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Abstract
Spiking neural networks (SNNs) have become an interesting alternative to conventional artificial
neural networks (ANN) thanks to their temporal processing capabilities and energy efficient
implementations in neuromorphic hardware. However, the challenges involved in training SNNs
have limited their performance in terms of accuracy and thus their applications. Improving
learning algorithms and neural architectures for a more accurate feature extraction is therefore one
of the current priorities in SNN research. In this paper we present a study on the key components
of modern spiking architectures. We design a spiking version of the successful residual network
architecture and provide an in-depth study on the possible implementations of spiking residual
connections. This study shows how, depending on the use case, the optimal residual connection
implementation may vary. Additionally, we empirically compare different techniques in image
classification datasets taken from the best performing networks. Our results provide a state of the
art guide to SNN design, which allows to make informed choices when trying to build the optimal
visual feature extractor. Finally, our network outperforms previous SNN architectures in CIFAR-10
(94.14%) and CIFAR-100 (74.65%) datasets and matches the state of the art in DVS-CIFAR10
(72.98%), with less parameters than the previous state of the art and without the need for
ANN–SNN conversion. Code available at: https://github.com/VicenteAlex/Spiking_ResNet.

1. Introduction

Artificial neural networks (ANNs) have achieved in recent years unprecedented performances in many com-
puter vision tasks. However, these artificial systems still cannot be compared to a real brain in terms of
robustness, energy consumption or generalization capabilities. Therefore, as an attempt to imitate more of
the valuable properties of the brain, artificial spiking neural networks (SNNs) have been proposed as an alter-
native to conventional ANNs. SNNs closely replicate the functioning of biological neurons, allowing for sparse
asynchronous computations and time-dependent neuronal functionality. The full potential of these proper-
ties is yet to be explored, but it has already been proved how substantial improvements in energy efficiency
can be obtained by implementing SNNs in neuromorphic hardware [1, 2], bringing efficiency gains of up to
100 times less compared to standard ANNs in CPU/GPU hardware [3]. Given the ever-increasing network size
and power demands of standard ANNs, such energy efficiency gains are of particular interest as they allow to
reduce size, weight, and power for energy efficiency operations [4].

However, training SNNs is a more challenging task than training regular non-spiking networks. Non-
spiking ANNs owe most of their success to the back-propagation (BP) of error algorithm [5], but in the case of
SNNs the spiking behaviour inside the neurons creates a non-differentiable function, hindering the application
of BP. Moreover, the time dependencies of the neuronal states add extra complexity to the credit assignment
calculations. These drawbacks result, in most cases, in SNNs having a lower final accuracy than regular ANNs.
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In order to overcome the aforementioned challenges, some approaches use conversion methods [6–8],
where they train non-spiking ANNs and then approximate their computations using an SNN. Compared to
directly training an SNN, these methods are not able to perform online learning, they lose temporal resolution,
and in most cases they have higher latency and energy consumption. This is why improving directly trained
SNNs is still a necessity.

Direct training can be performed through bio-plausible unsupervised methods such as spike-timing-
dependent plasticity, but when ground truth is available for the task to solve, supervised learning through
surrogate gradient BP [9] is the best performing method. In this work we focus on the latter.

In order to improve the feature extraction process of SNNs in visual tasks, in this paper we present a study
on the key components of modern spiking architectures and use the obtained conclusions to propose a novel
and highly optimized SNN. Our results prove how directly training SNNs can already outperform conversion
methods, allowing to exploit all the benefits of spiking computations without compromising accuracy. Addi-
tionally, the lessons learned from our experiments can also be valuable for those designing new SNN feature
extractors in the future.

Specifically, the contributions of the paper are as follows. First, it presents an in-depth study on the pos-
sible implementations of spiking residual connections which highlights their properties in terms of accuracy,
network activity, characteristics of their derivatives and implications of the computations in hardware require-
ments. This study introduces a novel residual connection for SNN which has been named the ‘voltage to
voltage’ connection and a revamped implementation of the ‘spikes to spikes’ connection.

Then, it provides empirical results demonstrating the effects of different network design choices on the
final accuracy. These include network size, batch normalization (BN) strategies, boosting methods, spike gen-
eration for frame-based datasets, hyper-parameter optimization and fine-tuning. When designing an SNN,
the conclusions drawn from these experiments allow to make optimal design choices maximizing the accuracy
of the system.

Finally, a new spiking network is defined which achieves higher accuracy than the previous state of the art
in CIFAR-10 and CIFAR-100, and matching it for DVS-CIFAR10 with many less parameters than previous
methods.

Additionally, a study on the compromise between latency and accuracy is presented. Through the experi-
ments performed in it we also obtain novel results demonstrating a relationship between the processing time
and the optimal leakage factor for a leaky integrate-and-fire (LIF) model.

2. Related work

As mentioned in the previous section, one limitation in implementing SNNs is the difficulty to train them.
Conventional gradient descent algorithms are not directly applicable given the intrinsic presence of non-
differentiable spiking functions, as a result, different workaround strategies have been proposed. These strate-
gies can be mainly categorized into two groups, ANN to SNN conversion methods and direct training methods.
In this section, we overview the state of the art of these two approaches.

2.1. Conversion methods
In order to overcome the challenges in SNN training and to obtain the most accurate SNN systems, many
works have adopted conversion approaches. These methods allow to bypass the training challenges of SNNs
by training a non-spiking ANN and then transforming it to spiking format. This transformation reconstructs
each of the neurons in the original network using spiking neurons, therefore the key challenge is to represent
continuous activation values using the binary outputs of spiking neurons.

Most of these techniques are based on rate-based conversion [6, 7, 10, 11], where the network is set up such
that the spiking frequency of the converted neuron is proportional to the activation value of the original one.
These methods can only convert ANNs using the rectified linear unit (ReLU) activation function.

In order to reduce the energy cost of these conversions, temporal-switchcoding [12] was proposed, where
the activation value is encoded in the latency of spiking rather than the frequency thus generating less spikes.
On the other hand, methods such as [13, 14] focus on reducing the conversion error without the use of a large
number of time-steps, which allows for competitive results without long simulation times.

Finally, ReLU networks can also be approximated using the method in [15], where a binary ANN is trained
in order to approximate the original in just one time-step. The reported results are less accurate than state of
the art SNN conversions, but they allow for a one step inference without temporal computations.

Alternatively, other approaches such as [8, 16] can be applied to any type of network. The first one manages
to do this by using circuits of neurons in order to approximate arbitrary functions. The second one does the
same by using FS-neurons, a parametric neuron model that can be optimized to approximate any function.
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Converted networks can be implemented in energy efficient neuromorphic hardware; however, forcing
the SNN to imitate non-spiking computations makes it lose some of its properties. A converted network can-
not perform online learning and, because it approximates dense activation maps, it is prone to lose sparsity.
Moreover, it has a lower temporal resolution, which is likely to cause under-performance when processing
neuromorphic data as proved by [17].

2.2. Direct training
Directly training the SNN without conversion allows one to exploit all its valuable properties; however, the
challenge becomes then to successfully train it given that gradient descent based methods cannot be applied
to non-differentiable spiking functions. The most common strategy in state of the art methods is the use of
surrogate gradients [18, 19], a method where the spiking function is used in the forward path, but when calcu-
lating its derivative in the backwards path, a continuous tractable function is used, which tries to approximate
the behaviour of the real derivative.

Another option is to use a version of the SNN model that is directly differentiable. Some examples can be
found in [9]. We can find models using soft non-linearities [20], probabilistic models [21] or latency-based
networks [22].

Alternatively, supervised learning can also be performed without the differentiation of the whole network.
Some examples use local approaches with algorithms such as [23], where the loss is computed locally in each
neuron, or by using three factor learning rules [24].

Depending on the needs of the system, the optimal learning method might change, but when talking about
final task accuracy, surrogate gradient BP is the best performing method so far. All the best SNN feature
extractors consistently use this method, but the BP implementations and the surrogate functions they use
vary between them.

Concerning the BP implementation, different variations can be found among the best performing net-
works. Some works such as [19] choose to simply unroll the network in time and use back-propagation through
time (BPTT). A slightly different implementation is found in [25], where the authors use a spike-based BP
algorithm which proposes a novel way of accounting for the leak factor of LIF neurons. Finally, there are also
BP approaches where the input spikes are convolved with spike response kernels like in [26], which allows for
convenient spike response implementations at the cost of saving more spike time-stamps in memory.

For the surrogate functions, there is no consensus either. We find triangle shape surrogates in [19], rectan-
gular shaped in [27], and arc-tangent shaped in [28, 29].

2.3. SNN architectures
Regarding the state of the art of SNN topologies, literature usually measures their feature extraction capabilities
by assessing their image classification accuracy in public datasets. In the present day, among directly trained
networks, the highest accuracies are reported for networks basing their topologies on VGG [30] and ResNet
[31] architectures.

In non-spiking deep learning, after the development of deep feed-forward networks such as VGG, the next
big improvement came with the addition of residual connections. As demonstrated in [31], residual connec-
tions allowed to successfully train much deeper architectures, giving rise to a more accurate and efficient family
of networks.

The reason for this improved performance is that residual connections help alleviate the problem of depth-
induced accuracy degradation. Without residual connections, when increasing the depth of the network, the
accuracy firstly saturates, but then it degrades rapidly. This is caused by the fact that extra layers increase the
complexity of the problem to optimize, therefore it can get to a point where the benefit of adding extra layers
does not compensate for the harm of increasing optimization difficulty.

The way residual networks solve this problem is by making the network easier to optimize. Given an input
x and the mapping function of a layer F(x), the output of a layer with a residual connection will be:

H(x) = F(x) + x. (1)

Then, the residual mapping F(x) = H(x) − x should become easier to optimize than the original
F(x) = H(x). This is because an identity mapping H(x) = x can be accomplished just by setting the weights in
the layer to zero (F(x) = 0), allowing the network to easily ignore unnecessary layers, and therefore not degrad-
ing the result. Alternatively, when the optimal solution is not an identity mapping it might still be closer to it
than to a zero mapping, making for a better initialization [31].

In order to port these benefits to SNN, Lee et al [25], Zheng et al [27] and Fang et al [29] implement the first
trainable spiking ResNets, managing to train deeper networks than VGGs and achieving competitive results.
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On the other hand [19, 28], implement VGG-like architectures which are shallower, but larger in number of
parameters. These non-residual feed-forward networks still outperform the aforementioned ResNets in many
datasets (see table 14 in section 5).

3. Methods

3.1. Spiking neuron model
In order to perform their computations, SNNs simulate the behaviour of biological neurons by means of math-
ematical models. In this work we use the LIF model [32]. Despite their simplicity, LIF neurons found great
success in many state of the art systems.

The LIF model can be formulated as the differential equation seen in equation (2), where U(t) is the mem-
brane potential, Urest the resting potential, τ is the time constant and I(t) is the input current. When the voltage
U(t) surpasses a set threshold Uth, the neuron emits a spike and the potential is reset by subtraction

τ
du

dt
= −(U(t) − Urest) + RI(t). (2)

In order to easily programme this behaviour in machine learning models, explicit iterative versions of this
differential equation are used. Let i be a post-synaptic neuron, ui,t is its membrane potential, oi,t its spiking
activation and λ the leak factor. The index j belongs to the pre-synaptic neuron and the weights wi, j dictate
the value of the synapses between neurons. Then, the iterative update of the neuron activation is calculated as
follows:

oi,t = g

⎛
⎝∑

j

(wijoj,t) + λ · ui,t−1

⎞
⎠ (3)

where g(x) is the thresholding function, which converts voltage to spikes:

g(x) =

{
1, if x � Uth

0, if x < Uth

. (4)

After spiking, a reset is performed by the subtraction u∗
i,t = ui,t − Uth, where u∗

i,t is the membrane potential
after resetting.

3.2. Spiking residual network
With the objective of building the most accurate SNN feature extractor, our starting point is to implement a
spiking residual network (S-ResNet).

The motivation to choose this architecture is that almost all the non-spiking state of the art ANNs make use
of residual connections in order to allow for the training of very deep networks. On the contrary, in the SNN
domain, the state of the art is still based in VGG-like architectures for datasets such as CIFAR-10, CIFAR-100
and DVS-CIFAR10. Therefore, we define a new S-ResNet that will allow to outperform the previous state of
the art and justify the use of residual connections also in the SNN domain.

3.2.1. Implementation of a spiking residual connection
In order to design our S-ResNet, the first step is to define the implementation of the spiking residual connec-
tion. The skip connection in a non-spiking network just sums the activation value of a previous layer to the
activation of the current one (equation (1)), but when using spiking neurons this sum can be performed in
several ways.

Given a multilayered feed-forward SNN of LIF neurons, the membrane state vector ul,t of a layer l at time
t is given by equation (5), where ol,t is the layer’s spiking activation and Wl the synaptic weight matrix. These
spiking activations are obtained by means of the spiking function g (equation (6))

ul,t = Wl−1ol−1,t + λ · ul,t−1 (5)

ol,t = g(ul,t). (6)

Then, the residual information coming from a previous layer at position l − n can be integrated to the
current layer l using one of the following strategies:

Spike output to membrane (S2M): the spiking output of a previous layer l − n feeds the membrane poten-
tial of the neurons in layer l. A set of synaptic weights W ′

l−n will be needed to define the amount of voltage
communicated by these spikes (equation (7)). These weights will typically be a non-learnable parameter, then
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Figure 1. The three possible residual connections in an SNN. In red: membrane to membrane connection. Purple: spike output
to spike output. Green: spike output to membrane. Note that the layers are displayed in one dimensional fashion for simplicity,
but it is equivalent to a three-dimensional convolutional map if the synapses are defined by a convolutional layer.

if W ′
l−n = Uth the residual connection will implement an identity mapping when Wl−1ol−1,t + λ · ul,t−1 = 0.

In any other case, the final activations are not guaranteed to be ol,t = ol−n,t

ol,t = g(Wl−1ol−1,t + λ · ul,t−1 + W ′
l−nol−n,t). (7)

Regarding its training through BP, the properties of the residual connection can be observed in the
network’s derivative. Consider a generic residual block where the residual input W ′

l−nol−n,t has n = 2
(equation (7)), skipping the intermediate layer l − 1, and where l − 1 has no residual input (equation (8))

ol−1,t = g(Wl−2ol−2,t + λ · ul−1,t−1). (8)

Then, deriving equation (7) with respect to ol−2,t, we get:

∂ol,t

∂ol−2,t
=

∂ol,t

∂ul,t

∂ul,t

∂ol−2,t
=

∂ol,t

∂ul,t

(
Wl−1

∂ol−1,t

∂ol−2,t
+ W ′

l−2

)
. (9)

Equation (9) shows how the residual connection adds an extra W ′
l−2

∂ol,t
∂ul,t

term to the gradient, a term which

is not influenced by the value of the learnable weights Wl−1, in contrast to Wl−1
∂ol−1,t
∂ol−2,t

. This is the reason why

this residual connection will alleviate the vanishing gradient problem even when Wl−1 is arbitrarily small. Still,

given that ∂ol,t
∂ul,t

will be the derivative of the spiking function, the skip connection defined by this implementation

will have its gradient scaled by the value of the surrogate function, which might be a concern depending on
the setup.

The authors in [29] argue that the surrogate derivative g′ of g(ul,t) will typically not implement a function
such that g′(W ′

l−nol−n,t) = 1 when ol−n,t = 1. Therefore, scaling the derivative of the residual stream by this
value could contribute to the vanishment or explosion of the gradient.

This kind of connection has previously been used in [25] with W ′
l−n = Uth = 1 and in [27] weighted

by their threshold-dependent BN (potentially compromising the identity mapping). The S2M connection is
represented in figure 1 as the green connection.

Spike output to spike output (S2S): the spiking output of a previous layer l − n is added to the spiking
output of layer l (equation (10)). If o′l,t = 0 this residual connection will successfully implement an identity
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mapping ol,t = ol−n,t

o′l,t = g(Wl−1ol−1,t + λ · ul,t−1)

ol,t = o′l,t + ol−n,t.
(10)

Additionally, this implementation avoids applying the thresholding function to the residual path. Therefore,
when using BP, the contribution of the residual connection will be unaltered by the value of the surrogate
function (equation (11))

∂ol,t

∂ol−2,t
=

∂o′l,t
∂ul,t

∂ul,t

∂ol−2,t
+

∂ol−2,t

∂ol−2,t
=

∂o′l,t
∂ul,t

Wl−1
∂ol−1,t

∂ol−2,t
+ 1. (11)

Regarding the information flow inside the SNN, this kind of connection has some implications that are
worth noticing. It is implemented as an addition between activation maps, which is a different operation than
adding voltages to a membrane and needs to be supported in the substrate implementing it (or else extra
synapses will be needed). Moreover, it allows for the generation of non-binary activation maps, as the sum
between activations could result in a value bigger than 1. In order to implement this, it will require to either
sum activation maps and communicate non-binary values in the spike activation (as some neuromorphic
hardware already supports [33]) or to avoid grouping spikes in one synapse by defining multiple individual
connections such that:

ol,t + (ol−n,t + ol−m,t) = ol,t + ol−n,t + ol−m,t. (12)

Finally, in network topologies such as our S-ResNet (that we will define in the following section), we can
find situations where the number of neurons d1 in o′l,t ∈ N

d1 is different than d2 in ol−n,t ∈ N
d2 . As proposed

in [31], we solve this by applying a 1 × 1 convolution f to ol−n,t such that f : Nd2 →N
d1 . This is relevant for

the S2S connection because, as seen in equation (13), by applying this convolution ol−n,t gets now multiplied
by the learnable W′′, which weights the activations transforming them into non-binary voltage values. The
implications of these non-binary spiking activations are no different than that of the multiple spikes, it can be
implemented as graded spikes in neuromorphic hardware or by defining extra synapses. The formulation for
the later can be seen in equation (14), where the contribution of o′l,t and ol−n,t to the membrane ul+1,t is split
as two different incoming connections

ol,t = o′l,t + W ′′
l−nol−n,t (13)

ul+1,t = Wlol,t + λ · ul+1,t−1

= Wlo
′
l,t + WlW

′′
l−nol−n,t + λ · ul+1,t−1. (14)

This kind of connection has been used in [29]. Its implementation is the same than the one in this work for
maps at the same resolution, but it differs in the downsample paths. Differently from our proposal, a spiking
neuron layer is added after the 1 × 1 convolution. This was avoided in this work in order to eliminate the effect
of the surrogate function in the derivatives of the residual path.

The S2S connection is represented in figure 1 as the purple arrow.
Voltage to voltage (V2V): the previous two implementations created a residual mapping in the activa-

tion map. This residual mapping can also be enforced at the membrane potential level if a V2V connection is
defined.

Let the spiking input to a layer l − n be Wl−n−1ol−n−1 plus a residual input rl−n,t. Then, in a V2V implemen-
tation, the input that feeds a layer l − n will also become the residual input to the layer l (equation (16)). Like
this, if Wl−1ol−1,t = 0 and ul,t−1 = ul−n,t−1 the residual will implement an identity mapping of the membrane
potentials such that ul,t = ul−n,t. This will also cause ol,t = ol−n,t if the thresholds of the two layers are the same

rl,t = Wl−n−1ol−n−1,t + rl−n,t (15)

ol,t = g(Wl−1ol−1,t + λ · ul,t−1 + rl,t). (16)

Regarding the derivative of the network, deriving with respect to ol−n−1,t in the same setup as before (n = 2)
we get:

∂ol,t

∂ol−3,t
=

∂ol,t

∂ul,t

∂ul,t

∂ol−3,t
=

∂ol,t

∂ul,t

(
Wl−1

∂ol−1,t

∂ol−3,t
+ Wl−3

)
. (17)

As it happened for the S2M, the derivative of the residual path will also depend on the surrogate function.
Still, in the context of a hierarchical network, compared to an S2M implementation, the surrogate derivative
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Table 1. Table defining the CNN architecture of the original ResNet proposed for the CIFAR
datasets. The variable n allows to control the depth of the network.

Output map size 32 × 32 16 × 16 8 × 8
#Layers 1 + 2n 2n 2n
#Filters 16 32 64

will have less influence on this residual path, as rl,t is a function of rl−n,t, which does not depend on ∂ol−n−1,t
∂ul−n−1,t

. In

the case of the S2M implementation the residual is rl,t = W ′
l−nol−n,t which fully depends on ∂ol−n,t

∂ul−n,t
adding an

additional spiking function into the residual path with each residual block.
Finally, notice that implementing the V2V connection will have the same effect in the information flow than

S2S. This is caused by the dependency of equation (15) on rl−n,t. In equation (18) we unravel this expression
in order to show how the voltage sent by the residual connection rl,t is just a sum of post-synaptic potentials
(PSPs) from previous layers Wl−i·n−1ol−i·n−1,t. Therefore, this can be implemented either by defining (l/n) − 1
extra connections per each rl,t or by summing the PSPs together and then communicating the voltage value
through graded spikes

rl,t =

(l/n)−1∑
i=1

Wl−i·n−1ol−i·n−1,t. (18)

The V2V connection is represented in figure 1 as the red connection.
From an implementation point of view, this analysis showed how an S2M connection can be accomplished

by a single conventional synapse while S2S and V2V require either to define multiple synapses or to perform a
special kind of computation. This computation requires to sum spiking activations together for the S2S con-
nection and to sum PSPs together in the case of V2V. Then the resulting value is transmitted to the membrane
of the target neuron. With the neuromorphic hardware available in the present day, this could be implemented
by an intermediate neuron which performs the sum and then transmits graded spikes.

In this work, we test the three approaches (section 4) analysing their spiking activity (figure 3) and final
accuracy (table 2). We choose S2S for the final implementation, as it provides the most accurate results. This is
consistent with the previous theoretical analysis, as S2S is the only solution avoiding spiking functions in the
residual path.

3.2.2. Network topology
With the residual connection implementation defined, the following choice to be made is the global network
architecture. In the non-spiking domain, it has already been proven how the original ResNet architecture [31]
outperforms feed-forward architectures without residuals; therefore, in order to test if the same principles
apply to SNN, the obvious choice is to reuse the same topology.

Depending on the resolution and complexity of the dataset to target, the optimal architecture can vary; that
is why in [31] the architecture used for the ImageNet dataset and for CIFAR-10 are different. CIFAR images
have a resolution of 32 × 32, while the images are 224 × 224 for ImageNet (after resizing), meaning that more
downsampling operations will be needed in the second one in order to have a comparable receptive field. As
we are targeting CIFAR-10, CIFAR-100 and DVS-CIFAR10, we will base our global network architecture on
the smaller ResNet proposed for these datasets. The architecture is defined in [31] in a table, such as table 1.

Regarding the BN layers in the architecture, regular BN can be used in an SNN, but improved performance
has been reported by using batch normalization through time (BNTT) [19], a time-varying BN that learns
different statistics for each time-step. This is consistent with the studies performed in non-spiking RNNs, where
works such as [34] argue that the statistics of different time-steps can differ significantly. For that reason, in
our final architecture we use BNTT. As further proof, table 5 in section 4 demonstrates the performance gains
of using BNTT compared to regular BN. A diagram of the final architecture can be found in figure 2.

To the best of our knowledge, this work is the first to implement the aforementioned architecture for
SNN training [25, 27] implement alternative topologies with extra fully connected layers and larger amounts
of channels in convolutional layers (see the difference in parameters in figure 4 in section 5). The authors
in [29] define their main network for ImageNet and reuse the original ResNet’s topology for this dataset
which is different from the CIFAR-10 one. Additionally, they propose a residual network targeting DVS-
CIFAR10. Compared to ours, this network is wider and shallower (resulting in a larger parameter count),
instead of strided convolution, it relies on max pooling for downsampling and it processes inputs of 128 × 128
resolution.

Apart from that, those three networks differ from ours in the normalization strategies, as they use time
averaged statistics where we use BNTT, and also in the residual connection implementation.
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Figure 2. Example architecture for an S-ResNet with n = 2 and 16 base filters. SF stands for spiking function.

3.2.3. Boosting strategies
Boosting techniques allow to combine the predictions of multiple weak classifiers to create a stronger one.
Previous work in SNNs [28] has already applied simple versions of this strategy by converting the classification
layer into a voting layer.

We tested the same approach as [28] and adapted the last fully-connected to have 10 × C neurons, where
C is the number of classes. Then an average pooling layer of kernel size 10 and stride 10 reduces the dimension
back to the number of classes C. This process computes the score of each class as the average of ten neuron
states, which can be seen as a voting scheme for ten different sub-networks.
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In section 4, tables 6 and 7 demonstrate the effects of adding the boosting layer. Some networks provided
improved performance when using this strategy, while others did not, so we keep this layer only in those cases
where it is beneficial. In our final results, only the CIFAR-10 network uses it.

3.3. Training framework
Our network is trained to perform image classification through supervised learning. In order to allow for this
classification, the last neuron layer is defined with no leak and cannot spike. Then the voltage accumulated in
the layer after T time-steps divided by T is considered the output value.

The output class scores are compared to the ground truth by means of a cross-entropy loss (equation (19)),
where C is the number of classes, ui,T the voltage of neuron i after the last time-step, and yi are the ground truth
labels:

L = −
C∑
i

yi log

(
eui,T∑C
j euj,T

)
. (19)

With the loss defined, the weight updates for the learning process are calculated through BPTT.
The final voltage at each layer is dependent of the contribution of all previous time-steps, therefore the

derivative of the loss function with respect to the network weights can be defined as the sum in equation (20),
for neurons in the output layer, and as the sum in equation (21) for neurons in the hidden layers

∂L

∂wi,j
=

T∑
t=1

∂L

∂ut,i

∂ut,i

∂pt,i

∂pt,i

∂wi,j
(20)

∂L

∂wi,j
=

T∑
t=1

∂L

∂ot,i

∂ot,i

∂ut,i

∂ut,i

∂pt,i

∂pt,i

∂wi,j
(21)

where pi,t is the current transmitted through the synapses after applying the weights:

pi,t =
∑

j

wi,joj,t . (22)

Then, taking into account the temporal dependency of the membrane potential along with its dependency on
input spikes, we obtain:

∂L

∂ut,i
=

∂L

∂ot,i

∂ot,i

∂ut,i
+

∂L

∂ut+1,i

∂ut+1,i

∂ut,i
. (23)

Notice that ∂ot,i
∂ut,i

requires to compute the derivative of the thresholding function, which is non-

differentiable. We solve this by using a triangle shaped surrogate gradient. As in [19], we set α = 0.3

∂ot,i

∂ut,i
= α max{0, 1 − |ut,i|}. (24)

In practice this can be easily implemented using auto-differentiation tools such as Pytorch [35].

3.4. Input preprocessing
Frame-based datasets: frame-based images need to be encoded into spikes in order for an SNN to process
them. Works like [19] use a Poisson spike generation process which transforms the image frame into a sequence
of spikes. Other works [27, 28] feed the unprocessed frame to the first SNN layer, making the pixel intensity
equivalent to a constant input voltage for the first neurons.

The latter allows for better results, as all of the information is presented at each time-step, while the former
will require many steps to represent all of the information and will add variability to the data. Still, we believe
using a spike generation process is a better representation of a scenario where the input data is spiking informa-
tion (such as the data coming from event cameras), so choosing one method or another should depend on the
objective of the simulation. Therefore, in this work we use both approaches in order to compare results. Our
best performing networks are trained without Poisson encoder in order to maximize accuracy. Additionally,
images are always normalized with respect to the statistics of the dataset.

Neuromorphic datasets: data produced by neuromorphic cameras represent the changes in the scene, and
these are often presented in event format. An event is a discrete package of information indicating location,
time-stamp and polarity (i.e. change in brightness).

We use the events to build frames containing spiking activations. Such frames have two channels, one for
positive polarity and one for negative, and they accumulate all events occurring in a time window. The size of
the time window is defined by the amount of time-steps we want to have for each sequence. We implement
this process using the SpikingJelly library [36].

9



Neuromorph. Comput. Eng. 2 (2022) 044001 A Vicente-Sola et al

Table 2. Image classification test performance on CIFAR-10 and CIFAR-100. S-Resnet38
stands for the architecture defined in section 3.2.2 with n = 6 and 32 base filters, trained for
70 epochs.

Residual connection CIFAR-10 accuracy (%) CIFAR-100 accuracy (%)

S-ResNet38 S2M 89.27 68.64
S-ResNet38 S2S 94.01 74.54
S-ResNet38 V2V 93.83 73.79

Data augmentation: frame-based datasets were augmented using random horizontal flips and random
crops.

3.5. Hyper-parameters
The performance of the proposed network depends on certain hyper-parameters, such as the leak factor of the
membrane, the number of time-steps or the learning rate for training. The optimal value of these parameters
varies depending on the architecture of the network, the training procedure and the task at hand. That is why
in order to properly asses how useful an architecture or a training method is, we first need to find its optimal
hyper-parameter setup.

We address this challenge by using BOHB [37], a hyper-parameter optimization technique that combines
Bayesian optimization (BO) and hyperband (HB), a multi-armed bandit strategy. Using this method, we opti-
mize the hyper-parameters for S-ResNet38 in the CIFAR-100 dataset. The learning rate for this training is
divided by 10 at 70%, 80% and 90% of the training process. The resulting hyper-parameters are also used for
the rest of networks and datasets, as with the hardware available we could not afford to run an individual search
per setup.

The best performing parameters are: leak = 0.874, time-steps = 50, learning rate = 0.0268 for a batch size
of 21.

Notice that the target of the search was only to optimize accuracy, therefore the number of time-steps
tends to be maximized as it has a monotonically non-decreasing relationship with the accuracy. Section 5.2
demonstrates the effects of reducing the number of time-steps.

4. Experiments

In order to maximize the accuracy of our method, we conducted a search for the key components in state of
the art architectures that allow for improved performance. In this section we present empirical results obtained
from testing these components in our networks. The results from these comparisons allow us to compose a
network which outscores previous approaches in multiple datasets.

Residual connection implementation: in section 3.2.1 three ways of implementing residual connections
in SNN were defined. We tested the performance of S-ResNet38 with each one of them (table 2). The highest
accuracy is obtained by the S2S connection. This result is consistent with our theoretical analysis, as the residual
path in S2S does not go through spiking functions, therefore it allows a better flow of the gradient during BP.
Still, the performance of the V2V implementation is very close. On the other hand, the S2M implementation
has a substantially lower accuracy. This decrease in accuracy could potentially be attenuated with further hyper-
parameter search and improved optimization, but we hypothesize that such setup is more difficult to find due
to the less convenient gradient properties of S2M.

Apart from that, by adding any of these three residual connections, the network is expected to propagate
more spikes to deeper layers. In order to analyse this effect, we averaged the spiking activity of the networks
across the test set of the CIFAR-100 dataset (figure 3). We also display the spiking activation obtained with a
non-residual network (spiking VGG11) for comparison.

Before starting the comparison, it is important to realise the effect of BNTT in the spiking activation. As
observed by [19], by allowing to learn a different learnable weight γ per time-step, the network is allowed to
scale the activation of each layer depending on the time-step. Because of this, it tends to localise the spiking
activity of each layer in a certain time range. The value of this weight for each network is visualized in the
second row of figure 3.

When looking at the S-ResNet networks, we observe how there are more layers active at each time-step,
as the spiking connections propagate activations to deeper layers bypassing the BNTT weighing. The effect
of BNTT is more noticeable in the S2M implementation and less in V2V and S2S. Still, all of them learn a
time-dependant weight distribution, indicating that, according to BP, that is the optimal solution for image
classification.

Apart from that, S-ResNet activity maps show a characteristic striped pattern. This is caused by how the
residual connections always skip one layer, connecting only even-numbered layers (as defined in [31]).
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Figure 3. Average activation maps of different networks in the CIFAR-100 test set (first row). The values represent the percentage
of neurons active for each convolutional layer at each time. The second row displays the average value (over channels) of the
learnable BNTT weight γ per each layer and time-step. Column (a) uses a non-residual VGG11 architecture, (b), (c) and (d) use
our S-ResNet38 with 32 base filters.

Table 3. Image classification test performance on CIFAR-10.
S-Resnet stands for the architecture defined in section 3.2.2
with 16 base filters, trained for 70 epochs.

Network CIFAR-10 accuracy (%)

S-ResNet20 90.89
S-ResNet38 91.97
S-ResNet44 91.96

Finally, the more abrupt changes in activation percentage localized in layer 14 and 26 are caused by the
resolution change, which changes the number of total neurons in the layer and makes the residual connection
go through a 1 × 1 convolution.

Overall the contribution of the residual connections behaves as expected. It propagates the spiking activa-
tions to deeper layers, which allows the BP algorithm to successfully train deeper architectures. Additionally,
we see how the spiking activity is higher for S2S implementations compared to V2V or S2M, as the ‘multiple
spikes’ behaviour favours sending higher amounts of voltage between layers. This can be relevant for applica-
tions which are sensible to the volume of spiking activity. In those tasks, the optimal choice for the residual
implementation can vary, as there is a compromise between accuracy and volume of spikes.

In cases where a lower network activation is needed V2V poses an efficient alternative to S2S with a very
similar accuracy. Regarding their implementation, S2S and V2V require to define extra synapses per residual
connection or to implement spike/PSP sum, therefore, S2M is the most suitable option for applications which
want to avoid this.

Network depth: the residual connections in S-ResNet allow to increase the depth of the network without
the concern of catastrophic accuracy degradation. As expected, this allows us to train very deep architectures.
Table 3 presents the classification accuracy in CIFAR-10 achieved by the S-ResNet with different depths and
the same training hyper-parameters. The results show how the accuracy grows from 20 to 38 layers, but stays
roughly the same from 38 to 44.

Given these results, for the rest of our experiments we choose S-Resnet38 as the default network. Still, the
optimal depth of the network changes depending on the dataset and task to solve, therefore we encourage those
researchers looking for optimal performance to tune this parameter for their specific task.

Spike generation for frame-based datasets: as mentioned in section 3.4, when working with frame-based
datasets, we tested two different methods for the spike encoding process. One consists in transforming the
intensity values into spikes by means of a Poisson spike generation process. The other consists in transforming
them by means of the first convolutional layer (i.e. feeding the raw image to the network).

As expected, the results in table 4 show how encoding by means of the first convolutional layer gives a better
result than generating spikes as a Poisson process. In order to maximize accuracy, for all of our experiments
we use the encoding by convolution approach.

BN strategies: we compare performances using time-dependent BN statistics versus time averaged statis-
tics. Table 5 shows how BNTT outperforms regular BN for the same network.
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Table 4. Image classification test performance on CIFAR-100. Except for the
spike generation process, both architectures and training procedures are
identical. Trained for 100 epochs.

Network CIFAR-100 accuracy (%)

S-ResNet38 Poisson spike generation 64.96
S-ResNet38 raw image 69.03

Table 5. Image classification test performance on CIFAR-100. Except for the
BN module, both architectures and training procedures are identical.
S-ResNet stands for the architecture defined in section 3.2.2 with n = 6 and 32
base filters. Trained for 70 epochs.

Network CIFAR-100 accuracy (%)

S-ResNet38 BNTT 74.54
S-ResNet38 BN time averaged 70.82

Table 6. Image classification test performance on CIFAR-100. S-Resnet38 stands for the architecture defined
in section 3.2.2 with n = 6 and 16 base filters. Wider architectures use 32 base filters and ‘boosting’ indicates
the use of a boosting layer (section 3.2.3). Wider architectures trained for 70 epochs, regular architectures
trained for 200 epochs.

Network Parameters CIFAR-100 accuracy (%)

S-ResNet38 639 760 68.71
S-ResNet38 + boosting 697 360 64.60
S-ResNet38 wider 2399 776 74.46
S-ResNet38 wider + boosting 2514 976 73.21

Table 7. Image classification test performance on CIFAR-10. S-Resnet38 stands for the architecture defined in
section 3.2.2 with n = 6 and 16 base filters. Wider architectures use 32 base filters and ‘boosting’ indicates the
use of a boosting layer (section 3.2.3). Wider architectures trained for 70 epochs, regular architectures trained
for 200 epochs.

Network Parameters CIFAR-10 accuracy (%)

S-ResNet38 634 000 91.97
S-ResNet38 + boosting 639 760 92.00
S-ResNet38 wider 2388 256 92.66
S-ResNet38 wider + boosting 2399 776 93.77

Table 8. Image classification test performance on CIFAR-100. Except for the
learnable leak factor, both architectures and training procedures are identical.
Trained for 200 epochs.

Network CIFAR-100 accuracy (%)

S-ResNet38 LIF 68.71
S-ResNet38 PLIF 64.93

Boosting layer: as introduced in section 3.2.3, a simple boosting layer can improve the accuracy of the
system in some cases. Tables 6 and 7 show the effect of this component in the accuracy of our networks. In the
CIFAR-10 datasets the accuracy is improved by using this technique, while in the CIFAR-100 one, where we
have more classes, increasing the size of the last fully connected in order to perform boosting ends up being
detrimental.

Parametric leaky integrate-and-fire (PLIF): the authors in [28] propose to learn the leak coefficient of the
LIF neurons directly through BP as another parameter of the network. By doing this they can also afford to
learn a different leak value for each layer. They call this method the PLIF neuron. Table 8 shows our results after
training S-ResNet38 with PLIF and with a single leak coefficient learned through hyper-parameter search.

We do not achieve our best results using the PLIF neuron; still, we believe this strategy is a very efficient way
of finding this hyper-parameter. For this reason, we test it again for the search of a shared leak value instead of
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Table 9. Optimal leak coefficient for ResNet38 in CIFAR-100 obtained
through two different methods (a single coefficient shared by all layers).
‘Hyper-parameter search’ uses BOHB algorithm to optimize the parameter.
The value for this method corresponds to the mean among the six best
performing configurations found with its corresponding standard deviation in
parenthesis. ‘Learned through PLIF’ learns the value by BP during training,
the value corresponds to the result after 70 epochs of training.

Method Leak coefficient

Hyper-parameter search 0.889 (±0.003)
Learned through PLIF 0.986

Table 10. Image classification test performance on CIFAR-100. In
‘S-ResNet38 wider + boost single PLIF’ one single leak value is learned for all
layers. Except for the learnable leak factor, both architectures and training
procedures are identical. Trained for 70 epochs.

Network CIFAR-100 accuracy (%)

S-ResNet38 wider + boost LIF 73.21
S-ResNet38 wider + boost single PLIF 72.44

Table 11. Image classification test performance on DVS CIFAR-10. Pre-train column indicates if the network
was trained from scratch or pre-trained with a certain dataset. S-Resnet38 stands for the architecture defined
in section 3.2.2 with n = 6 and 16 base filters. Wider architectures use 32 base filters and ‘boosting’ indicates
the use of a boosting layer (section 3.2.3). Trained for 70 epochs with learning rate reduction at 50%, 70% and
90% of the training process.

Network Pre-train DVS CIFAR-10 acc (%)

S-ResNet38 No 63.3
S-ResNet38 CIFAR-100 70.4
S-ResNet38 wider + boosting No 65.5
S-ResNet38 wider + boosting CIFAR-100 69.8

Table 12. Image classification test performance on CIFAR-10. Pre-train column indicates if the network was
trained from scratch or pre-trained with a certain dataset. S-Resnet38 stands for the architecture defined in
section 3.2.2 with n = 6 and 16 base filters. Wider architectures use 32 base filters and ‘boosting’ indicates the
use of a boosting layer (section 3.2.3). S-Resnet38 trained for 200 epochs from scratch and for 100 when
fine-tuned. Wider architectures trained for 70 epochs.

Network Pre-train CIFAR-10 acc (%)

S-ResNet38 No 91.97
S-ResNet38 CIFAR-100 92.44
S-ResNet38 wider + boosting No 93.77
S-ResNet38 wider + boosting CIFAR-100 93.59

calculating a different one per layer. Table 9 shows the difference between the leak value found through hyper-
parameter search and the one found by BP. It is interesting to see how the two values differ by a considerable
amount, having the one found by BP a slower leakage than the one found through the BOHB method.

Still, both values perform well when the network adapts its weights to work with them. The performance
comparison between them can be found in table 10, where we compare our network trained with the BOHB
optimized value to an identical network which learned the shared leak value through PLIF.

Extra training data: in the deep learning domain, most state of the art performances in computer vision
are achieved by means of fine tuning. This strategy consists in taking a network that has already been trained
in a different dataset and then training it further for the task at hand. In the visual domain this strategy works
well, as visual data has many transferable features.

We test this strategy by pre-training our networks with CIFAR-100 and then fine-tunning for DVS-
CIFAR10 and CIFAR-10. The results are presented in tables 11 and 12. We obtain higher accuracy results in
all cases but for the larger S-ResNet in CIFAR-10. Moreover, these trainings converge faster, making it a great
solution for any further work building on top of these feature extractors. In our public code, users can find our
pre-trained weights so that they can perform fine-tunning in any future system building from this one.
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Table 13. Image classification test performance on DVS-CIFAR10. S-Resnet stands for the architecture
defined in section 3.2.2 with 32 base filters, trained for 70 epochs and with CIFAR100 pre-training.

Network Resolution CIFAR-10 accuracy (%)

S-ResNet38 32 × 32 71.80
S-ResNet38 c32k3s2 64 × 64 72.98
S-ResNet38 c32k5s2 MPk2s2 128 × 128 72.51

Table 14. Image classification validation performance on CIFAR-10, CIFAR-100 and DVS-CIFAR10. Our S-Resnet38 in CIFAR-10 and
CIFAR-100 stands for the wider version of the architecture defined in section 3.2.2 with n = 6, 32 base filters, and boosting layer. In
DVS-CIFAR10 we use the 16 filters version without boosting and with the pre-training step. We refer to the residual network in [27] as
S-ResNet’, as it follows a different architecture than our S-ResNet.

Network Method Dataset Accuracy (%)

Kim [19] S-VGG9 Spiking BP CIFAR-10 90.05
Lee [25] residual SNN (11) Spiking BP CIFAR-10 90.95
Zheng [27] S-ResNet’19 Spiking BP CIFAR-10 93.15
Fang [28] CifarNet Spiking BP CIFAR-10 93.50
Wu [14] VGG-11 SNN conversion CIFAR-10 91.24
Sengupta [39] VGG-16 SNN conversion CIFAR-10 91.55
Stöckl [16] ResNet-50 SNN conversion CIFAR-10 92.42
Deng [13] ResNet-20 SNN conversion CIFAR-10 93.58
Han [12] VGG16 SNN conversion CIFAR-10 93.63
OursS − ResNet38 Spiking BP CIFAR-10 94.14
Kim [19] S-VGG9 Spiking BP CIFAR-100 66.6
Han [12] VGG16 SNN conversion CIFAR-100 70.97
Deng [13] VGG-16 SNN conversion CIFAR-100 72.34
OursS − ResNet38 Spiking BP CIFAR-100 74.65
Kim [19] S-VGG9 Spiking BP DVS-CIFAR10 63.2
Zheng [27] S-ResNet’19 Spiking BP DVS-CIFAR10 67.8
Fang [29] wide-7B-net Spiking BP DVS-CIFAR10 74.4
Fang [28] CifarDVSNet Spiking BP DVS-CIFAR10 74.8
Ours S-ResNet38 Spiking BP DVS-CIFAR10 72.98

DVS-CIFAR10 image resolution: the event streams found in the DVS-CIFAR10 dataset were generated
by recording 10 000 images from the original CIFAR10 dataset with a DVS camera while applying a repeated
closed-loop smooth movement [38]. Despite the resolution of CIFAR-10 being 32 × 32, the DVS camera
resolution was 128 × 128 and therefore the resulting event maps have also a 128 × 128 resolution. As our
S-ResNet architecture is optimized for inputs of size 32 × 32, in our previous experiments we downsampled
the DVS-CIFAR10 dataset to that resolution.

In most datasets, downsampling the input causes information loss and therefore accuracy degradation. In
order to test if this applies to the unique case of DVS-CIFAR10, we tested the performance using 64 × 64 and
128 × 128 resolution as input. We adapt the architecture of the network for the new input sizes by adding, in
the case of 64 × 64 a stride = 2 in the first convolution (c32k3s2), and in the case of 128 × 128 a stride = 2
and kernel = 5 × 5 in the first convolution (c32k5s2) followed by a max pooling of stride = 2 and kernel = 2
(MPk2s2).

Table 13 presents the test results with the three resolutions. It can be seen how the best performance is
obtained when using a 64 × 64. We do not obtain any improvement by using the full 128 × 128 resolution.
Our best architecture for full resolution uses a bigger kernel and max pooling, similarly to how [31] handles
the bigger ImageNet frames. We hypothesize that this setup does not bring improved performance because
the down-scaled 64 × 64 events already contain the necessary information and therefore the bigger 128 × 128
network just brings unnecessary complexity.

5. Results

5.1. State of the art comparison
In this section we compare our final results to the current state of the art for image classification in the
CIFAR-10, CIFAR-100 and DVS-CIFAR10 datasets.

As noted in [28], most previous works train on the training set, evaluate the test set at each step, and then
report the highest test accuracy obtained. We consider this approach to be reporting validation accuracy rather
than test. In our setup, we evaluate the test set after all the training epochs, without using its value for tuning
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Table 15. Image classification performance on CIFAR-10 comparing the ANN version of ResNet to our
S-ResNet. All architectures trained for 70 epochs and the same hyper-parameters. S-Resnet38 stands for the
architecture defined in section 3.2.2 with n = 6 and 16 base filters. Wider architectures use 32 base filters.

Network Method CIFAR-10 accuracy (%)

ResNet38 ANN 92.33
ResNet38 wider ANN 93.56
S-ResNet38 SNN 91.97
S-ResNet38 wider SNN 92.66

Figure 4. CIFAR-10 accuracy versus number of parameters. We compare our network to the best performing trainable SNNs and
the other spiking ResNets. ‘S-ResNet38_boost’ uses the wider architecture with 32 base filters. The number of parameters for
other works was counted using their publicly available code.

Figure 5. CIFAR-100 accuracy versus number of parameters. We compare our network to the best performing trainable SNN in
this dataset. The two results for S-ResNet38 correspond to the same network with 16 or 32 base filters (where 32 base filters has
more parameters than 16). The number of parameters for other works was counted using their publicly available code.

the training. We also evaluate validation accuracy in the same manner than the previous methods in order to
make a fair comparison.

The developed S-ResNet outperforms all previous SNN methods in classification accuracy for the CIFAR-
10 and CIFAR-100 datasets (table 14). In the DVS-CIFAR10 dataset, we find that the validation accuracy for
the best performing network outperforms ours, but when measuring test score, ours is superior.

Before our work, in the CIFAR-10 and CIFAR-100 datasets, the most accurate network was a conver-
sion method. These new results prove how directly training an SNN can perform better without the need
of imitating non-spiking computations.

Moreover, in table 15 we compare the performance of our S-ResNet to its non-spiking ANN version. We
compare the version with 16 and 32 base filters without boosting. We can see how the performance on the
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Figure 6. DVS CIFAR-10 accuracy versus number of parameters. We compare our network to the best performing trainable
SNNs and the other spiking ResNets. The number of parameters for other works was counted using their publicly available code.
The ‘Val’ prefix stands for validation accuracy while ‘Test’ stands for testing accuracy.

Table 16. Influence of the number of time-steps in the validation accuracy. Results of the evaluation of the
best performing S-ResNet38 with boosting. Training time-steps specifies the number of steps used during
training, inference time-steps the steps used for inference. If the inference number is smaller than the training
one, early stopping is applied and the last N time-steps (and learned BNTT layers) are not used. For
comparison, the training is reproduced also with 20 time-steps. Clarification: the architecture is the same but
the results for CIFAR-100 use the weights trained in CIFAR-100 and the CIFAR-10 results use the weights
trained in CIFAR-10.

Inference t-steps Training t-steps CIFAR-100 acc (%) CIFAR-10 acc (%)

50 50 73.40 94.10
40 50 73.14 93.96
30 50 71.75 93.61
20 50 65.78 91.93
20 20 67.70 91.28
10 50 15.15 63.86
10 20 62.28 90.45

Table 17. CIFAR-10 validation accuracy for inferences of 20 time-steps. The first network was trained with 50
time-steps in training time, the others were trained with 20 time-steps. The first two networks use the leak
value learned through hyper-parameter optimization done for the 50-step network. The third one optimizes
the leak value during its training through PLIF neurons.

Leak factor Inference t-steps Training t-steps CIFAR-10 acc (%)

0.874 20 50 91.93
0.874 20 20 91.28
0.995 20 20 92.8

trained SNN is not far from its non-spiking counterpart, demonstrating how improvements in SNN training
can push these technologies to comparable levels with conventional deep learning.

Comparing to the previous trainable SNN architectures, our network uses many less parameters.
Figures 4–6 show a map of the accuracy versus the number of parameters. The main cause for the differ-
ence in parameters is that our network has a smaller number of channels in convolutional layers and only a
single fully-connected layer. Then, even when our network is deeper than the others, it is actually lighter in
terms of synaptic connections.

5.2. The latency–accuracy compromise
Apart from raw accuracy, the efficiency of algorithms is a major factor when deploying systems in the real
world. For image classification in SNN, the number of time-steps used for prediction regulates a trade-off
between accuracy and time or volume of computations.

In order to elucidate the effect of this trade-off in our system, in table 16 we present the accuracy of S-
ResNet38 with different numbers of time-steps. Starting from our best network trained with 50 time-steps, we
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test how the accuracy degrades when dropping the last 10/20/30/40 steps. Additionally, we compare this to the
result obtained by directly training with less time-steps.

The results show how for CIFAR-100, the network trained with 20 steps performs better than dropping
the last 30 steps of a 50-step network. Still this same experiment in the CIFAR-10 dataset shows the opposite
results by a close margin, indicating that the 50-step network had a more complete training.

At ten steps, the degrading of the 50-step network becomes more obvious. Interestingly the network trained
with 20 time-steps does not degrade as much, as it is only losing half of its computations and therefore still
managing to extract the core visual features.

Finally, we hypothesise that the optimal leakage coefficient for the neurons might be correlated to the
number of time-steps the network is ran for. Given that the leak factor that we use was obtained through
the hyper-parameter search process, and given that this process prioritized large amounts of time-steps, we
believe the optimal leak factor for 20-step inferences could be different from the one we are using. We empir-
ically test this by training the network again with PLIF neurons, a process that allows us to optimize the leak
value in a single training run. The results, as seen in table 17, prove how we obtain a better performance when
the leak coefficient is optimized for the number of inference steps, confirming our hypothesis.

From this study we learn how the optimal solution is to perform training with the same number of time-
steps that we want to target at inference time and to optimize hyper-parameters such as the leak factor for this
same objective. Still, our SNNs can withstand the effect of early stopping, retaining most of their accuracy even
when big percentages of their computation steps are dropped. This allows to provide early estimates in time
sensible tasks or to reduce computational cost.

6. Conclusions

In this paper we presented a new SNN architecture which outperforms the previous state of the art in different
image classification datasets. This system is the product of an in-depth study on spiking residual connections
and design choices based on the empirical results from our experiments. These experiments demonstrate the
effects of multiple design choices in the final performance. On top of that, the analysis performed on residual
connections sheds new light on the effects of these connections in terms of network activity and hardware
requirements. The lessons learned from these studies also become a guide for SNN design, as they allow to
make informed choices when building a new SNN feature extractor.

The results of this work demonstrate how SNNs do not need to use conversion methods in order to maxi-
mize their accuracy. Additionally, they contribute to pushing their performance closer to that of non-spiking
deep learning. From here, we hope that new applications can benefit from increased accuracy by fine tuning
our networks and more experiments can follow in order to keep pushing the SNN state of the art.
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[34] Cooijmans T, Ballas N, Laurent C, Gülc‚ehre Ç and Courville A 2016 Recurrent batch normalization (arXiv:1603.09025)
[35] Adam P et al 2019 Pytorch: an imperative style, high-performance deep learning library Advances in Neural Information Processing

Systems vol 32 pp 8026–37
[36] Fang W, Chen Y, Ding J, Chen D, Yu Z, Zhou H, Tian Y et al 2020 SpikingJelly https://github.com/fangwei123456/spikingjelly
[37] Falkner S, Klein A and Hutter F 2018 Bohb: robust and efficient hyperparameter optimization at scale Int. Conf. Machine Learning

PMLR pp 1437–46
[38] Li H, Liu H, Ji X, Li G and Shi L 2017 CIFAR10-DVS: an event-stream dataset for object classification Front. Neurosci. 11 309
[39] Sengupta A, Ye Y, Wang R, Liu C and Roy K 2019 Going deeper in spiking neural networks: VGG and residual architectures Front.

Neurosci. 13 95
[40] Vicente-Sola Alex (2022) Pretrained models - Keys to Accurate Feature Extraction Using Residual Spiking Neural Networks

https://doi.org/10.6084/m9.figshare.20712535.v2

18

https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/jproc.2021.3067593
https://arxiv.org/abs/2007.03051
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.3389/fnins.2020.00439
https://doi.org/10.3389/fnins.2020.00439
https://doi.org/10.3389/fnins.2020.00439
https://doi.org/10.3389/fnins.2020.00439
https://arxiv.org/abs/2001.01682
https://doi.org/10.1109/msp.2019.2931595
https://doi.org/10.1109/msp.2019.2931595
https://doi.org/10.1109/msp.2019.2931595
https://doi.org/10.1109/msp.2019.2931595
https://doi.org/10.1109/tcds.2020.2971655
https://doi.org/10.1109/tcds.2020.2971655
https://doi.org/10.1109/tcds.2020.2971655
https://doi.org/10.1109/tcds.2020.2971655
https://doi.org/10.1038/s42256-018-0015-y
https://doi.org/10.1038/s42256-018-0015-y
https://doi.org/10.1038/s42256-018-0015-y
https://doi.org/10.1038/s42256-018-0015-y
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.1038/s42256-021-00311-4
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2021.773954
https://doi.org/10.3389/fnins.2021.773954
https://doi.org/10.1162/neco_a_01080
https://doi.org/10.1162/neco_a_01080
https://doi.org/10.1162/neco_a_01080
https://doi.org/10.1162/neco_a_01080
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1016/j.conb.2017.08.020
https://doi.org/10.1016/j.conb.2017.08.020
https://doi.org/10.1016/j.conb.2017.08.020
https://doi.org/10.1016/j.conb.2017.08.020
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.1016/s0361-9230(99)00161-6
https://doi.org/10.1016/s0361-9230(99)00161-6
https://doi.org/10.1016/s0361-9230(99)00161-6
https://doi.org/10.1016/s0361-9230(99)00161-6
https://arxiv.org/abs/1603.09025
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.6084/m9.figshare.20712535.v2

	Keys to accurate feature extraction using residual spiking neural networks
	1.  Introduction
	2.  Related work
	2.1.  Conversion methods
	2.2.  Direct training
	2.3.  SNN architectures

	3.  Methods
	3.1.  Spiking neuron model
	3.2.  Spiking residual network
	3.2.1.  Implementation of a spiking residual connection
	3.2.2.  Network topology
	3.2.3.  Boosting strategies

	3.3.  Training framework
	3.4.  Input preprocessing
	3.5.  Hyper-parameters

	4.  Experiments
	5.  Results
	5.1.  State of the art comparison
	5.2.  The latency–accuracy compromise
	5.2.  The latency–accuracy compromise

	6.  Conclusions
	Acknowledgments
	Data availability statement
	ORCID iDs
	References




