu activation was performed on the computed results using an
FC followed by a classification layer after SoftMax activation. The central CNN module
consisted of a basic convolutional layer architecture, ending with an FC layer.

A region-based fast CNN (RFCNN) [131–133] and CNN two-stage method was pro-
posed by [134]. The RFCNN carried out an automatic detection of the lesions and marked
the RoIs of those lesions. The CNN used for classification was based on transfer learning
and the attention mechanism [135], with the Kaggle and MESSIDOR datasets used for the
evaluation of the performance. Two convolutional neural network-based models were also
presented in [136]. A DL model, which consisted of CNN512 and YOLOv3 [137], classified
images into five classes. First, the CNN512 model classified the input image, and the input
image was fed into the YOLOv3 model, which detected and localized the lesions. Lastly,
the CNN512 and YOLOv3 models were fused to improve the performance of the final
classification. A hybrid model that consisted of two phases, a pre-processing phase and
deep learning phase, to improve the classification results was described in [138]. Histogram
equalization and contrast limited adaptive histogram equalization algorithms were used to
pre-process the images and the CNN for classification.

The authors of [139] detailed an automated knowledge model that detected key
antecedents using fundus images in the classification of DR. A convolutional neural network
(CNN), back propagation neural network (BPNN), and deep neural network (DNN) were
tested, the knowledge model calculating the weights that yield the severity level of the
eye. After the weights were calculated, the fuzzy c-means algorithm was used to detect the
target class thresholds. The results showed that the proposed model successfully identified
the proper class of the severity from the DR images.

In the DCNN and linear support vector machine (LSVM)-based model presented by
Burlina et al. [140], the former extracted the features from the fundus image, with the latter
performing the classification of the age-related macular degeneration (AMD). Following
the resizing of the images into 231 ± 231 pixels, the ImageNet dataset was used for the pre-
training of the OverFeat CNN. The NIH AREDS [141] dataset, comprising four categories of
AMD severity, was used for the validation of the model. Another two-stage approach [142]
firstly extracted the texture features from the image using local binary patterns (LBP),
formulated as (Equation (8)):

LBP(xc, yc) =
p−1

∑
p=0

s
(

gp − gc
)
2p (8)

where gc represents the gray value of the central pixel and gp is the gray value of the p
adjacent pixel to the central pixel. The function s(x) can be denoted as:

s(x) =
{

1, x ≥ 0
0, otherwise

Subsequently, a number of DL-based algorithms, e.g., DenseNet, ResNet, and Det-
Net [143], were explored to yield a final classification using the extracted texture features.

A comparison of three CNNs, ResNet50, DenseNet, and VGG16, for the classification
of fundus fluorescein angiography (FFA) was presented in [144]. Annotations were formed
to locate four different types of lesions, viz., leakages, micro-aneurysms, the non-perfusion
region (NP), and laser scars. Furthermore, during the training of these models, the cross-
entropy function was used as a loss function, formulated as (Equation (9)):

C = − 1
n

n

∑
i
[yiln(ai) + (1− yi)ln(1− ai)] (9)
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where C is the cross-entropy cost function, yi represents the output for the ith neuron, ai is
the actual output, n donates the number of neurons involved in the calculation, and I is the
total number of neurons. The stochastic gradient descent (SGD) algorithm was used as an
optimizer for all networks. The comparison of all the considered models indicated that the
DenseNet achieved the most effective results.

2.4.2. Deep Belief Neural Networks

The nonlinear environments and dimensions of the features affect the diagnosis and
classification process. A deep belief neural network (DBNN) and SVM-based framework
was proposed for the extraction of the features [145], also reducing the dimensions of the
features for the classification process. The DBNN received the retinal images as an input
and extracted the deep features. The generalized regression neural network (GRNN) [146]
was used subsequently for the reduction and selection of the optimal features. The extracted
features were fed into an SVM for the classification.

2.4.3. Deep Neural Networks (DNNs)

A range of DL approaches used hand-crafted features for the classification and grading
of the DR severity. A quadrant ensemble framework which consisted of deep neural
network and Inception-ResNet-V2 was proposed in [147] for the automatic grading. The
framework also incorporated optical disc localization, histogram equalization, quadrant
cropping, and data augmentation to improve the network performance. The MESSIDOR
dataset was used for the training and the latest IDRiD dataset was used for the validation
of the framework.

2.4.4. Other Variants of Deep Learning (DL) Models

A study that aimed to reduce the dimensionality during the data pre-processing is
presented in [148]. PCA extracted the most important features from the dataset and the
firefly algorithm was then used to reduce the dimensionality. The reduced dataset was fed
into the DNN for classification.

A number of DR factors that included the retinal condition of the eyes, diameter of
the optical disc (OD), presence of the micro-aneurysms (MAs), and the Euclidian distance
between the center of the OD and macula were extracted systematically using the technique
described in [149]. A fuzzy analytical network was applied to rank the important attributes
of the DR form, ranked from the most to the least important. The transformed fuzzy neural
network was created to enhance the classification accuracy. The association rules extracted
from the selected DR attributes were used to determine the degree of severity. The approach
targeted the early identification and study classification of DR in advance of the onset of
criticality, improving the quality of patient care.

A U-Net model was used [150] for the segmentation and classification of the retinal
vessels. A range of settings of batch normalization and dropout for the U-Net model were
evaluated to investigate the effect of retina vessels in DR classification. The pre-trained
Inception-V1 network was used for the classification of the DR severity. The MESSIDOR
dataset was used to create the two datasets of the retinal images, without and with the
presence of the vessels. The results confirmed that the retinal vessel is one of the optimal
features for the classification of DR throughout the range of stages of severity, from early to
severe.

A data-driven deep learning method that used colored fundus images proposed
in [151] classified multiple classes on the basis of the level or the stage of the eye infection.
A set of 170 colored fundus images acquired from diabetic patients were used to train
and test the model. The pre-processing phase of the two-stage model resized the images
according to the input layer size of the network. A channel size of 3 and an image size of
70–100 were set for the RGB image. Noise was removed from the images by a Gaussian
filter (GF) and a multi-support vector machine (MSVM) extracted the non-critical and
critical features from the images, assigning them an appropriate classification.
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An automatic image level DR classification system that consisted of multiple DL
models was reported in [152]. The Ada boost algorithm was used for the integration of
the different DL models, reducing the bias of any individual model. A weighted class
action maps (CAMs) method was applied to highlight the suspected position of each lesion.
The interpretable ensemble DL model was shown to be more robust and to yield superior
performance compared to an individual DL model.

A deep multi-task DR grading (DeepMT-DR) model with the capability to operate
using low-resolution (LR) images, which simultaneously executed the auxiliary tasks of
the image super resolution (ISR) and lesion segmentation, was detailed in [153]. The
model consisted of three hierarchical layers; the first processed the ISR images, the second
segmented the lesions, and the third performed the grading. Moreover, a loss-aware task
was deployed in the second layer that encouraged the ISR to focus on the pathological
regions, which improved the classification accuracy. The performance of the supervised
DL models was compromised by the limited availability of high-quality adjudicated labels
during their training phase. An automated sans-coding approach based on a teacher–
student model was proposed to address this issue [154]. A teacher model was developed
from a small, high-quality labeled dataset. Subsequently, Google Cloud automated machine
learning (Auto-ML) was used to the train the image classification sans-coding, which
assigned high-quality adjudicated DR severity labels to the color fundus images. The
teacher model also generated DR referral predictions for the unlabeled fundus images.
The teacher model, trained using high-quality images, was combined with image–label
pairs for the training of the student model. The approach used self-training to decrease the
over-fitting and increase the classification performance. In addition, high-quality severity
labels were generated, which support clinical experts to carry out a diagnosis.

Different combinations of datasets and convolution networks were evaluated in the de-
velopment of a stochastic coordinate descent deep learning (SCDDL) architecture reported
in [155]. The selected models are implemented, through a layer-by-layer comparison of the
convolution matrix, transition, the pooling layer and dense layer of each network according
to their matrix order. Loss minimization, considered as an objective function after the
prediction, was carried out at every stage of the networks. The generalized function of the
loss minimization for each network was formulated as (Equation (10)):

O(x) = min
xεN L(x) (10)

with the loss function for each convolution network derived as follows:

xεCN
L
N(xL) = xεCN

O
N(xN) −O(x) (11)

The main objective of this framework is to identify the layers which are central to the
optimization of the matrix order, with the minimization performed for the classification of
the DR severity levels.

The automatic synergic deep learning (SDL) model introduced in [156] consisted of
three stages: pre-processing, segmentation, and classification. The redundant noise at the
edges of the images was removed at the pre-processing stage. The region of interest was
then extracted through a histogram-based segmentation. Lastly, the segmented image was
fed into an SDL for classification. The SDL comprised three major components, an input
layer, k DCNNs, and C2

K synergic networks (SNs). Every DCNN element generated an
independent learning depiction of the input data. The SNs included a model of a fully
connected structure that ensured the input layer consistently operates on similar classes
and provides the remedial corrections of the synergic errors.

The first stage of a hyper-parameter-tuning Inception-V4 (HPTI-V4) model proposed
in [157] was pre-processing, where the contrast limited adaptive histogram equalization
(CLAHE) function was applied to enhance the contrast level of the images. The region
of interest (RoI) was then segmented through a histogram-based segmentation, and the
segmented image was subsequently fed into the HPTI-v4 for the extraction of the lesion fea-
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tures. The Bayesian optimization (BO) function, which selected the subsequent parameters
in an informed manner, was applied for the tuning of the HPTI-v4. Finally, a feed-forward
artificial neural network (ANN) was used for the classification, with the MESSIDOR dataset
selected for the validation of the model.

The DR|GRADUATE system, which is able to deal with the ordinal nature of DR
grading, was proposed in [158]. A novel Gaussian sampling approach based on multiple
instance learning was used to support the system and to learn the explanation maps and
the prediction uncertainty for the associated grades during training in the image-wise label
phase. The system must predict the generalized Bernoulli distribution biased around the
classes for each image. The Gaussian distribution added the bias into the model to compute
the image-wise grade probability.

A multi-task hierarchical neural network-based framework that related the severity
levels and relevant features simultaneously was introduced in [159]. The architecture
featured two heads and one backbone, the former being two independent forward neural
networks, one for the feature selection, the other for the grading of the severity levels. The
squeeze-and-excitation (SE) network [43] was used for the extraction of the features at
higher scales at the backbone. The features extracted by the relevant head were used as
inputs, together with the skip-connection to the severity head, to assist in the detection.

A ResNet and gradient-weighted class activation mapping (Grad-CAM)-based multi-
label model that automatically located the relevant lesions and reduced the annotation
burden was reported in [160]. The assigned labels of the located lesions for all fundus
images were used for classification.

2.4.5. Deep Learning in a Clinical Environment

Although, in recent years, state-of-the-art deep learning models have been evaluated
during the development process, the deployment and performance validation of DL-based
systems within clinical environments remains an open research challenge [161]. However,
a number of deep learning-based interactive techniques aimed at increasing the trust of the
patients have been assessed in controlled laboratory settings by pathologists [162]. Thus,
the use of deep learning for classifications within a clinical environment is summarized in
the following section.

A patient-centric deep learning system was deployed in a real-world clinical setting in
a study, reported in [163], to assess its role in, and determine its benefits for, the screening
workflow, assess user expectations from a DL system, and to garner post-deployment
experiences. The results indicated that different socio-environmental factors affected the
performance of the model, the patient experience, and nursing workflows. The authors
of [164] detailed the results of a comparison of the performance of a DL system deployed
on a large clinical scale using human graders. A total of 25,326 gradable retinal images of
patients were collected through a community-based screening program across Thailand,
and these images were used for the validation of the system, with international retinal
specialists assigning the grades. A direct comparison of the outputs of the DL system
with the actual grades assigned by pathologists for the same population indicated that
the automatic DL system performed nearly as well as the human graders. The quadratic-
weighted kappa values used for the evaluation of the DR severity levels by the system
and the human graders were 0.85 and 0.78, respectively. A summary and details of the
performance of the reported methods are given in Table 4.

2.5. Validation of Deep Learning Models for DR Analysis

A CNN-based learning system for the detection and validation of DR proposed in [127]
had the ability to identify glaucoma, referable diabetic retinopathy, and age-related macular
degeneration (AMD) from retinal images. The CNN architecture differentiated between
these conditions through the gradual optimization of the weight parameters of the model.
The combination of the VGG16, spatial pyramid pooling layer (SPP) [165], and network-in-
network (NiN) [166]—referred to as the VGG-NiN model—proposed in [124] extracted the
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highly nonlinear features from the color fundus images and executed processing at any
scale, owing to the SPP layers. The model achieved an acceptable detection accuracy, as the
stacking of the NiN has been shown to treat significant degrees of non-linearity.

A deep learning algorithm (DLA) developed for the validation of the DR [167] used,
as a baseline, a 3 × 640 × 640 input retinal image size obtained through a pre-processing
step that trimmed the external background borders of the image. The model was based on
a convolutional network and consisted of 17 layers and 391,325 parameters. The layers of
the model were characterized as feature extractors and classifiers. Each layer comprised
a stack of 3 × 3 convolutional layers, with a 1 × 1 stride and 1 × 1 padding, followed by
batch normalization and a ReLu activation function. A set of 38,694 different retino-graphic
images were used for the training and validation of the DLA. Firstly, the DLA read the
images and, then the reading was performed by four masked senior retina ophthalmologists.
The DLA supported the diagnosis by identifying when the fundus image had at least four
micro-aneurysms, along with or without soft or hard exudates in the absence of the other
known causes of the changes. The model also further classified the images with respect
to the severity levels. A summary of the performance of the reported methods is given in
Table 5.
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Table 4. Summary of techniques reported for the classification of lesions in DR images.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Baidaa
Al-Bander at al.

[126]
End-to-end CNN model

Python and Theano libraries
implemented on a NVIDIA
GTX TITAN X 12 GB GPU

card with 3072 CUDA with 4
GB Ram

MESSIDOR 1200 Colored fundus images
Accuracy = 88.8 %
Sensitivity = 74.7%
Specificity = 96.5 %

Daniel Shu Wei
Ting et al. [127] CNN-based model Not mentioned

Custom-developed in
Singapore National

Diabetic Retinopathy
Screening Program

(SIDRP)

494,661 Not mentioned
AUC = 93.6%

Sensitivity = 90.5%
Specificity = 91.6%

Jordi de la Torre
et al. [129]

Fully convolutional neural
network (FCNN) Not mention EyePACS 88,650 Colored fundus images Sensitivity = 91.1%

Specificity = 90.8%

Abdüssamed
Erciyas and
Necaattin

Barışçı [134]

Region-based fast CNN
(RFCNN) and CNN-based

method
Not mention MESSIDOR and

DIARETDB 11,711 Colored fundus images Accuracy = 99.9%
Sensitivity = 99.1%

Wejdan L.
Alyoubi et al.

[137]

CNN512 and
YOLOv3-based model

Python and Keras and Tensor
Flow on NVIDIA Tesla K20

GPU with 5 GB memory

DDR and Asia Pacific
Tele-Ophthalmology

Society (APTOS)
51,532 Colored fundus images

Accuracy = 89%
sensitivity = 89%

specificity = 97.3%

D. Jude
Hemanth et al.

[138]

Histogram equalization and
contrast limited adaptive
histogram equalization +

CNN

MATLAB r2017a executed on
Intel R9

Core i5-3230 M, 2.60 GHz
CPU, 8 GB RAM

MESSIDOR 1200 Color fundus images

Accuracy = 97%
Sensitivity (recall) = 94%

Specificity = 98%
Precision = 94%
F-score = 94%
GMean = 95%
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Table 4. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Suvajit Dutta
et al. [139]

Convolutional neural
network (CNN), back

propagation neural network
(BPNN), deep neural

network (DNN) and fuzzy
c-means-based knowledge

model

Not mentioned Fundus images, Kaggle 2000 Colored fundus images Maximum accuracy = 82.3%

P. Burlina et al.
[140]

DCNN and linear support
vector machine

(LSVM)-based model
Not mentioned NIH AREDS 5600 Colored fundus images

Accuracy = 95.0%
Specificity = 95.6%
Sensitivity = 93.4%
Positive predictive

value (PPV) = 89.6%
Negative predictive value

(NPV) = 97.3%

Ramzi
Adriman et al.

[142]

Local binary patterns
(LBP)+ResNet-based system

NVIDIA® GeForce GTX
1050Ti with memory 4 GB +

PyTorch 1.2
APTOS 2019 Blindness 5592 Colored fundus images Accuracy=96.36%

Xiangji Pan
et al. [144]

Stochastic gradient descent
(SGD) and DenseNet-based

approach
Not mentioned

Custom-developed at
Hospital of Zhejiang
University School of

Medicine from August
2016 to October 2018

4067 Fundus fluorescein
angiography (FFA)

Maximum AUC = 96.53%
Specificity = 99.5%
Sensitivity = 80.3%

R. Arunkumar
and P. Karthi-

gaikumar
[145]

Deep belief neural network
(DBNN), generalized

regression neural network
(GRNN), and SVM-based

framework

Not mentioned ARIA 143 Colored fundus images
Accuracy = 96.73%
Specificity = 97.89%
Sensitivity = 79.32%
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Table 4. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Charu
Bhardwaj et al.

[147]

Deep neural network and
Inception-ResNet-v2-based

framework
Not mentioned MESSIDOR and IDRiD Not mentioned Colored fundus images Accuracy = 93.33%

Thippa Reddy
Gadekallu et al.

[148]

Firefly-principal component
analysis and deep neural

network-based model
Python Massidor 1151 Color fundus images

Accuracy = 96%
Precision = 95%

Recall = 95%
Sensitivity = 90.4%
Specificity = 94.3%

Yo-Ping Huang
et al. [149]

Fuzzy analytical network
and transformed fuzzy
neural network-based

method

Not mentioned MESSIDOR 1151 Colored fundus images Accuracy = 100%

A.B. Aujih et al.
[150] U-Net model

Intel Xeon, 16 cores, Nvidia
GeForce GTX 1080ti,

Ubuntu16.04
MESSIDOR and DRIVE 190,000 Colored fundus images Accuracy = 97.72%

Emmy Bhatti
and Prabhpreet

Kaur [151]

Gaussian filter (GF) and
multi-support vector

machine (MSVM)-based
method

MATLAB DIARETDB0 348 Colored fundus images
Accuracy = 82%
Specificity = 82%

Sensitivity = 82.66%

Hongyang
Jiang et al.

[152]

Weighted class action maps
(CAMs) + Ada boost-based

system

Cloud server with Ubuntu
system of 16.04 LTS amd64 (64

bit). Intel Xeon E5-2620 v3
processor of six 2.40 GHZ

cores and 40 GB memory, a
NVIDIA Tesla P40 of 24 GB

memory and a local hard disk
of

200 GB

Custom-developed at
Beijing

Tongren Eye Center
30,244 Colored fundus images

Accuracy = 94.6%
Specificity = 90.85%
Sensitivity = 85.57%
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Table 4. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Xiaofei Wang
et al. [153]

Deep multi-task DR grading
(Deep MT-DR) model

Intel(R) Core(TM) i7-4770
CPU@3.40 GHz, 32 GB RAM
and 4 Nvidia GeForce GTX

1080 Ti GPUs.

DDR and EyePACS 102,375 Colored fundus images Accuracy = 88.7
Kappa=86.5

A. Rosline
Mary and P.

Kavitha [155]

Stochastic coordinate
descent deep learning
(SCDDL) architecture

2.8 GHz with Turbo Boost Up
to 3.8 GHz, Intel Core

i5-7700HQ, 8 GB DDR4
SDRAM, NVIDIA GeForce

GTX 1050

APTOS, DDR, EPAC,
DRIVE, and

EOPTHAMA
Not Mentioned Colored fundus images Maximum accuracy = 97.83%

K. Shankar et al.
[156]

DCNN and synergic
network (SN)-based model Not mentioned MESSIDOR 1200 Colored fundus images

Accuracy = 99.28%
Sensitivity = 98%
Specificity = 99%

K. Shankar et al.
[157]

Hyper-parameter-tuning
Inception-V4 (HPTI-V4) and

feed-forward artificial
neural network

(ANN)-based model

Python and Tensor Flow MESSIDOR 1200 Colored fundus images
Accuracy = 99.49%
Sensitivity = 98.83%
Specificity = 99.68%

Teresa Araújo
et al. [158]

Gaussian sampling
approach and multiple
instance learning-based

DR|GRADUATE system

Intel Core i7-5960X, 32 Gb
RAM, 2 × GTX1080 desktop

with Python 3.5, Keras 2.2 and
TensorFlow 1.8.

MESSIDOR-2, IDRID,
DMR, SCREEN-DR, and

Kaggle DR
103,066 Color fundus images Maximum quadratic-weighted

kappa = 84%

Juan Wang et al.
[159]

Squeeze-and-excitation (SE)
network and forward neural
networks-based hierarchical

framework

Not mentioned

Custom-developed at
Shenzhen SiBright Co.

Ltd. (Shenzhen,
Guangdong, China)

89,917 Color fundus images Maximum quadratic-weighted
kappa = 95.37%
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Table 4. Cont.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Hongyang
Jiang et al.

[160]

ResNet and
gradient-weighted class

activation mapping
(Grad-CAM)-based
multi-label model

Intel Xeon CPUs of 2.40 GHz
cores, 100 GB memory and

one NVIDIA Tesla P40 GPU of
24 GB memory

MESSIDOR and
custom-developed at
Beijing Tongren Eye

Center

3228 Color fundus images

Sensitive = 93.9%
Specificity = 94.4%
Accuracy = 94.2%

AUC = 98.9%

Paisan Raumvi-
boonsuk et al.

[164]

Convolutional neural
network with Inception-V4 Tensor Flow

Custom-developed at
Bangkok Metropolitan
Administration Public

Health Center

25,326 Colored fundus images

Area under the curve (AUC) =
98.7%

Sensitivity = 97%
Specificity = 96%

Table 5. Summary of the techniques reported for the classification of lesions in DR images.

Study Proposed Solution

Languages/Libraries
Software/Tools for

Simulation Environment and
Implementation

Data Set Number of
Images Used Image Modalities Evaluation

Daniel Shu Wei
Ting et al. [127]

Convolutional neural
network-based learning

system
Not mentioned

Custom-developed by
Singapore National

Diabetic
Retinopathy Screening

Program (SIDRP)

494,661 Color fundus Images
AUC = 93.6%

Sensitivity = 90.5%
Specificity = 91.6%

Pedro
Romero-Aroca

et al. [167]
CNN-based Algorithm Not mentioned EyePACS and

MESSIDOR-2 90,450 Color fundus Images

Cohen’s weighted kappa
(CWK) index = 88.6%

Sensitivity = 96.7%
Specificity = 97.6%

Positive predictive value
(PPV) = 83.6%

Negative predictive value
(NPV) = 99.6%
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3. Overview

An extensive body of research has been reviewed, the conclusions of which indicate
that deep learning techniques, algorithms, and methods have the potential to yield systems
of value executing the segmentation, prediction, and classification, and forming the basis for
decision support applications that enhance the execution of key tasks within DR diagnosis.
A large diversity of DL models, architectures, applications, methods, and frameworks have
been considered. Pre-trained CNNs are preferred as a feature extraction method. Deep
convolutional neural network (DCNN), deep neural network (DNN), generative adversarial
network (GAN), and U-Net have all been used effectively to support the analysis of DR.
With respect to transfer learning, a number of pre-trained networks are currently accessible
on different public repositories that can be downloaded and applied to the treatment of
any retinal image format. Although existing systems and frameworks are predominately
founded on hand-crafted features produced by pathologists, the use of end-to-end trained
CNN models for the analysis of medical images (like retinal images) are beginning to enjoy
increased adoption. Furthermore, DL rather than ML trained on traditional hand-crafted
features has become the preferred methodology for generating models that are beginning
to be integrated into the existing retinal image analysis tools.

4. Key Factors in Successful Deep Learning Methods

Given the wide-ranging review of a significant number of reported techniques related
to DR analysis, the expectation would be to provide clear guidance on the design of
the optimum DL models, architecture, framework, or approach as functions of a key
individual task or application. However, although CNN-based methods have yielded
better results compared to other deep learning algorithms, a striking conclusion is that
the exact architecture of any DL model is not a critical determinant in creating an effective
solution. A number of reported developments have used the same network architecture, but
extensive variations in performance are evident [138,139]. Implementing variations in the
number of layers of CNN networks to improve performance is a well-known approach in
the domain of expert knowledge. The pre-processing stages and data augmentation are also
key to the development of high-performing deep learning models. A range of normalization
techniques have been explored as pre-processing steps to improve the generalization of the
networks without significant changes to their core architectures. The application of data
augmentation strategies and pre-processing techniques improves the overall robustness
and performance of the models, playing a very important role in yielding effective solutions
for DR analysis through deep learning. Furthermore, task-oriented network architectures,
such as multi-scale and multi-view architectures, achieve better performance in comparison
with traditional CNNs.

Model designs must be driven by the receptive field and input image size, i.e., the
single output correspondence with respect to the spatial area of the input. The selected
input size must meet the criteria for the resolution and the context, governed by the
requirements of the application. For example, although, on occasion, a variation in the
receptive fields of the network may produce effective results, changes or increments in
the patch size in the search for an enhanced context has not been beneficial in all cases.
Evaluations of the impact of the visual input of the network for a task indicate that, in the
case of high inputs, a modification to the network architecture was necessary in order to
achieve the effective results. The optimization of the hyper-parameters, e.g., the learning
rate and dropout rate, impacts the overall performance of the network, and it is surprising
that more research on the methods or techniques required to optimize the best set of hyper-
parameters for an application has not been carried out. There is an evident trend in the
implementation of transfer learning methodologies, exemplified by the growing use of
pre-trained networks to create solutions that support the analysis of DR. The ResNet-based
network has been harnessed extensively in this respect to achieve effective results. The
validation of the functionality, performance in operational environments, and value of
deep learning-based decision support in clinical settings is only just beginning. However,
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more extensive deployments are required to acquire sufficient data that sheds light on the
optimization of the performance and, in so doing, reduces the barriers to adoption. The
five publications reporting the approaches that provide the best performance for each key
task-segmentation, prediction, and classification are shown in Figures 4–6, respectively.
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Figure 5. Top 5 publications reporting the best performance for the prediction.
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5. Limitations, Research Gaps and Future Directions

Despite the scope of the reported research, this review of the advances in the discipline
has nevertheless identified limitations in the current approaches, highlighted the gaps
in the research that have surfaced to date, and signposted the future directions for the
development of deep learning solutions that support the analysis of DR. A proliferation in
the number of reported models and methods based on DL is evident in the recent past, and
most, if not all, of these DL-based models are presented as ‘black boxes’, i.e., the solutions
do not provide interpretations of their diagnostic value, which hinders their widespread
use in operational clinical environments. Advances in interpretable DL techniques must be
pursued in the future to overcome this barrier to their use.

The effective training of deep learning models requires appropriately sized datasets,
their ready availability in the applications under review remaining an open gap, especially
with respect to segmentation and validation. The recent migration towards the use of
high-definition cameras to capture retinal images of the eye is beginning to generate an
increasing number of appropriate images. In similar fields, such as medical imaging, several
PAC systems have been installed in a number of healthcare centers and hospitals, but the
use of these systems remains limited in the domains of ophthalmology and pathology.
Furthermore, well-structured digital archives offer a limited number of retinal images. In
many studies, out of necessity, custom datasets with large numbers of images have been
created, but they are not rendered openly accessible to the extended research community.
Moreover, the retinal fundus images currently available are characterized by a lack of
uniformity, e.g., the images were captured under different conditions. They are also
characterized by variations in the illumination, e.g., the non-uniform diffusion of light
in the retina, sphere shape of the retina, the same angle not having been used for all
captured images. Another limitation is out-of-focus images, e.g., the use of different
cameras and resolutions for all the captured images. A major gap to be addressed, therefore,
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is the ready access to an appropriate scope and number of retinal images stored in open
repositories to act as a foundation that accelerates the development/training/optimization
of the performance of existing and new deep learning models. Consideration of these
issues should be at the forefront of strategies defining the experimental protocols for the
acquisition of custom or new datasets.

The visualization and understanding of the features used by deep learning algorithms
for the optimization of learning and forming of accurate predictions also remain gaps
in the research to date. The combination of traditional and DL-based systems for the
selection of the most appropriate features and detection of health conditions is a worthy
and challenging area of research. DL-based DR feature maps combined with traditional
features could potentially improve the accuracy of the predictions and, in turn, provide the
robust validation of the value of DL systems demanded by clinicians. Furthermore, the
use of deep learning and local descriptors for the pathological features are at the core of
effective DR analysis. All developments of deep learning models invariably benefit from
consultation by subject matter experts who can provide a more precise understanding of
the important pathological features. The detection and classification of other eye diseases,
such as AMD and glaucoma, from color fundus images can potentially bring benefits to the
optimization of the screening process. The combination of patient data, such as medical
history and demographics, with the prediction will enhance the precision of the decision
regarding whether or not to refer individual DR patients.

The introduction of text-mining methods and techniques within the development
of deep learning models will create benefits by facilitating reporting on annotations and
fostering the ability to change the structure of the labels in an automatic manner. The
DR analysis community has an expectation that generating reports for label structuring
will become ever more burdensome. The use of the structured and text-free report would
also bring value in enhancing the training of the networks for DR analysis. It is need
to encourage domain experts, e.g., ophthalmologists, to allocate time to generating task-
specific reports, e.g., screening, segmentation, prediction, classification, and validation
reports, and text-free reports from retinal image data will be of undoubted value in the
training of DL algorithms. The labeling of the retinal images is a time-consuming process,
requiring a high level of expertise for its execution. Thus, the extraction and labeling of
features is a rewarding area of research, as solutions would improve the overall performance
of the models used for DR analysis. The availability of algorithms performing efficient
slice-by-slice annotations is limited, and there remains scope for innovation.

EyePACS and MESSIDOR-2 datasets have been used most commonly for the training
and validation of algorithms. The training and validation of the DL models and systems
through these data sets, however, requires consideration regarding the impacts of noise and
uncertainty and the approaches to these impacts. Although a few studies have attempted
to determine the impacts of label uncertainties directly through the use of an appropriate
loss function, the scope for research in this domain is significant. Class imbalance is also
a key issue related to the data and, although several data augmentation techniques are
available, which can be used to generate the new retinal images with blood vessels and
lesions by rotating and scaling the images, additional validation is needed to confirm that
these approaches do not increase the imbalance.

Deep learning models and architectures in DR analysis still face the issue of patch
classification, as the anatomical location of the patch is not known. A potential solution
to this issue is to feed the entire retinal image into the deep network so as to achieve its
learning capabilities. Only one approach was founded on the introduction of a loss function,
such as which is based on the dice coefficient method [151]. However, the feeding of the
entire image into a network may not be feasible in every case due to some constraints
placed by restricted access to GPU resources, limited memory size, and bandwidth, as
retinal images fall in the range of giga pixels. Furthermore, a network characterized by
small receptive fields is not able to operate on an entire image. Thus, the definition and
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design of the methods and techniques able to operate on entire images is a fruitful area of
research.

Another outstanding research challenge is that, generally, most CNN-based networks
and models use a kernel of a fixed size for the slicing of images, which results in the loss of
important information hidden in unexplored regions. Thus, the exploration of the impact
of a variable kernel size, instead of a fixed size, on model performance for the slicing of the
image data would increase our understanding of the optimum designs. Moreover, most
deep learning models reported to date have been developed assuming that their input is
a retinal image. However, in some operational environments, a tempered and not a real
retinal image may be the only input available. Therefore, the development of user-friendly
image editing software is required to temper an image. Equally important in this respect
is the deployment of intelligent computer-aided systems that are able to confirm that the
input image is indeed an authentic retinal image before further processing.

Finally, studies have provided evidence that, although deep learning models yield
effective results in experimental, laboratory-level conditions, a loss of performance is
incurred when they are evaluated in a clinical environment. A limited number of studies
on the challenges and impacts of implementing DL models in clinical settings have been
reported. Thus, research opportunities exist in regard to our gaining of an understanding of
the routes to the implementation of DL models in clinical settings and the validation of the
performance during a real-time clinical examination for the major tasks of segmentation,
prediction, and classification, which are all core to effective decision support in DR analysis.
In order to accelerate trust in, and the adoption of, DL-based intelligent systems, they must
be developed in consultation with expert ophthalmologists and validated in operational
clinical settings, e.g., in environments where retinal images are captured under different
conditions, such as poor focus/contrast, poor pupil dilation, cataracts, on patient samples
of differing ethnicities, and qualities of systemic control (good and poor control).
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