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Abstract

This paper presents an Intelligent Decision Support System (IDSS) that can automatically assess the suitable robust deflection strate-
gies to respond to a Near Earth Objects (NEO) impact scenario. The input to the IDSS is the warning time, the orbital parameters and
mass of the NEO and the corresponding uncertainties. The output is the deflection strategies that are more likely to offer a successful
deflection. Both aleatory and epistemic uncertainties on ephemerides and physical properties of the NEO are considered.

The training data set is produced by generating thousands of virtual impactors, sampled from the current distribution of NEO. For
each virtual impactor we perform a robust optimisation, under mixed aleatory/epistemic uncertainties, of the deflection scenario with
different deflection strategies. The robust performance indices is considered by the deflection effectiveness, which is quantified by Prob-
ability of Collision post deflection. The IDSS is based on a combination Dempster-Shafer theory of evidence and a Random Forest clas-
sifier that is trained on the data set of virtual impactors and deflection scenarios. Five deflection strategies are modelled and included in
the IDSS: Nuclear Explosion, Kinetic Impactor, Laser Ablation, Gravity Tractor and Ion Beam Shepherd. Simulation results suggest
that the proposed decision support system can quickly provide robust decisions on which deflection strategies are to be chosen to respond
to a NEO impact scenario. Once trained the IDSS does not require re-running expensive simulations to make decisions on which deflec-
tion strategies are to be used and is, therefore, suitable for the rapid pre-screening or reassessment of deflection options.
� 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Near Earth Objects (NEO) impact poses a major threa-
ten to all life forms on Earth. Several serious impact events
through history, from the Chixulub Event 66 million years
ago, to the Tunguska Event in 1908 down to the more
recent Chelyabinsk Event in 2013, have concretely demon-
strated the risk of an impact with asteroids and comets. In
order to mitigate this risk, a number of remediation actions
have been proposed over the year. Some of them consist of
deflecting the NEO to avoid an impact with Earth. Most
deflection strategies can be divided into two categories:
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impulsive methods (such as Nuclear Explosions Device
Vasile and Thiry (2016), Kinetic Impactor Vasile and
Colombo (2008)) and Slow-push methods (such as Laser
ablation Zuiani et al. (2012a), Gravitational Tractor Lu
and Love (2005), Ion Beam Shepherd Bombardelli et al.
(2013)). Previous studies Sanchez et al. (2009), Thiry and
Vasile (2017), Weisbin et al. (2015) compared the perfor-
mance of different deflection strategies under the assump-
tion of complete knowledge of the NEO and the
deflection outcome.

However, in the planning and decision making process
that precedes the implementation of a NEO deflection mis-
sion, there is a considerable amount of uncertainty affect-
ing any decision (Dearborn et al., 2020). In addition to
the aleatory uncertainties which derive from the inherent
org/licenses/by/4.0/).
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randomness that is inevitable, the epistemic uncertainty,
coming from the lack of knowledge and limited experimen-
tal opportunities, cannot be ignored. Previous studies
(Zuiani et al., 2012a) showed that by including epistemic
uncertainties in the optimisation process, one can observe
that in the worst case scenario the effectiveness of the whole
concept can be severely compromised. The uncertainty fac-
tors will make the optimal solution, which is obtained
under deterministic assumptions, become sub-optimal
solution or even infeasible. For this reason, a number of
past studies (Vasile, 2002; Yamaguchi et al., 2008; Paek
et al., 2020) proposed robust optimisation methods for
NEO deflection missions. Computing a robust and globally
optimal solution under mixed aleatory and epistemic
uncertainty is computationally expensive and the cost
rapidly grows with the number of uncertain quantities.
The cost further increases with the fidelity of the deflection
action and associated uncertainty model. Furthermore,
making decisions on the optimal response to a threat sce-
nario requires accounting for different factors, including
the available time to implement a deflection action and
the orbital elements of the NEO, which affect the transfer
time and cost. At the same time the development of a
deflection mission is expected to go through different
phases of growing complexity in which the appropriateness
of a deflection action has to be re-assessed multiple times
given the level of uncertainty and maturity of the deflection
technology and the knowledge of the target NEO. Thus
making optimal decisions, especially in the preliminary
phase, requires a proper treatment of both aleatory and
epistemic uncertainty and a way to quickly assess the
appropriateness of a technology under uncertainty.

This paper proposes an Intelligent Decision Support
System (IDSS) based on a combination of Machine Learn-
ing ()Machine Learning (MLML) and Dempster-Shaffer
theory of evidence (DSt) to handle epistemic uncertainty.
A ML model is trained on a data-set of virtual impactors,
deflection scenarios and deflection technologies with asso-
ciated uncertainty. Once trained, the ML model works like
an oracle that can be interrogated multiple times to assess
which deflection methods is to be used in response to a
threatening scenario. In this context, ML provides a way
to make robust decisions under uncertainty without the
need of multiple runs of expensive mission and system
design optimisations. The ML model encapsulates different
processes that concur to assess which deflection strategies
are likely to offer a successful deflection: computation of
the deflection action, transfer trajectory definition, quan-
tification of system and NEO uncertainty, optimisation
of the deflection mission. DSt adds a further important
layer to the decision process by quantifying the uncertainty
deriving from a lack of knowledge on the NEO, the deflec-
tion action and the deflection technology. The use of ML
has found a growing range of application in the space sec-
tor in the last decade. However, its application in the field
of Planetary Defense is still limited. Recent examples
include the selection of deflection strategy (Nesvold et al.,
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2018), and the estimation of NEO physical properties by
post deflection observationb (Raskin et al., 2021). Mean-
while, a decision support system for space traffic manage-
ment was proposed by the authors to provide operators
with automatic collision avoidance capabilities
(Fernández-Mellado and Vasile, 2021). The IDSS in this
paper is conceptually derived from Fernández-Mellado
and Vasile (2021) and differentiates itself from the Deflec-
tor Selector proposed in Nesvold et al. (2018) in three dif-
ferent ways: i) it takes both aleatory and epistemic
uncertainty affecting the deflection action as an input and
uses DSt to quantify the uncertainty in the probability of
an impact, ii) it extends the range of deflection technologies
to be considered, ii) it introduces a robustness criterion on
the success of the deflection action to allow making robust
decisions under uncertainty.

The paper is structured as follows. Section 2 will intro-
duce the general methodology we proposed, while Section 3
will describe the IDSS and present some preliminary
results.

2. Methodology

This section will briefly introduce the proposed method-
ology and the approach to uncertainty quantification and
propagation. Then it will present the models used to com-
pute both impulsive and slow push deflections and finally it
will describe the approach we propose to compute robust
and optimal deflection solutions.

Fig. 1 shows a diagram representing the overall architec-
ture of the proposed IDSS. The core of the IDSS is com-
posed of five classifiers one for each of the deflection
actions considered in this paper: Nuclear Explosion Device
(NED), Kinetic Impactor (KI), Laser Ablation (LA),
Gravity Tractor (GT) and Ion Beam Shepherd (IBS).
Additional deflection technologies can be included through
other classifiers. The input to the IDSS is the warning time,
the orbital parameters of the NEO and a number of uncer-
tainty sources on the physical properties of the NEO and
the technologies to be used. In this paper, as a preliminary
demonstration, we considered only the diameter of the
NEO, with associated uncertainty, and the uncertainty on
its ephemerides. The output of each classifier is a label that
says if the corresponding method can achieve a successful
deflection or not. Thus the overall output of the IDSS is
a number of methods that are expected to be successfully
applicable to the input scenario.

2.1. Uncertainty quantification and propagation

In this paper, we consider a mixed of aleatory and epis-
temic uncertainties affecting the knowledge of the position
of the NEO at time of closest approach with the Earth.
More specifically, we modelled the uncertainty in the ephe-
merides and visual magnitude of the NEO with a family of
Gaussian distributions where the mean and variance are
effected by epistemic uncertainty. The assumption is that



Fig. 1. Architecture of Intelligent Decision Support System (IDSS). The input of IDSS includes the information of impact scenarios, such as warning time,
orbital elements, size and corresponding uncertainties. IDSS consists of five sub-classifiers, which can automatically output if the corresponding deflection
strategies can provide a successful deflection.
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the true value of the orbital elements ~� ¼ ~a;~e;~i; ~X; ~x; eMh iT
and absolute visual magnitude eH can be defined as:

~� ¼ �þ D� ð1ÞeH ¼ H þ DH ð2Þ
where � ¼ a; e; i;X;x;M ;H½ �T and H are expected values,
D� ¼ Da;De;Di;DX;Dx;DM½ � and DH are the correspond-
ing uncertainties. Absolute visual magnitude H (Chesley
et al., 2002) will be used for estimating the mass of the
NEO (assuming the NEO’s density q is 2.6 g=cm3, albedo
p is 0.154)

D ¼ 1329
100:2H

ffiffi
p

p

mAst ¼ 1
6
pD3q

(
ð3Þ

Let k� and kH be two parameter vectors defining the uncer-
tainty models D� k�ð Þ and DH kHð Þ, the expected values

� ¼ lT
� and H ¼ lT

H . Then, ~� and eH under mixed aleatory
and epistemic uncertainties are expressed as:

~� ¼ lT
� þ D� k�ð ÞeH ¼ lT
H þ DH kHð Þ ð4Þ

with k� and kH subject to the conditions k� 2 k�; k�
� �

and

kH 2 kH ; kH
� �

. In the following the values D� and DH are

drawn from two normal distributions N 0; rT
�

� �
and

N 0; rT
H

� �
respectively, thus k� ¼ rT

� and kH ¼ rT
H . The

covariance matrix of the orbital elements R� at the initial
state is defined as a diagonal matrix

R� ¼ AAT; A ¼ diag ra; re; ri; rX; rx; rMð Þ ð5Þ
Dempster-Shafer theory of evidence (DSt) (Shafer, 1976),
known also as the Evidence Theory, is a mathematical
framework to model epistemic uncertainty and can be
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interpreted as a generalisation of classical probability the-
ory. DSt can be used to model both aleatory and epistemic
uncertainty in NEO properties and deflection technology
as shown in Zuiani et al. (2012a). In this paper we will
use DSt to model the epistemic uncertainty in k� and kH ,
and assess the uncertainty in the objective function
accounting for all available pieces of evidence.

For every value of the uncertain parameters k� and kH ,
the Unscented Transform (UT) (Julier et al., 1995) is used
to propagate the expected value and aleatory uncertainty in

~� and eH . UT was proposed to calculate the mean value
and the covariance matrix of a random variable that under-
goes a nonlinear transformation. The basic idea is that,
instead of performing a higher order analysis, the probabil-
ity distribution parameters at a future time can be approx-
imated by using a set of representative points, called sigma
points (Luo and Yang, 2017).
2.2. Deflection methods

This section briefly describes the proposed approach to
model the achievable deflection with both impulsive and
slow-push deflection actions. The change of linear momen-
tum induced by each deflection action is modelled as in
Vasile and Thiry (2016) and Thiry and Vasile (2017). All
the models in Vasile and Thiry (2016) and Thiry and
Vasile (2017) are low fidelity and parametric. Thus they
allow one to compute the change of linear momentum ana-
lytically and to introduce uncertainty in the deflection
action through the parameters of the models.
2.2.1. Impulsive methods

The effect of an impulsive change in the velocity of the
NEO induces a variation of its orbital elements. According
to the method proposed in Ref. Vasile and Colombo
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(2008), the deflection position on the B-plane can be calcu-
lated analytically by rewriting dv in a tangential, normal,
out-of-plane reference frame

dv ¼ dvt; dvn; dvh½ �T ð6Þ
The variation of Keplerian elements at the time of deflec-
tion td caused by dv can be calculated by

da ¼ 2~a2~v
l dvt

de ¼ 1
~v 2 ~eþ cos ~hd

� �
dvt � ~r

~a sin
~hddvn

h i
di ¼ ~r cos ~h�d

~h
dvh

dX ¼ ~r sin ~h�d
~h sin~i

dvh

dx ¼ 1
~e~v 2 sin ~hddvt þ 2eþ ~r

~a cos
~hd

� �
dvn

h i
� ~r sin ~h�d cos~i

~h sin~i
dvh

dMd ¼ � ~b
~e~a~v 2 1þ ~e2~r

~p

� �
sin ~hddvt þ ~r

~a cos
~hddvn

h i
ð7Þ

due to the change of semi-major axis, the change in the
mean anomaly at the collision time tMOID is given by

dMn ¼ dnDt ¼
ffiffiffiffiffi
l
~a3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

~aþ dað Þ3
s0@ 1A tMOID � tdð Þ ð8Þ

therefore, the total variation in the mean anomaly dM
between the unperturbed and the deflected orbit is

dM ¼ dMd þ dMn ð9Þ
The position of the deflected NEO with respect to the
undeflected one at the true anomaly hMOID along the orbit
of the undeflected NEO is Schaub and Junkins (2003):

dxr � ~r
~a daþ ~a~e sin hMOIDffiffiffiffiffiffiffi

1�~e2
p d eM � a cos ~hMOIDd~e

dyh � ~r
1�~e2ð Þ3=2 1þ ~e cos ~hMOID

� �2

d eM þ ~rd~x

þ ~r sin ~hMOID

1�~eð Þ 2þ ~e cos ~hMOID

� �
d~eþ ~r cos~id~X

dzh � ~r sin ~h�MOIDd~i� cos ~h�MOID sin~id~X
� �

ð10Þ

where dr ¼ dxr; dyh; dzh½ �T is the deflection vector at the
collision time tMOID in a radial, transverse, out-of-plane ref-
erence frame attached to the undeflected asteroid. In short,
the deflection vector dr dv; td ; �;D�ð Þ at collision time tMOID

after the impulsive strategy can be expressed as

dr ¼ AMOIDd~� ð11Þ

where d~� ¼ d~a; d~e; d~i; d~X; d~x; d eMh iT
¼ d�þ D� indicates

the total variation of orbital elements at tMOID;D� indicates
the uncertainty of orbital elements, and AMOID indicates the
transition matrix extracted from Eq. (10).

2.2.2. Slow-push methods
In the general case of slow-push strategies, the variation

of orbital elements is computed by numerical integration of
Gauss equations from the time td when the deflection
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action starts until the time tf when the deflection action
stops, considering the thrust acceleration as a perturbing
acceleration. However, calculating the variation of orbital
elements by numerical integration will be rather computa-
tionally expensive as thousands of trajectories need to be
evaluated under the consideration of uncertainties. An
approximated analytical solution of Gauss equations over
short arcs for a constant thrust (Zuiani et al., 2012b), which
is named as Finite Perturbative Elements in Time (FPET),
had been applied for the propagation of the motion of an
asteroid under the effect of the slow-push deflection strat-
egy (Zuiani et al., 2012a), and the simulation results show
that the computational time is at least one order of magni-
tude lower than numerical integration. In the reminder of
this section we will give a brief introduction of FPET.
The variation of the orbital elements is obtained by inte-
grating Gauss equations in non-singular equinoctial
elements:

da
dt ¼ 2

B

ffiffiffiffi
~a3
l

q eP 2 sin eL � eP 1 cos eL� �
ar þ U eL� �

ah
h i

dP1

dt ¼ B
ffiffi
~a
l

q
�ar cos eL þ eP 1þsineL

U eL� � þ sin eL	 

ah � eP 2

eQ1 coseL�eQ2 sineL
U eL� � ah

� �
dP2

dt ¼ B
ffiffi
~a
l

q
ar sin eL þ eP 2þcoseL

U eL� � þ cos eL	 

ah þ eP 1

eQ1 coseL�eQ2 sineL
U eL� � ah

� �
dQ1

dt ¼ B
2

ffiffi
~a
l

q
1þ eQ2

1 þ eQ2
2

� �
sineL
U eL� � ah

dQ2

dt ¼ B
2

ffiffi
~a
l

q
1þ eQ2

1 þ eQ2
2

� �
coseL
U eL� � ah

ð12Þ

where L is the true longitude, B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eP 2

1 þ eP 2
2

q
;

U eL� �
¼ 1þ eP 1 sin eL þ eP 2 cos eL, and

~P 1 ¼ ~e sin ~Xþ ~x
� �

~P 2 ¼ ~e cos ~Xþ ~x
� �

~Q1 ¼ tan ~i
2

� �
sin ~X

� �
~Q2 ¼ tan ~i

2

� �
cos ~X

� �
eL ¼ ~Xþ ~xþ ~h

ð13Þ

The components of thrust vector is formed by modulus �,
azimuth a and elevation b of the thrust acceleration in
the radial-transverse reference frame:

f ¼ ar ah ah½ �
¼ � cos a cos b sin a cos b sin b½ �T ð14Þ

If one assumes that the modulus of the perturbing acceler-
ation is small compared to the local gravitational accelera-
tion, then

dt
dL

�
ffiffiffiffiffi
~a3

l

s
B3

U2 eL� � ð15Þ

By substituting Eq. 14 and Eq. 15 into Eq. 12, the system of
equations in the longitude L can be summarized in a vector
form as
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dE
dL

¼ �F eE ; eL; a; b� �
ð16Þ

where eE ¼ ~a; eP 1; eP 2; eQ1; eQ2

h iT
. The solution of Eq. 16 can

be expanded to the first order in the perturbing parameter �

eE eL� �
� eE 0

eL0

� �
þ �eE 1 DeL; a; b� �

þ O �2
� � ð17Þ

where eL ¼ eL0 þ DeL. By substituting Eq. 17 into Eq. 16 and
expanding the right hand side in Taylor series with respect
to �, collecting the terms which depend on the same power
of �, then, the E0 and E1 can be expressed aseE 0 ¼ consteE 1 ¼

ReLeL0
F eE 0;L; a; b
� �

dL

8<: ð18Þ

The keplerian elements can be transformed by the equinoc-
tial elements, therefore, the variation of the keplerian ele-
ments due to the slow-push action can be obtainedeE ~Lf

� �� eE ~Ld

� � ) ~� tf
� �� ~� tdð Þ ¼ d~�

¼ d~a; d~e; d~i; d~X; d~x; d eMh iT
ð19Þ

Furthermore, the total variation in the mean anomaly
between deflected and undeflected orbit is

d eM ¼ eM 0
MOID � eMMOID

¼ eMd þ dMd þ ~nf tMOID � tf
� �h i

� eMd þ ~nd tMOID � tdð Þ
h i

ð20Þ

Therefore, the deflection vector dr f ; td ; tf ; �;D�
� �

after the

slow-push strategy can be calculated by Eq. (11).
2.2.3. Projection on the B-Plane

Once the deflection vector dr is calculated, the corre-
sponding vector in the B-plane coordinates ~xb can be
expressed in terms of the NEO’s heliocentric position
rNEO tMOIDð Þ, heliocentric velocity vNEO tMOIDð Þ and the geo-
centric velocity U tMOIDð Þ:

~xb tMOIDð Þ ¼ n̂ ĝ f̂
h iT

r̂ ĥ ĥ
h i

dr ð21Þ

where r̂; ĥ; ĥ are column vectors that define the radial,
transverse, out-of-plane reference frame:

r̂ ¼ rNEO tMOIDð Þ
krNEO tMOIDð Þk ;

ĥ ¼ rNEO tMOIDð Þ � vNEO tMOIDð Þ
krNEO tMOIDð Þ � vNEO tMOIDð Þk ; ĥ ¼ ĥ� r̂

kĥ� r̂k ð22Þ

n̂; ĝ; f̂T are column vectors that define the B-plane reference
frame:
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ĝ ¼ U tMOIDð Þ
kU tMOIDð Þk ; n̂ ¼ vE tMOIDð Þ � n̂

kvE tMOIDð Þ � n̂k ;

f̂ ¼ n̂� ĝ

kn̂� ĝk ð23Þ

The deflection distance of the deflection action is measured
by the projection of the deflection vector dr on the B-plane
as

~b ¼ ~xbn;~xbf½ �T ð24Þ

Once the mean value and standard deviation of NEO orbi-
tal elements and magnitude are given at the deflection time

td , the mean value lnf and covariance matrix lnf of
~b can be

approximated by aforementioned UT technique as the fol-

lowing steps: The ~b should be reformed as a function T of

orbital elements ~� and the magnitude eH .

~b ¼ T eX� �
; eX ¼ ~a;~e;~i; ~X; ~x; eM ; eHh iT

ð25Þ

The mean value and covariance matrix of eX are

leX ¼ a; e; i;X;x;M ;H½ �T

ReX ¼ AAT; A ¼ diag ra; re; ri; rX; rx; rM ; rHð Þ

8<: ð26Þ

Calculate the sigma points X and their weights

W ið Þ
m ;W ið Þ

c i ¼ 0; 1; . . . ; 2nð Þ:
X 0ð Þ ¼ leX ; W 0ð Þ

m ¼ k
nþkð Þ ; W 0ð Þ

c ¼ W ið Þ
m þ 1� a2 þ bð Þ

X jð Þ ¼ leX þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ kð ÞReXq	 


j

; W jð Þ
m ¼ 1

2 nþkð Þ ; W jð Þ
c ¼ W jð Þ

m

X nþjð Þ ¼ leX �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ kð ÞReXq	 


j

; W nþjð Þ
m ¼ 1

2 nþkð Þ ; W nþjð Þ
c ¼ W nþjð Þ

m

ð27Þ

where j ¼ 1; 2; . . . ; n; n 2 N is the dimension of the state
vector; b should be 2 for Gaussian distributions; and

. . .ð Þj means the jth column vector of the matrix. Obtain

the set of the transformed sigma points Y ið Þ:

Y ið Þ ¼ T X ið Þ� � ð28Þ

The mean value and the covariance are by using the
weights and transformed sigma points as follows:

lnf ¼
X2n
i¼0

W ið Þ
c Y ð29Þ

Rnf ¼
X2n
i¼0

W ið Þ
c Y ið Þ � lnf

� �
Y ið Þ � lnf

� �T ð30Þ

Therefore, the Probability of Collision P 0
c after the deflec-

tion can be expressed as



Y. Wang, M. Vasile Advances in Space Research 72 (2023) 2676–2688
P 0
c lnf;Rnf

� � ¼ 1

2p
ffiffiffiffiffiffiffiffiffi
Rnfj jp

�
Z Z

B 0;0ð Þ;Rð Þ
e�

1
2

~b�lnfð ÞTR�1
nf

~b�lnfð Þ
� �

dndf

ð31Þ
where P 0

c is computed by integrating the uncertainty ellip-
soid, centered on the NEO’s mass point and projected on
the B-plane, over the closed region B 0; 0ð Þ;Rð Þ defined by
Earth’s radius (assuming RE ¼ 6378km in this paper). Pat-
era’s method (Patera, 2001) is used for calculating P 0

c due
to the fact that computational efficiency is particularly
advantageous when large numbers of P 0

c evaluations are
performed.

2.3. Evidence-based robust optimisation

This paper proposes the use of the Probability of Colli-
sion after deflection P 0

c as the objective function to quantify
the deflection effectiveness:

f d; uð Þ ¼ P 0
c ð32Þ

where d 2 D#Rm is a decision vector defined over the deci-
sion space D and u 2 U #Rn is an epistemic uncertainty
vector defined over the epistemic uncertainty space U.
Since the uncertainties of asteroid’s orbital elements and
visual magnitude are considered in this paper,

u ¼ k�; kH½ �T .
For NED, KI, LA missions, the decision vector d con-

sists of two elements: the epoch of launch and the time of
transfer. For GT and IBS missions, the decision vector d
consists of three elements: the epoch of launch, the time
of transfer and oversizing coefficient ( 1; 10½ �) (Thiry and
Vasile, 2017).

The deflection model accounts for the transfer time and
cost as well as the mass of the deflection depends on the
mass of the spacecraft and the time required to reach the
NEO. For impulsive methods, the transfer cost is obtained
by solving Lambert’s problem. For slow-push methods, the
transfer cost is obtained by spherical shaping method
(Novak and Vasile, 2011). The launch performance of
Delta IV Heavy-RS-68A upgrade version is considered in
the robust optimisation to define the initial mass of the
spacecraft at the start of the transfer trajectory.

Following Dempster-Shafer theory of evidence the epis-
temic uncertainty in k� and kH is modelled with intervals
with associated Basic Probability Assignment (bpa). Con-
sider for each component ui of the uncertainty vector u, a
collection of si intervals:

I i ¼ eijjui 2 eij; j ¼ 1; . . . ; si

 � ð33Þ

with a bpa eij
� � 2 0; 1½ � associated to each interval. Then the

uncertainty set U is given by the Cartesian product
U ¼ I1 � I2 � . . . In and we can define a focal element
cq ¼ e1Jq 1ð Þ � e2Jq 2ð Þ � . . . eiJq ið Þ � . . . enJq nð Þ with associated

bpa cq
� � ¼ Q

ibpaiJq ið Þ where the vector Jq has n components
2681
and contains a permutation of indexes j. We can now define
the set Am as:

Am ¼ f d; uð Þjf d; uð Þ < m; d 2 D; u 2 Uf g ð34Þ
and the cumulative Belief and Plausibility associated to
proposition in Eq. (34):

Bel Amð Þ ¼
X
cq #Am

bpa cq
� � ð35Þ

Pl Amð Þ ¼
X

cq\Am–£

bpa cq
� � ð36Þ

Once the Belief in a given value of m is computed, the fol-
lowing multi-objective optimisation problem can be formu-
lated in order to maximise the Belief in the minimum
achievable P 0

c:

max
d2D

Bel f d; uð Þ < mð Þ
min
u2U

m
ð37Þ

The optimal design vector and thresholds that yield a
Bel ¼ 1 for all possible u 2 U can be computed by solving
the following classic min–max problem (optimizing ‘worst
case’) (Zuiani et al., 2012a):

min
d2D

max
u2U

f d; uð Þ ð38Þ

Since the focal elements in U can be overlapping or discon-
nected, the calculation of f d; uð Þ needs to explore each
focal element independently and therefore faces the solu-
tion of an exponential number of optimisation problems.
If the goal is to solve problem (38), then the exponential
complexity can be avoided by collecting all focal elements,
through an affine transformation (Vasile et al., 2011), into

a compact unit hypercube U where all intervals along each
dimension are adjacent and not overlapping. A point in the

unit hypercube U is then mapped into the uncertainty
space U through the simple affine transformation:

ui ¼
buU ;i � blU ;i

buU ;i � blU ;i

ui þ blU ;i �
buU ;i � blU ;i

buU ;i � blU ;i

blU ;i ð39Þ

where buU ;i and blU ;i are the upper and lower boundaries of

the i-th interval to which ui belongs and buU ;i and blU ;i are

the upper and lower boundaries of the i-th interval to
which ui belongs. Problem (38) then becomes:

min
d2D

max
u2U

f d; uð Þ ð40Þ

Problem (40) is then solved with a nested loop. An inner

loop maximises f over U while an outer loop minimises f

over D. The Adaptive Multi-Population Inflationary Dif-
ferential Evolution Algorithm (MP-AIDEA) (Di Carlo
et al., 2020) was used to globally minimise f over D. For
every call to f in the outer loop a multi-start algorithm with
a Sequential Quadratic Programming (SQP) local search
and a Latin hypercube initialisation with 3 random samples
is used to maximise f in the inner-loop. Table 1 summarizes
the decision space D, and optimisation parameters for
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impulsive strategies (NED, KI) and slow-push strategies
(LA, GT, IBS), including the number of agents per popu-
lation (agents), the number of population (population)
and the total number of calls to the objective function (fe-
vals). SQP is performed by fmincon function in MATLAB
with the tolerance of 1e�6.

3. Intelligent decision support system

The Intelligent Decision Support System (IDSS) pro-
posed in this paper classifies deflection technologies accord-
ing to their ability to achieve a minimum probability of
collision under epistemic uncertainty. Each deflection
method is classified either as successful or unsuccessful
given all the pieces of evidence on the values of the epis-
temic parameters. The classifier associated to each deflec-
tion method is trained on the same set of virtual impact
scenarios. Each scenario is defined by the warning time,
the orbital elements of the NEO, its mass and the associ-
ated uncertainties (see Fig. 1). For each virtual impact sce-
nario and deflection technology, a robust deflection action
is computed by solving problem (40). The resulting value of
P 0
c is then used to classify the deflection technology. All

computations are performed using a 3.2 GHz AMD Ryzen
7 5800H and 16 GB of RAM, equipped with MATLAB
and Python.

The IDSS is trained on a synthetic data-set composed of
variety of possible impact scenarios and deflection out-
comes. The variety and diversity of the impact scenarios
(both impact geometries and type of NEO) is essential to
properly train the IDSS. The fidelity of the deflection out-
come is dependent on the fidelity of the model of the deflec-
tion actions and associated technology. Since there are no
available data on actual NEO deflections or impact scenar-
ios, the IDSS is trained to account also for the existing epis-
temic uncertainty on both the probability of collision and
the deflection outcome.

At this point it is worth noting that while the IDSS pre-
sented in this paper is only returning the list of applicable
deflection technologies, the classifiers are trained on a
data-set that contains also the optimal deflection missions.
Thus the same data-set can be used to train a further ML
model that can return the optimal mission. The data-set
can also be enriched with higher fidelity simulations of
the deflection methods. Furthermore, in this paper we con-
sidered only a small number of uncertainty sources that do
not include the epistemic uncertainty on the deflection tech-
nology itself and a number of physical properties of the
NEO. If these additional epistemic uncertainties were con-
sidered, the IDSS would allow multiple assessments of the
Table 1
Optimisation parameters for MP-AIDEA.

Strategy Time of transfer years½ � Time of mission

Impulsive [1, 4] [4, 10]
Slow-push [1, 7] [7, 10]
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deflection methods without recomputing a robust optimisa-
tion of the whole deflection mission. These two extensions
will be the subject of future work. The scope of this paper is
to introduce the methodology and show its applicability to
some illustrative cases. For this reason we limited the com-
plexity of the uncertainty and deflection models.
3.1. Data-set generation

This section explains how we generated the data-set to
train the machine learning model. The procedure involves
three main steps: the first step is to generate a variety of
Virtual Impactors (VIs) with different close encounter
geometries in order to cover as many possible future sce-
narios as possible, the second step is to apply uncertainties
to virtual impactors to form the virtual impact scenarios,
and the third step is to perform the robust optimisation
for each virtual impact scenarios and label the resulting
probability of collision.

Step1 (generate virtual impactors): we assume the Earth
orbit is circular, therefore, two necessary but not sufficient
conditions on the semi-major axis a, eccentricity e for vir-
tual impactors are

a 1� eð Þ < 1AU

a 1þ eð Þ > 1AU

�
ð41Þ

Fixing the semi-major axis a, eccentricity e and inclination i

with Near Earth Object’s actual value from the JPL Small-
Body Database, one independent element remaining to fix
is the longitude of the ascending node node X of the NEO’s
orbital plane with respect to the ecliptic plane. However,
since the assumption of circular Earth orbit, the expected
impact epoch tMOID (time of Minimum Orbit Intersection
Distance, MOID) is arbitrary and we can choose to fix
X ¼ 0. The argument of perihelion x and the true anomaly
h are determined by Thiry and Vasile (2017)

1AU ¼ a 1�e2ð Þ
1þe cosx

h ¼ 2p� x

(
ð42Þ

11,619 NEOs pass the above filters and form the VIs. We
randomly select 5000 of them to apply the uncertainties
on orbital elements � and absolute visual magnitude H,
which further form the virtual impact scenarios. Figs. 2
and 3 show the trajectories and a� e distribution of 5000
VIs. Meanwhile, the corresponding absolute visual magni-
tudeH values are downloaded from JPL Small-Body Data-
base. Fig. 4 shows the histogram of VIs’ diameter.

Step2 (apply uncertainties on virtual impactors): To get
the reasonable uncertainties intervals ( r; r½ �) of r� and rH ,
years½ � Agents Population Fevals

10 4 90
10 4 60



Fig. 3. Distribution in semi-major axis and eccentricity of VIs.

Fig. 4. Histogram of VIs’ diameter.

Table 2
Uncertainty Intervals of r� and rH . Two sources of the uncertainty
intervals are considered: Source1 indicates smaller uncertainty intervals,
and Source2 indicates lager uncertainty intervals.

Parameters Source1 K�1 Source2 K�2
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we count the distribution of real r� and rH from the JPL
Small-Body Database Browser, then two reasonable uncer-
tainty intervals for r� and rH are summarized in Table 2.
For each VI, the warning time are randomly collected from
5; 10½ � years and uncertainty intervals eij are the random
subsets collected from the uncertainty intervals Kij listed
in Table 2, that is

eijjeij � Kij; i ¼ 1; 2; . . . ; 7; j ¼ 1; 2

 � ð43Þ
Finally, a total of 5,000 virtual impact scenarios are
generated.

Step3 (perform robust optimisation and label the out-
come): For each virtual impact scenario, we perform a
robust optimisation, under mixed aleatory and epistemic
uncertainties, of the deflection scenario with five different
deflection strategies. We then compute the worst probabil-
ity of collision

P 0
c maxð Þ ¼ max

u2U
f d�; uð Þ ð44Þ

where d� is the robust solution of problem (40). Fig. 5
shows the worst deflection effectiveness P 0

c maxð Þ of five differ-
ent deflection strategies within 10 years warning time,
where the x, y, z axis indicate the semi-major axis, eccen-
tricity and diameter of the VIs respectively. The P 0

c maxð Þ will
be used to determine whether the execution of deflection is
successful.

In this paper, a ‘successful deflection’ is defined as a
deflection such that the worst probability of collision

P 0
c maxð Þ is below 10�2, that is:

8u 2 U ; P 0
c maxð Þ < 10�2 ð45Þ

In other words, once the P 0
c maxð Þ of a certain deflection strat-

egy is less than 10�2, the deflection strategy will be labeled
as ‘successful’, otherwise it will be labeled as ‘un-
successful’. Fig. 6 shows the percentage of the scenarios
(among 5000 virtual impact scenarios) that can be success-
fully deflected (the ones labeled with ‘successful’) by five
Fig. 2. Trajectories of VIs.

ra AU½ � [1e-10, 1e-6] [1e-6, 1e-1]
re [1e-8, 1e-6] [1e-4, 1e-2]

ri [	] [1e-6, 1e-4] [1e-3, 1e-1]
rX [	] [1e-5, 1e-3] [1e-3,1e-1]
rw [	] [1e-5, 1e-3] [1e-3, 1e0]
rM [	] [1e-5, 1e-3] [1e-2, 1e0]
rH [0.1, 0.5] [0.5, 0.8]
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different deflection strategies, while ‘None’ indicates that
none of the deflection strategies can achieve the successful
deflection. Simulation results show that 81.48% of the sce-
narios can be deflected successfully by NED, 23.6% by KI,
19.28% by LA, 2.6% by GT and 8.4% by IBS, while 17.82%
of the scenarios cannot be deflected successfully by any
strategies within 10 years warning time. Besides NED strat-
egy, KI and LA strategies are mostly likely be selected for
the scenarios within 10 years warning time.



Fig. 5. Five deflection strategies’ worst deflection effectiveness P 0
c maxð Þ within 10 years warning time. The points that tend to be blue in color indicate the

lower P 0
c maxð Þ, to some extent, symbolize the virtual impact scenarios that can be successfully deflected.

Fig. 6. Percentage of the scenarios that can be deflected successfully. With
the warning time less than 10 years, NED is the most powerful strategy
that can defend over 80% NEO impact scenarios, while the GT is the
weakest strategy that can only defend 2.6% NEO impact scenarios.

Y. Wang, M. Vasile Advances in Space Research 72 (2023) 2676–2688
3.2. Machine learning model

In the following we will use a Random Forest (RF) tech-
nique, which was proven to work very well on a similar
classification task related to debris conjunction analysis
(Fernández-Mellado and Vasile, 2021), to train the five
classifiers. RF is an ensemble method that combines several
independent Decision Trees during the training process,
which overcome the overfitting problem usually faced by
Decision Trees. In this paper, RF is implemented by using
the available packages included in Python’s Scikit library.
The hyperparameters are setting as follows: the models dif-
2684
fered in the number of trees in the forest is (50, 100, 200,
400); the maximum depth of the tree is (‘None’, 50, 100);
the minimum number of samples required to be at a leaf

node is (1, 10�4; 10�7); the minimum number of samples
to split a node is (2, 20); the number of features to consider
when looking for the best split is (‘auto’,0.5,‘log2’). For
each classifier, we use 80% of the samples for training
and 20% for testing. The mean value of F1-score is
employed to assess the model, while the definitions of over-
all accuracy, recall, precision, F1-score are

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð46Þ

recall ¼ TP
TP þ FN

ð47Þ

precision ¼ TP
TP þ FP

ð48Þ

F 1 ¼ 2
recall � precision
recallþ precision

ð49Þ

where TP: True Positive; FP: False Positive; TN: True
Negative; FN: False Negative.

3.3. Performance of intelligent decision support system

By RF technique, the classification results of IDSS are
obtained by predicting the labels of samples in the testing
set. Table 3 shows the classification results of IDSS. The
accuracy of KI Classifier and LA Classifier are 95.6%
and 96.2% respectively. Note that the F1 score of NED
Classifier, GT Classifier and IBS Classifier shows a lower
value compared with the ones of KI Classifier and LA



Y. Wang, M. Vasile Advances in Space Research 72 (2023) 2676–2688
Classifier, this is caused by the imbalance in the current
data set. For example, the percentage of the scenarios
labeled as ‘successful’ for GT and IBS are less than 20%.
In this case, the recall and precision scores of GT Classifier
and IBS Classifier indicate that the ‘successful’ scenarios
for GT and IBS tend to be mislabeled as ‘un-successful’.
Such imbalanced data set is intrinsic to the deflection sce-
narios with a NEO diameter less than 1000 m and a warn-
ing time less than 10 years. An extended data set, which
considers larger NEOs and longer warning times, is needed
to improve the performance of the IDSS.

The statistical analysis of the output of the current clas-
sifier also implies that the NED technology is reliably clas-
sified when successful, however, since there is a small
proportion of outputs in which the NED option is classi-
fied as unsuccessful even a small percentage of false posi-
tives for the label ”successful” drives the recall down to
44.19%. A symmetric consideration applies to the GT
and IBS because the percentage of times the answer is ”suc-
cessful” is small compared to the false positive labels ”un-
successful”. In both cases, however, the total number of
correct answers is very high, thus, even with an unbalanced
data-set, the IDSS returns the correct answer most of the
times.

To intuitively show the performance of IDSS, in the
remainder of this section we test IDSS on three cases of vir-
tual impact scenarios. For each case, as described in Eq.
(43), two sources of uncertainty intervals for each compo-
nent are randomly collected from K�1 and K�2 listed in
Table 2, while two sources are equally reliable:

bpa K�1ð Þ ¼ bpa K�2ð Þ ¼ 0:5 ð50Þ

The information and simulation results of the three cases
are summarised in Table 4, where Case 1 indicates the Vir-
tual Impactor (VI) with the larger size and easier orbital
accessibility, Case 2 indicates the VI with the smaller size
and easier orbital accessibility and Case 3 indicates the
VI with the smaller size and harder orbital accessibility.
The inputs are the mean value l and the intervals of the
Table 3
Classification results of five sub-classifiers of IDSS. The accuracy, recall, prec

Classifier Class Accuracy [%]

NED Classifier Overall 88.4

un-successful
successful

KI Classifier Overall 95.6

un-successful
successful

LA Classifier Overall 96.2

un-successful
successful

GT Classifier Overall 97.4

un-successful
successful

IBS Classifier Overall 95.8

un-successful
successful
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standard deviations r of the orbital elements and absolute
magnitudes, as well as the warning time. For these three
cases, the total computational time of robust optimisation
(for five deflection strategies) are 511.63s, 752.96s, 88.97s
respectively. Once the IDSS is used to predict the suggested
strategies, the total computational time for each case can
be reduced to less than 2s, while the prediction results are
the same as the results from robust optimisation. Table 4
shows a reduction of nearly three orders of magnitude in
the computational time to assess the effectiveness of a
group of deflection technologies. This reduction is propor-
tional to the total mission duration and is expected to fur-
ther increase as more uncertainty and higher fidelity
models are considered in the prediction.

For these three cases, the corresponding belief curves of
five deflection strategies are shown in Fig. 7a - c. It is
shown that the difference between different strategies’ belief
curves becomes more obvious as the NEO’s diameter
decreases. For Case 1, note that the left-side of belief curves
of KI/LA/GT/IBS are almost unchanged, this is caused by
the large ra collected from Source2 in Table 2. Taking one
focal element that includes the ra collected from Source2 as
an example, Fig. 8 gives the 3-r ellipses (on the B-plane)
corresponding to the best case P 0

c minð Þ and the worst case

P 0
c maxð Þ. The Case 1’s VI has a diameter of 97 m, which is

not that big but when considering large uncertainty inter-
vals, the effect of large uncertainties on P 0

c makes the effect
of deflection strategies negligible. Although Source2 inter-
vals selected for Case 2 and Case 3 are also large, the smal-
ler size of Case 2 and Case 3 makes the effect of deflection
strategies more obvious. For Case 3, which is hard for
spacecraft to rendezvous with, Fig. 7c shows that NED
and KI outperform slow-push strategies, at the same time,
a slight advantage of LA is shown among the slow-push
strategies due to the fact that LA does not require to carry
as much propellant on board, as IBS and GT, to deflect the
NEO.

Note that a NED for small NEO might not be a recom-
mended solution for other reasons than the pure deflection
ision and F1 are used to evaluate the performance of each sub-classifier.

Recall [%] Precision [%] F1 [%]

75.01

44.19 79.17 56.72
97.58 89.38 93.3

93.5

96.95 97.44 97.19
90.65 88.99 89.81

92.97

99.51 96.02 97.74
80.68 97.26 88.2

61.11

100 97.39 98.68
13.33 100 23.53

80.47

100 95.64 97.77
46.15 100 63.16



Table 4
Information and simulation results of three cases for testing the computational efficiency improvement of IDSS. The inputs are the mean value l and the
standard deviation r of orbital elements and absolute magnitude, as well as the warning time. Two rows of r intervals for each orbital elements indicate
smaller and larger uncertainty intervals randomly drawn from two uncertainty sources in Table 2. The computational time of running robust optimisation
and ML prediction are reported in the last two rows.

Case 1 Case 2 Case 3

l r intervals l r intervals l r intervals

a [AU] 1.006 [4.01E-9, 9.38E-8] 1.078 [6.04e-8, 8.30e-8] 1.283 [8.08e-8, 8.82e-8]
[9.01E-4, 9.45E-4] [1.57e-4, 2.13e-4] [1.65e-4, 8.31e-4]

e 0.23 [8.25E-7, 9.30E-7 0.159 [6.44e-7, 7.97e-7] 0.452 [5.29e-7, 8.39e-7]
[6.79E-4, 8.04E-4] [8.54e-4, 9.49e-4] [5.17e-4, 8.28e-4]

i [	] 1.599 [3.98E-5, 7.18E-5] 3.035 [6.41e-5, 8.19e-5] 17.128 [3.23e-5, 3.81e-5]
[2.28E-3, 5.54–3] [2.75e-3, 5.42e-3] [5.82e-3, 8.77e-3]

X [	] 0 [6.34e-5, 9.99e-5] 0 [5.81e-5, 8.50e-5] 0 [8.06e-5, 8.49e-5]
[5.07e-3, 9.64e-3] [3.29e-3, 6.78e-3] [6.05e-3, 7.11e-3]

x [	] 101.855 [1.93e-5, 8084e-5] 71.231 [6.99e-5, 9.09e-5] 272.74 [1.21e-5, 3.08e-5]
[2.51e-3, 7.90e-3] [1.03e-3, 7.80e-3] [8.97e-3, 9.34e-3]

M [	] -75.349 [5.55e-5, 8.70e-5] -54.712 [2.05e-5, 8.51e-5] 38.162 [7.23e-5, 7.84e-5]
[7.45e-3, 8.60e-3] [9.68e-3, 9.98e-3] [6.32e-3, 7.26e-3]

H 22.7 [0.290, 0.451] 24.4 [0.267, 0.410] 25 [0.470, 0.487]
[0.780, 0.797] [0.549, 0.686] [0.598, 0.692]

Diameter m½ � 97.67 44.64 33.87
Warning time years½ � 8.57 9.47 6.58
Suggested strategies NED NED, KI, LA, IBS NED, KI
Computational time for robust solution s½ � 511.63 752.96 88.97
Computational time for ML prediction s½ � <2 <2 <2

Fig. 7. Belief curves of five deflection strategies: a) Case1, the VI with the larger size and easier orbital accessibility,; b) Case2, the VI with the smaller size
and easier orbital accessibility; c) Case3, the VI with the smaller size and easier orbital accessibility.

Fig. 8. Case1’s 3-r ellipses of Pc minð Þ and Pc maxð Þ on B-plane, where the tiny
black circle indicates Earth.
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efficiency. In this paper we did not include additional con-
straints and considerations which would be required to
select the nuclear option vs. non-nuclear solutions. Factors,
related to the reliability or controllability of a deflection
action can be included in the uncertainty model, in the
deflection model or both.
4. Conclusion

This paper has proposed an Intelligent Decision Support
System (IDSS), which can automatically assess the effec-
tiveness of deflection strategies at responding to a NEO
impact scenario. The IDSS combines a Machine Learning
(ML) model with DSt to make robust decisions on the
applicable deflection technologies. The ML model is built
by training a Random Forest on thousands of virtual
impact scenarios and optimised deflection actions. The
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paper demonstrated how the IDSS can classify the applica-
bility of different deflection technologies, given the type of
NEO, the geometry of the expected impact and the uncer-
tainty associated to it. The IDSS can return the list of
applicable technologies without the need of expensive sim-
ulations and mission optimisations. This list can give a first
indication of which strategies should be selected under the
considered mixed aleatory and epistemic uncertainty. Thus
the IDSS can be used to provide a rapid screening of all
deflection options at an early stage of the decision making
process and multiple fast re-assessment of a given technol-
ogy once more information is available. The IDSS can also
be used to assess the applicability of different technologies
to a catalogue of NEOs and to quickly repeat the assess-
ment when the impact risk in the catalogue is updated.

The results in this paper are preliminary but demon-
strate the potentiality of the combination of Dempster-
Shafer theory of evidence and machine learning to make
informed decisions under mixed uncertainty on the most
suitable deflection options in the case of a threatening sce-
nario. This work included only uncertainty on the mass of
the NEO and its ephemerides. A more complete treatment
would require the inclusion of uncertainty on the deflection
action and on other physical properties of the NEO. This is
a critical aspect of the effectiveness and applicability of all
deflection methods. The inclusion of uncertainty on the
deflection action and its sensitivity to the properties of
the NEO would change the classification in favour of more
reliable methods.

Furthermore the only criterion used to classify is the
probability of collision. This would need to be comple-
mented by possible operational or implementation con-
straints and more general considerations on technology
readiness and viability. Finally the data-set used to train
the classifiers contains a lot more information on the mis-
sion profile, trajectory, transfer manoeuvres, launch date,
etc. In the current version of the IDSS this information is
not returned but can be used to train a further model asso-
ciated to the classification of the technology so that an
optimal mission is returned together with the associated
technology. All these extensions will be the subject of
future work.
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