
Towards Ensemble AI for Satellite Plan Execution
(Abstract)

Gonzalo Montesino Valle1 and Michael Cashmore2

University of Strathclyde, Glasgow, Scotland
1gonzalo.montesino-valle@strath.ac.uk, 2michael.cashmore@strath.ac.uk

Abstract
The execution of plans onboard satellites is a challenging
process due to the inherently non-deterministic and stochas-
tic environment. We define an execution agent as the system
responsible of dispatching and monitoring the actions of a
plan while guaranteeing real-time response. In this abstract
we propose an execution agent that is able to execute the a
number of plans in parallel, managing a dynamic priority be-
tween them. This method utilises the idea of ensemble AI,
which takes input from multiple voices, such that each voice
has its own goal specific interest, and with the help of a hu-
man control variable or function to manage priority. Finally
an arbiter agent chooses an optimal action to take at each mo-
ment. Our results show that the ensemble execution agent is
able to scale to much larger sets of mission objectives when
compared to a system that attempts to merge these objectives
before planning and execution.

1 Introduction
Satellite mission planning involves the generation of plans
or training of agents to pursue objectives in an uncertain en-
vironment. During execution planned actions may fail and
the execution agent must react to unexpected outcomes. Plan
execution algorithms deal with this challenge in a variety of
ways (Wang et al. 2020; Lima et al. 2020; Coruhlu, Erdem,
and Patoglu 2021). Policies, for example trained through re-
inforcement learning can also naturally adapt to changing
circumstances (Baker et al. 2019, 2022).

Satellite mission planning may also involve multiple mis-
sions to be carried out in parallel over a rolling horizon of
decision making, often with over-subscription: more objec-
tives that can be reasonably carried out within the time con-
straints. In addition, changing situations can alter priorities
between objectives during the mission’s execution. For ex-
ample, after some data is dumped to a ground station a mis-
sion is re-prioritised as highly desirable, or an unexpected
phenomenon occurs such as a micro-asteroid collision or so-
lar storm that necessitates switching to a safety mode. These
ideas bring additional challenges in prioritisation between
objectives, and fairness between mission providers. While
existing plan execution approaches can be used to respond
to uncertainty, they do not deliberate over this balancing of
multiple objective sets under changing prioritisation.

In this paper we investigate a new approach to allow mul-
tiple agents control a single asset in a non-deterministic en-

vironment without intervention. To validate the approach we
have implemented an execution agent based on ensemble
decision making and experimented in a satellite simulation
with the following aims.

• We aim to show that this approach is able to balance pri-
orities between multiple mission providers during execu-
tion, while still achieving an acceptable proportion of the
overall mission goals.

• We also aim to show that in some cases, allowing multiple
agents to plan or train separately, and then executing those
plans in parallel can aid scalability.

• Finally that allowing those agents to plan or train inde-
pendently on the ground, and only combining their results
during execution allows more flexibility in their approach
- i.e. learned policies can be followed alongside human-
scripted plans without the need for off-board reasoning.
This allows for the simple combination of human pre-
scribed missions alongside automatic safety and recovery
procedures.

This paper consequently presents two contributions: an ar-
chitecture that implements our proposed approach and a
light-weight satellite mission simulation that can be used to
test and benchmark mission execution in a simplified satel-
lite environment.

The execution agent architecture is based on the idea of
ensemble decision making (Rodgers, Levine, and Anderson
2018) and evaluated using the light-weight simulation. This
agent uses ensemble reasoning to simultaneously deconflict
and execute the commands from a set of agents with associ-
ated priority. This priority is set dynamically - meaning that
it can change based on the state of the mission, current time,
or other condition.

In our architecture the agents responsible for individual
missions are abstracted - they may be scripted plans written
by hand, plan execution algorithms capable of replanning
online, or policies learned via reinforcement learning, or
something else. We refer to these agents as voices through-
out this paper. Our architecture describes how these voices
are configured and fed into an arbiter agent that is responsi-
ble for deciding the commands to be carried out.

The paper is structured as follows: in section 2 we dis-
cuss the related work on which our architecture is based.
The architecture is then described in detail in section 3. The

Towards ensemble AI behaviours for satellite plan execution

1

This is a peer-reviewed, accepted author manuscript of the following paper: Valle, G. M., & Cashmore, M. (Accepted/In press). Towards ensemble AI
behaviours for satellite plan execution. Paper presented at 73rd International Astronautical Congress 2022, Paris, France.

light-weight simulation is presented in section 4, followed
by a description of our experimental setup in section 5. We
discuss the results and conclude in sections 6 and 7.

2 Related Work
In this section we briefly discuss other executives that have
been used for planning and executing missions in space.
Then we discuss related work in ensemble decision making
that motivates our approach.

The Multi-mission Executive (MEXEC) algo-
rithm (Hughes et al. 2020) uses a task network to create
and execute a conflict-free schedule to achieve a set of
goals, to do so it is divided into 3 different modules: one
in charge of planning, one for executing and a timeline
library used by the planning module to slot tasks in free
slots. The LILA algorithm (Saint-guillain, Vaquero, and
Chien 2021) is used to solve the problem of plan execution
for Probabilistic Simple Temporal Network (PSTN) based
problems with Monte Carlo Tree search. LILA uses the
idea of ”playing a game against nature” in which the MCTS
nodes are divided into decision nodes and contingency
nodes. The contingency nodes simulate the randomness of
the PSTN times, whereas the decision node set the starting
time of each action. LILA is effective at executing plans that
have been made robust to uncertain temporal durations, but
requires another system to generate the input PSTN. Finally,
Gillette and George (2022) use the Schedule Management
framework, which generates and executes schedules of
highly constricted tasks, and the the cFS apps to create the
CSM framework for satellite plan generation and execution.

In Rodgers, Levine and Anderson (2018) present a novel
system using ensemble AI create a decision-making algo-
rithm able to play Ms. Pac-Man. Their architecture con-
sists of four voices each with a clear objective. The out-
put of these voices is then compared and an action is exe-
cuted depending upon a set of state-based rules. Anderson
et al. (2019) devised an updated algorithm able to play gen-
eral video games, with voices based on heuristics that were
previously designed for general game search.

Similar systems to ensemble AI have been also used for
Reinforcement Learning (RL). Yang et al. (2020) merge
three different deep RL algorithms to achieve a robust trad-
ing agent. The choice of action to execute is made using
a custom performance metric. This approach was shown to
out-preform each of the three voices independently. Unlike
Yang et al. our motivation is not to create a more robust ex-
ecution towards a single goal, but instead to merge multiple
objectives in a balanced fashion. However, it is feasible that
this kind of “adaptable robustness” could also be achieved
using our architecture.

3 Architecture
In this section we describe the architecture of our execu-
tion agent, used to execute a satellite mission with different
scientific teams. The system is divided into voice compo-
nents and arbiter. The voices are first described relatively
abstractly. The arbiter is then described in more detail, in-
cluding the way in which priorities are associated with each

voice.

Voice Component
As mentioned previously, we take an abstract definition of
a voice in this architecture. A voice is considered to be an
agent with its own goal, which takes as input the current
state of the world and sends as output an action that is de-
sirable to take. It could be noted that the architecture we de-
scribe in this section also fits the definition of a voice. While
not essential, it is desirable voices should be reactive to the
state and able to modify their course of action according to
unforeseen circumstances. The reasoning for this is that as
a sub-component and not the ultimate controller of the sys-
tem, their action might not be selected for execution - as a
result the environment from the perspective of a voice be-
comes non-deterministic.

In our implementation each voice is wrapped by a voice
wrapper to allow it to speak with the rest of the system. Fig-
ure 1 illustrates the design of a voice wrapper, which is com-
posed of two parts:

1. the agent in charge of choosing the action, and

2. an observation function that fetches the current state of the
world and parses this state into the formalism required by
the agent.

Figure 1: Voice Component

Towards ensemble AI behaviours for satellite plan execution

2

The parsing from general to specific observation allows
different voices to operate upon different models of the
world. For example, using different RL observation spaces,
differing domain models for planning, and so on.

Arbiter Component
The arbiter is responsible for choosing the actions to be ex-
ecuted. As input the arbiter is given the action choices from
each voice, the state observation, and an additional parame-
ter vector called the weight vector.

The weight vector α ∈ Rn is the parameter used to as-
sociate priority with each of n voices, i.e. such that voice vi
has priority αi.

In figure 2, we show the design of the whole system con-
sisting of arbiter and voices. The output of all voices are
merged with the complete observation of the environment to
obtain the full observation used by the arbiter. Finally, the
full observation and the weight vector values are given to
the arbiter. The arbiter then outputs an action to the environ-
ment. This may mean simply selecting the action according
to the voice with highest priority, but could also be a more
complex reasoning system that selects a compromising ac-
tion that was not suggested by any voice. In this paper we
propose two different algorithms that instantiate the arbiter
component: the priority arbiter and the weighted arbiter.

Priority Arbiter This arbiter takes action of the voice
with the highest possible α value that does not interfere with
the future actions of higher-priority voices. The intuition is
that this voice will greedily maximise achieving the goals
of the high-priority voices, while still achieving the goals of
lower priority voices as opportunistic objectives. This idea
is explored in experimentation in Section 5.

Algorithm 1 Priority Arbiter

function PRIORITYACTIONSELECTION(A,α)
Input: A set of actions
Input: α set of priorities
Sort: ⟨A,α⟩ ▷ From highest α to lowest
for all ai, αi in A,α do

if ActionIsPossible(ai) then
if CheckInterference(ai, Ahp) then

return IdleAction
else

return ai
end if

end if
end for

end function

Weighted Arbiter this approach instead sums the prior-
ity associated with each selected action, allowing groups
of lower-priority voices to override the decision of a high-
priority voice. The intuition is that this kind of arbiter would
maximise the priority-weighted sum of achieved objectives
overall.

Algorithm 2 Weighted Arbiter

function PRIORITYACTIONSELECTION(A,α)
Input: A set of actions
Input: α set of priorities
Init: w as array [0, . . . , 0] of length |α|
for all ai, αi in A,α do

for all aj , wj in A,α do
if ai == aj then

w[i]← w[i] + αj

end if
end for

end for
return A[argmax(w)]

end function

4 Simulation
To carry out the experiments we implemented a lightweight
simulation setup of a 2D earth observation environment. The
main purpose of the simulation is to recreate the complexity
of mission planning in real life while being simple to con-
nect with any type of decision making algorithm. To achieve
this purpose the environment is implemented as an OpenAI
Gym Environment with normalized input and output.

The simulation achieves the complexity of mission plan-
ning by having characteristic earth observation constraints
such as limited memory, action windows, and a tunable un-
certainty level.

Figure 3 shows an example of the rendered simulation. On
the top the set of boxes are the different memory slots which
are in white if they are free, orange if there is a non-analyzed
picture and purple if the picture is analyzed. Just below is a
time bar that shows how much time is left in the execution of
the current action. To the left is the type of action currently
being executed where ”DN” is ”Do Nothing”, ”TP” is ”Take
a Picture”, ”AN” is ”Analyze” and, ”DP” is ”Dump a Pic-
ture”. Finally on the center of the image we see the 2D Earth
and the satellite, as well as the targets which are shown in in
orange and the ground stations which are shown in purple.

The simulation environment provides two different action
spaces:

• Simple or target blind action space: this action space
consists of four actions ”Take a Picture”, ”Analyze”,
”Dump a Picture” and ”Idle”. These actions do not spec-
ify the target, which is instead chosen depending on the
following rules:

1. When ”Take a Picture” is triggered a picture of the tar-
get currently below the satellite will be taken and if
there is free space in the memory it will be stored as
not analyzed.

2. When ”Analyze” action is triggered the latest non-
analyzed picture will be the one analyzed. This action
can be taken at any time and has an uncertain dura-
tion. There is a nonzero probability that the picture is
not analyzed correctly. Both temporal and failure un-
certainties can be adjusted as required.

3. When ”Dump a Picture” action is triggered the last pic-

Towards ensemble AI behaviours for satellite plan execution

3

Figure 2: Arbiter architecture schematic

ture in memory to be analyzed is dumped. As done with
the ”Analyze” action, the probability of success can be
adjusted.

• Advanced or Selective action space: In this case the ac-
tion space is expanded from the previous one by speci-
fying which target to take the picture or which picture to
be analyze or dump. This action gives the agent flexibil-
ity on what to do but also increases the complexity of the
planning problem.

The observation space consists of:
• the current angular position of the satellite,
• the current orbit count,
• all information about the current memory state (empty,

unanalyzed picture, analyzed picture)
• angular location of the targets and ground stations,
• whether the satellite is busy or not.

The simulation allows different scenarios to be created by
changing the number and size of the ground station and tar-
gets as well as the duration of each action. The simulation
was used in our experiments described in the next section.

5 Experimental setup
Simulations were run twice for each random seed, one with
the ensemble architecture controlling execution and once
with a single planner and executor. The single plan and ex-
ecution was a deterministic temporal planner (also used in
the voices). To compare approaches the environment was
increased in complexity in terms of number of targets, the
number of objectives per scientific team, and maximum
number of objectives.

The priority arbiter is used in all experiments. To see the
influence of the weight vector, two setups are tested: a fixed

setup for the whole mission, and changing the weight vector
every five orbit to prioritise the voice that has achieved the
fewest objectives so far. The latter setup is used to evaluate
the ability of the approach to balance between voices.

The selection of the number of voices is a key aspect of
the arbiter. For these experiments we will assume three dif-
ferent scientific teams have to use the same satellite. We
also assume that in case the memory becomes full, pictures
must be analyzed and dumped until half of the memory is
empty. This results in a total of four voices, three voices rep-
resenting scientific teams whose priority are set by α and one
emergency voice that will meet the memory requirement.

The memory-emptying voice is included to account for
the case that the other voices fill the memory and for some
reason do not wish any images to be dumped. Ideally this
kind of deadlock could be accounted for within a more so-
phisticated arbiter. Using the weighted and priority arbiters
the deadlcok is possible. Including a deadlock-resolving
voice is a simple solution that serves to illustrate the flex-
ibility of the ensemble approach. Hypothetically, reasoning
over the different plans of the voices should allow deadlocks
to be avoided without losing as much efficiency.

Each of the voices is instantiated as a temporal planner.
The planner generates an initial plan and only re-plans when
the last action is dispatched. The planner is not reactive -
meaning that the plan must be dispatched in full before new
objectives can be considered. As previously mentioned, us-
ing deterministic executors such as these is not idea, and will
harm the performance of the arbiter. However, they fulfill
the minimum requirements for a voice and so serve to make
a fair comparison against non-ensemble executor.

The single plan and execution agent used as a comparison
merges the objectives of all teams into a single goal, and
then attempts to plan and achieve the maximum number of
objectives across all teams. Note that if two voices have the

Towards ensemble AI behaviours for satellite plan execution

4

Figure 3: Rendered Simple Satellite Simulation example

same target as an objective, this will create only a single
objective in the merged problem.

Table 1 shows simulation parameters.

nº of orbits (norbit) 20
nº Ground Stations (ngs) 2

Size Ground Stations (sgs) 40
Angular Velocity (v) 0.6

Take Picture Duration (tp) 20 s
Analyze Duration (ta) 50 s
Dump Picture Duration 20 s

Table 1: Simulation parameters

6 Results
In figure 4, we compare the scalability of the ensemble ar-
chitecture to the one of a single planner. The comparison is
done by increasing the number of total targets and the num-
ber of objectives per voice. To better show the limits of the
environment a dotted red lines illustrates the ideal perfor-
mance if the environment was perfectly distributed so that
no time could be wasted.

The results show that the planner does not scale to larger
problem as it is not able to create plans for the higher com-
plexity problems. The merged problem provides better re-
sults at lower complexities as can be seen by the perfor-
mance of the planner matching the theoretical optimal. How-
ever, it provides no solutions to problems with more than
100 objectives. The ensemble architecture solves the scala-

Figure 4: Comparison between goals achieved and total
goals

bility problem by dividing the problem into lower complex-
ity ones. We can also see a limit performance of the arbiter
being of a logarithmic type with high variance depending on
the environment.

Figures 5 and 6 show how changing the weight vector in-
fluences the specific actions of each voice. The two scenar-
ios are a voice in which the priority is set at the beginning
of the mission (Figure 5) and the second scenario the prior-
ity changes every 5 orbits to prioritise the voice with fewest
goals achieved (Figure 6).

Towards ensemble AI behaviours for satellite plan execution

5

Figure 5: Percentage of goals achieved per voice, the red line
between voices represent the standard deviation of the dif-
ference between percentage between the 2 adjacent voices.
Mean while the blue line is the mean

In 5, the results of the fixed priority can be seen, in it
there is a clear trend that complies with the priority levels.
From figure 5 we can clearly see the priority level set at the
beginning of the simulation are follow as a mean, although
the error is high due to the lack purely reactive voices.

Meanwhile, figure 6 shows a better balance between the
two first voices. However, the third voice receives a much
higher overall reward than the other two on average. This is
likely due to the limited and fixed number of orbits favouring
a specific voice in the sequence, which could be verified in
future experiments.

7 Conclusion
In the paper we proposed an online architecture for au-
tonomous satellite decision making, by using ensemble AI.
The main goal of the architecture is to be able to modify the
behaviour if the satellite by changing a single parameter. We
showed that the arbiter was able to match and out-preform a
single planner and executor as complexity grew.

We showed that the behaviour of execution can be af-
fected by adjusting the priority of voices online. Coupled
with the ability to add additional simple voices to the sys-
tem, this provides a low-effort way to manipulate the desired
behaviour of the agent. Dynamic changing of priority can
also be used to switch between different ”off-the-shelf” ap-
proaches depending upon their observed performance (Yang
et al. 2020).

the arbiter architecture shows the advantage of been capa-
ble of using of the shelf algorithms for the different voices.
However, ideally these algorithms should be reactive to ac-
tions having unexpected outcomes, as their action might not
be the one selected by the arbiter. This type of constraint
greatly match the benefits of reinforcement learning (RL)
algorithms, which could highly increase the performance of
the architecture. Future work will investigate using a mix-
ture of rule-based and RL voices for robust execution.

Figure 6: Percentage of goals achieved per voice, the red line
between voices represent the standard deviation of the dif-
ference between percentage between the 2 adjacent voices.
Mean while the blue line is the mean

References
Anderson, D.; Rodgers, P.; Levine, J.; Guerrero-Romero, C.;
and Perez-Liebana, D. 2019. Ensemble decision systems for
general video game playing. IEEE Conference on Compu-
tatonal Intelligence and Games, CIG 2019-Augus. ISSN
23254289. doi:10.1109/CIG.2019.8848089.

Baker, B.; Akkaya, I.; Zhokhov, P.; Huizinga, J.; Tang, J.;
Ecoffet, A.; Houghton, B.; Sampedro, R.; and Clune, J.
2022. Video PreTraining (VPT): Learning to Act by Watch-
ing Unlabeled Online Videos URL http://arxiv.org/abs/2206.
11795.

Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.;
McGrew, B.; and Mordatch, I. 2019. Emergent Tool Use
From Multi-Agent Autocurricula URL http://arxiv.org/abs/
1909.07528.

Coruhlu, G.; Erdem, E.; and Patoglu, V. 2021. Explainable
Robotic Plan Execution Monitoring Under Partial Observ-
ability. IEEE Transactions on Robotics 1–21. ISSN 1552-
3098. doi:10.1109/tro.2021.3123840.

Gillette, A.; and George, A. 2022. Reusable Schedule
Design and Execution Framework for Autonomous Mis-
sion Management in Space. Journal of Aerospace Infor-
mation Systems 19(2): 154–165. ISSN 23273097. doi:
10.2514/1.I010990.

Hughes, K.; Rothstein-Dowden, A.; Bocchino, R.; Donner,
A.; Feather, M.; Smith, B.; Fesq, L.; Barker, B.; and Cam-
puzano, B. 2020. Mexec : an Onboard Integrated Planning
and Execution Approach (October).

Lima, O.; Cashmore, M.; Magazzeni, D.; Micheli, A.; and
Ventura, R. 2020. Robust Plan Execution with Unexpected
Observations URL http://arxiv.org/abs/2003.09401.

Rodgers, P.; Levine, J.; and Anderson, D. 2018. Ensemble
Decision Making in Real-Time Games. IEEE Conference on

Towards ensemble AI behaviours for satellite plan execution

6

Computatonal Intelligence and Games, CIG 2018-August.
ISSN 23254289. doi:10.1109/CIG.2018.8490401.
Saint-guillain, M.; Vaquero, T. S.; and Chien, S. A. 2021.
Lila : Optimal Dispatching in Probabilistic Temporal Net-
works using Monte Carlo Tree Search .
Wang, D.; Russino, J. A.; Basich, C.; and Chien, S. A. 2020.
Using Flexible Execution , Replanning , and Model Param-
eter Up- Dates To Address Environmental Uncertainty for a
Planetary .
Yang, H.; Liu, X. Y.; Zhong, S.; and Walid, A. 2020. Deep
reinforcement learning for automated stock trading: An en-
semble strategy. ICAIF 2020 - 1st ACM International Con-
ference on AI in Finance doi:10.1145/3383455.3422540.

Towards ensemble AI behaviours for satellite plan execution

7

	Towards Ensemble AI for Satellite Plan Execution
	Abstract
	1 Introduction
	2 RelatedWork
	3 Architecture
	4 Simulation
	5 Experimental setup
	6 Results
	7 Conclusion
	References

