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1 Introduction

The design of a Complex Engineered System (CEdS) is a multi-disciplinary
problem, and it requires the collaboration of a high number of experts with different
backgrounds. Also, particularly in the field of space engineering, the whole design
process lasts for many years. These reasons suggest that lack of knowledge,
conflicting opinions and subjective probability statements always heavily impact
the process.

By studying accidents that happened in the past in order to develop new
approaches for the risk reduction of CEdSs, it has been recognised [9] that
there exists a common pattern that usually bring the CEdS to fail with possible
catastrophic consequences. This pattern includes: production pressure that erodes
safety margins and exposes the system to risky scenarios, the habit of taking past
successes as a reason for confidence in future designs, fragmented problem solving
and also problems of communication within the organisation.

The aim of this paper is to propose a new system engineering approach for the
design of CEdSs that goes in the direction of solving the listed problems.

We use a graph representation to model the CEdS and the interaction of the
subsystems and components under uncertainty [3]. This approach allows to have
a holistic and coherent view of the entire system and design process as well as
simplifying the communications between different actors that are involved.

Traditional methods based on the estimation of margins and/or statistical
moments cannot be successful in modelling imprecision which is really influential
particularly in the early phases of the design process.
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The implementation of Imprecise Probability theories within the design method-
ologies represents a substantial step to solve the problem. Dempster–Shafer theory
of evidence is applied in this paper.

First all the Quantities of Interest (QoIs) are identified and based on them
the global indicators of performance f and functionality c are defined. For the
latter we are interested in particular in quantifying the resilience ρ. The evolution
of the system’s state (that quantifies the resilience) is modelled with the use of
Bifurcation Theory. It allows, indeed, to capture the continuous transitions between
fully functioning and degraded states as well as the occurrence of disruptions and
shocks that perturb the system. Such a model can also easily describe qualitative (or
topological) changes in the evolution of the system state due to the uncertainty.
The optimisation for resilience and the propagation of uncertainty within the
optimisation process reduce the possibility of underestimating the risk of the
possible scenarios.

The proposed resilience approach combines the concepts of robustness and
reliability [10]. A solution of the optimisation problem is robust if it minimises the
negative effect of uncertainty on the objective function f . Correspondingly, from an
engineering point of view, a system’s design is robust if the influence of uncertainty
on the performance function described by f is minimised. Reliability is instead a
quantity related to the constraint function c and the functionality that c quantifies,
and it measures the likelihood that the item will perform its intended function for a
specified time interval under stated conditions.

2 Evidence Theory as Uncertainty Framework

Theory of Evidence introduced by Dempster and Shafer is a generalisation of
probability theory. In the latter it is required to specify the probability space
(S,S, p). It is a triple with S the set that contains everything that could occur in
the particular universe under consideration, S a suitably restricted set of subsets of
S and p the function that defines probability for elements of S. Evidence Theory
is instead defined by (�,�,m). The frame of discernment � is the set of all the
mutually exclusive and collectively exhaustive elementary events (or hypothesis)
θi , i = 1, . . . , |�|:

� = {
θ1, θ2, . . . , θi , . . . , θ|�|

}
(1)

All the possible events (or hypotheses) could be overlapping or nested, but in
the frame of discernment only the finest division of them is considered. From the
frame of discernment, one can define the power set 2� = (�,∪) by considering all
possible combinations of the elements of �:
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� = 2� =
{
∅, {θ1} , . . . ,

{
θ|�|

}
, {θ1, θ2} , . . . , {θ1, θ2, . . . , θi} , . . . , {θ1, θ3} ,�

}

(2)

where the generic element ω = {θ1, . . . , θj } of � = 2� is a proposition that states
the truth of only one of the events θ1, . . . , θj without specifying which one.

The degree of belief, or evidence, is quantified by the bpa that assigns a value
m ∈ [0, 1] to each subset of �:

m : 2� → [0, 1] (3)

where the function m has to satisfy the following conditions:

m(ω) ≥ 0,∀ω ∈ � (4)

m(ω) = 0,∀ω /∈ � (5)

m(∅) = 0 (6)
∑

A∈2�

m(A) = 1 (7)

Each subset of the power set 2� with a non-zero bpa is called a Focal Element
(FE) and the pair 〈F,m〉, where F is the set of all FEs and m the corresponding
bpas, is called Body of Evidence.

The Theory of Evidence requires less restrictive statements about the likelihood
than the general probability theory. In particular it involves the definition of two
measures: Belief and Plausibility.

For a given model of the Quantity of Interest (QoI) f and the target set �

A = {x ∈ �|f (x) ∈ �}, (8)

belief and plausibility are defined as

Bel(A) =
∑

ωi⊆A

m(ωi) (9)

P l(A) =
∑

ωi

⋂
A�=∅

m(ωi) (10)

3 System Network Model

First, the CEdS is defined as a network where each node i ∈ [1, . . . , N ] represents
a specific subsystem or discipline.
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For the generic i-th node, we consider then the following measures. Among all
the specified requirements for the system under design, the most important one is
defined as the performance indicator fi :

fi

(
df

i ,df
i,c,u

f
i ,uf

i,c,ϕ
f
I i , t

) : Di × Ui × T ⊆ R
mi+ni+1 → R, (11)

while the remaining are included in the set of functionality indicators ci :

ci

(
dc

i ,d
c
i,c,u

c
i ,u

c
i,c,ϕ

c
I i , t

) : Di × Ui × T ⊆ R
mi+ni+1 → R

k (12)

In Eqs. (11) and (12) t ∈ T ⊂ R is the time, di and ui are the set of design and
uncertain variables used only within node i and di,c and ui,c are the set of variables
shared between node i and other nodes. For easiness in the notation, we will omit
the apex f and c, writing di ,di,c,ui ,ui,c,ϕI i having however in mind that the
couplings between nodes that define f in Eq. (11) and c in Eq. (12) are in general
different.

The global network indicators f and c finally arise from an emergent behaviour
of the complex network. Considering a network with N nodes and representing with
F and C two general indicators that are problem specific, it is:

f (d,u) = F
N
i=1

[
fi(di ,dc,i ,ui ,uc,i ,ϕI i , t)

]
(13)

c(d,u) = C
N
i=1

[
ci(di ,dc,i ,ui ,uc,i ,ϕI i , t)

]
(14)

Finally, based on the distinction between coupling (uc,i) and uncoupling (ui)
variables and on the uncertainty framework given in Sect. 2, it is possible to
distinguish the FEs that belong to a single node (which number is Nu

FE,i) and FEs
that influence more nodes (which number is Nc

FE,i).

4 Complexity Reduction of Uncertainty Quantification

Using the framework summarised in Sect. 2, it is then possible to quantify uncer-
tainty with the measures of belief and plausibility. Dempster Shafer Theory (DST)
has however a drawback due to the high computational cost for the reconstruction
of the curves. Indeed an optimisation (maximisation for belief and minimisation for
plausibility) is required for each FE because its worst and best case scenarios are
counted in Eqs. (9) and (10).

For example, for a problem with m uncertain variables, each defined over Nk

intervals, the complexity is:

Nopt = NFE =
m∏

k=1

Nk (15)
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The number of FEs and consequently of optimisations is then exponential
with the problem dimension. In the following, three methods are presented to
reduce the cost of uncertainty quantification when DST is used. They refer to the
evaluation of the Belief curve of the performance function f in Eq. (11). However
the generalisations to Plausibility and function c in Eq. (12) are immediate.

4.1 Network Decomposition

This method exploits the properties of the network representation illustrated in
Sect. 3. We further suppose that the global indicator f is a linear combination of
the nodes functions fi

f (d,u) =
N∑

i=1

fi(di ,dc,i ,ui ,uc,i ,ϕI i , t) (16)

where this assumptions holds true in many engineering problems.
The decomposition algorithm aims at decoupling the subsystems over the

uncertain variables in order to optimise only over a small subset of the FEs. This
procedure requires the following steps:

1. Solution of the worst case scenario problem maxu∈U f (u).
2. Maximisation over the coupled variables uc,i and computation of Belc,i(A).
3. Maximisation over the uncoupled variables ui .
4. Reconstruction of the approximation B̃el(A).

A detailed analysis of the approach can be found in [5]. The overall cost is

Nopt = Ns

mu∑

i=1

Nu
FE,i +

mc∑

i=1

Nc
FE,i (17)

where Ns is the number of samples taken from combination of points in all the
belief curves of the coupling variables Belc,i(A), Nu

FE,i is the number of FEs for
the uncoupled variables affecting only node i and Nc

FE,i is the number of FEs of the
coupling variables that are shared also by node i.

4.2 Tree-Based Exploration

In this approach the whole computation of Belief proceeds by building a tree that
has at its root the whole uncertainty space with the associated global worst case
optimisation solution, and at its distal leaves the whole set of FEs, each one with an
associated maximum of the quantity of interest. The heuristic that drives how the
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tree is built and explored is key to the rapid convergence to the correct Belief and
Plausibility values. The overall procedure follows these steps:

1. Solution of the worst case scenario problem f̄0 = max
u∈S0

0

f (u) where S0 := U ;

2. s-Decomposition of the uncertain space in S1
i ∪ S2

i ∪ S3
i . . . ∪ Ss

i following the
heuristic criterion;

3. Exploration of each subdivision Sk
i by the optimiser to find the worst case

scenario in that macro-FE maxu∈Sk
i
f (u).

Points 2. and 3. are repeated recursively, where i represents the iteration step, until
a predefined level of accuracy or computational cost is reached. Other details of the
algorithm can be found in [1].

4.3 Combined Method

A combination of the two proposed methods is finally possible in order to further
reduce the overall computational cost needed to evaluate the Belief curve.

We assume here that only a particular value of the Belief is required which
corresponds to a given threshold ν: Bel(f ≤ ν).

The approach starts applying the tree-based algorithm. The heuristic at point 2 in
Sect. 4.2 is based on a measure of variance of the maxima of f over the FEs. In this
way the uncertain space is subdivided in order to maximise the likelihood to obtain
some of the maxima below ν. Such subsets Sk

i are then no further decomposed
because their probability mass m contributes entirely to Bel(f ≤ ν). The process is
iterated until the variance drops below a specified threshold value.

At this point the set of coupling and uncoupling uncertain variables are updated
removing all the FEs already evaluated and all the FEs which contribution is known
to be included in the belief measure. The network decomposition of Sect. 4.1 is
finally applied.

The use of the tree-based algorithm during the first step of the method has two
major effects. First, it reduces the number of FEs that need to be explored within the
following step. Furthermore, this reduction has an important impact on the network
topology. The updated graph is likely to have a reduced number of links resulting in
a non-linear reduction of the number of operations needed to decompose the system.
In particular, if the updated network results are disconnected, the decomposition
approach can also be applied in parallel within each network component with a
further cost reduction.
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5 Optimisation Approach

A general formulation for the constraint optimisation under uncertainty is

mind∈D φ(d)

s.t. γj (d) ≤ 0
(18)

where φ(d) and γ (d) represent the general quantification of uncertainty on func-
tions f and c, respectively. In particular, for this quantification we choose to use
DST which translates Eq. (18) to the following:

maxd∈D Bel(f (d,u) ≤ νf )

s.t. Bel(c(d,u) ≤ νc) > 1 − ε
(19)

and we want to solve Eq. (19) for fixed νf , νc and ε.
The method presented in Sect. 4.3 is used for the approximation of Belief. To

further reduce the computational cost of the design process, an Efficient Global
Optimisation (EGO) approach is also applied. The interested reader can find more
information about EGO in [6].

An archive of design vectors Ad is first generated and for each d̂ ∈ Ad ,
Bel(f (d̂,u) ≤ νf ) and Bel(c(d̂,u) ≤ νc) are evaluated using the complexity
reduction technique presented in Sect. 4.3:

d̂ → Bel(f (d,u) ≤ νf )

d̂ → Bel(c(d,u) ≤ νc)
(20)

The acquired information is used to initialise the surrogate models Sf and Sc for
f and c, respectively.

The next two steps are then iterated until convergence.
A constraint maximisation over the design space D of the surrogates Sf and Sc

is performed until convergence:

maxd∈D Sf (d)

s.t. Sc(d) ≥ 1 − ε
(21)

The design vector d∗ solution of Eq. (21) is added to the archive Ad .
Bel(f (d∗,u) ≤ νf ) and Bel(c(d∗,u) ≤ νc) are evaluated and the surrogates
Sf and Sc are finally updated.

All the design solutions in the archive Ad are finally cross-checked with the
approach in Sect. 4.3 and the best solution is finally selected.
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6 Resilience Framework

In the optimisation approach described in Eq. (19), quantities f and c are general
indicators respectively for system performance and functionality. As previously
stated, we are interested in the global resilience of the CEdS. Resilience is a
functional indicator of the system and then it can be incorporated within c in
Eq. (19). With analogy to Eqs. (11)–(14), the state indicator of each i-th node
(subsystem) is defined by xi :

xi(di ,dc,i ,ui ,uc,i ,ϕI i , t) : Di × Ui ⊆ R
m+n → R (22)

which is the solution of the dynamical model of Ordinary Differential Equation
(ODE):

ẋi = χi(xi, βi) +
N∑

j=1

ax,ijψi(xi, xj , βij ) (23)

where ax,ij ∈ Ax with Ax the adjacency matrix, χ describes the self-dynamics, ψ
the coupled dynamics between nodes and

βi(di ,dc,i ,ui ,uc,i ) : Di × Ui ⊆ R
m+n → R

βij (di ,dc,i ,ui ,uc,i ) : Di × Ui ⊆ R
m+n → R

x0 = x(di ,dc,i ,ui ,uc,i)|t=t0 : Di × Ui ⊆ R
m+n → R.

(24)

In Eq. (23) Bifurcation Theory [2, 7] is used to proper model the state xi where
β is called the bifurcation parameter and is the responsible to the possible switch
of the node’s state to different dynamical regimes. Smooth transitions involve a
continuous change in the steady state of the system until the bifurcation value is
crossed, giving place to a second-order phase transition. Catastrophic transitions
involve a discontinuity of the steady state at the bifurcation value, giving place to
first-order phase transitions.

The resilience of node i is defined as the cumulative quantity:

ρi =
∫ te

t0

xidt (25)

ρ = R
N
i=1

[
ρi

]
(26)

where ρ = 1 indicates the system fully functioning and ρ = 0 the system with a
non-recoverable failure.

This description of resilience based on the dynamics of the states xi incorporates
the concept of reliability but it is also something more. Reliability is included
in the model because the global functionality given by the interactions between
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xi is considered. However the quantity ρ takes into consideration both the risk
of undesired scenarios due to uncertainty and also the recovery process after the
scenario happened. We consider the risk to be a combination of the system’s fragility
and vulnerability, the former representing the ability of the system to avoid different
uncertain scenario and the latter the loss quantification on the system state. Finally,
the use of bifurcation theory allows to model also a continuous recovery after the
loss that can bring to the same (lower or higher) state the system had before the
shock. A further novelty introduced is due to the use of imprecision related to the
resilience quantification. This translates to the use of the lower likelihood measure
due to the ignorance affecting the problem.

7 Application

The proposed method is applied to the design for resilience of an observational
cube-sat in Low Earth Orbit (LEO). The goal of the mission is the detection of
possible fires on the Earth within a belt centred at the latitude of 50 deg. The network
representation is in Fig. 2a. Each node has been populated with analytical models
that the reader can find in [4, 8].

The optimisation problem has been formulated as:

maxd∈D Bel(Mass(d,u) ≤ νf )

s.t. Bel(ρobdh(d,u, t) ≤ νc) > 0.8
(27)

The system’s performance is the overall mass f = Mass = ∑
Mi that is treated

as objective function in the optimisation problem. The system functionality is the
global network resilience ρ which model the state of the On Board Data Handling
(OBDH) node during the mission time (Fig. 1).

8 Results

The optimisation approach in Sect. 5 has been applied to the test case and results are
in Fig. 2. The memetic optimisation solver Multi–Population Adaptive Inflationary
Differential Evolution Algorithm (MP-AIDEA) has been used that shows to be
efficient and effective, on average, on a wide range of problems mixing different
characteristics. Its parameters have been fixed as it follows. The number of agents
for each population Npop and the maximum number of function evaluations for
each optimisation in the belief evaluation were set to be respectively Npop =
max[5, nD] and nbelieffeval,max = 500nU with nD and nU respectively the number

of design and uncertain variables while the whole process runs until convergence.
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Fig. 1 Representation of the spacecraft as a complex system. The two quantities of interest are the
overall mass M and the percent of coverage are PC for the payload

The dimension of the bubble for the global restart is δglobal = 0.1, the number of
populations is npop = 2 and the convergence threshold of Differential Evolution
(DE) is ρ = 0.25.

Figure 2a compares the effect of uncertainty on the system for two different
design vector solutions. The blue curve corresponds to the worst case optimum
while the red one to the evidence-based optimisation of Eq. (27). The former shows
a better worst case scenario, however, for the chosen threshold νf = 27.5 the latter
has a higher belief to satisfy the statement. Figure 2b refers instead to the resilience
of the solution. In Eq. (27) a threshold of 0.8 has been applied on the Belief on the
resilience. For such value of belief the system is indeed able to recover after possible
shocks due to uncertainty. However the worst case effect of the uncertainty is not
recoverable as shown by the red curve.
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Fig. 2 (a): Belief curves. The red one corresponds to the solution of min-max; the blue one to the
design solution of the evidence-based optimisation (b): global network resilience for the design
solution of the evidence-based optimisation. The blue curve corresponds to the threshold on the
belief νc = 0.8 while the red one corresponds to the worst case scenario on the uncertainty space

9 Conclusions

This paper presented a system engineering approach for the design optimisation of
complex engineered systems. Severe uncertainty, lack of knowledge and subjective
probability are important aspects to be considered during the design process. To
proper model this epistemic uncertainty, it is then suggested the use of Dempster–
Shafer Theory of Evidence. An approach based on Efficient Global Optimisation for
the evidence-based design is suggested where a surrogate model is generated and
updated during the optimisation in order to find the optimal design configuration.
Three methods are further described for the computational reduction of uncertainty
quantification with Evidence Theory.

A framework for the quantification of global network resilience as function of
the single nodes resilience is presented and finally integrated in the optimisation
algorithm.
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