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ABSTRACT 
Metabolic reprogramming and genomic instability are key hallmarks of cancer, the combined 
analysis of which has gained recent popularity. Given the emerging evidence indicating the 
role of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, 
it is timely to fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report 
the biomolecular response of breast cancer cell lines with DNA damage repair defects to 
olaparib exposure. 
Following evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed DNA 
double strand break foci and evaluated changes in cellular metabolism at various olaparib 
treatment doses using untargeted mass spectrometry-based metabolomics analysis. 
Following identification of altered features, we performed pathway enrichment analysis to 
measure key metabolic changes occurring in response to olaparib treatment. 
We show a cell-line dependent response to olaparib exposure, and an increased susceptibility 
to DNA damage foci accumulation in triple-negative breast cancer cell lines. Metabolic 
changes in response to olaparib treatment were cell-line and dose- dependent, where we 
predominantly observed metabolic reprogramming of glutamine-derived amino acids and 
lipids metabolism. 
Our work demonstrates the effectiveness of combining molecular biology and metabolomics 
studies for the comprehensive characterisation of cell lines with different genetic profiles. 
Follow-on studies are needed to map the baseline metabolism of breast cancer cells and their 
unique response to drug treatment. Fused with genomic and transcriptomics data, such 
readout can be used to identify key oncometabolites and inform the rationale for the design of 
novel drugs or chemotherapy combinations. 
 
KEYWORDS: Breast cancer, triple-negative, oncometabolites, DNA damage, precision 
medicine, metabolic reprogramming 
 
INTRODUCTION 
 
In a bid to develop new therapies against various cancer types, genomic instability, its 
underpinning mechanisms and contribution to tumorigenesis have been extensively 
investigated over the past few decades. Genomic instability, a well-known contributor to 
cancer, presents a therapeutic vulnerability that can be targeted in the development of novel 
chemotherapy agents (1). 
 
To maintain their genomic integrity, cells are equipped with a range of DNA damage repair 
(DDR) pathways and responses to counteract DNA lesions formed in response to endogenous 
and exogenous insults (2). Hereditary mutations in these pathways have been correlated with 
increased cancer susceptibility, such that defects in homologous recombination contribute to 
approximately 10% of all breast cancers. These defects in DDR machinery result in the loss 
of function for genes implicated in DNA repair (i.e. breast cancer susceptibility gene 1/2- 
BRCA1/BRCA2) or dysregulation of cell cycle phases (3-5). While these genetic alterations 
increase the susceptibility to oncogenesis- they serve as therapeutic vulnerabilities- such that 
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in the presence of a defective DNA repair pathway the inhibition of an alternate DDR 
mechanism will lead to cell death. This concept is referred to as synthetic lethality, which has 
formed the rationale for existing DDR inhibitors (6,7). One such class of drugs, poly(ADP-
ribose) polymerase (PARP) inhibitors, targets vulnerabilities in the homologous recombination 
DDR pathway (8). 
 
PARP inhibitors as a class of DDR inhibitors block the activity of PARP enzymes involved in 
DNA damage repair; therefore, leading to accumulation of DNA double-strand breaks that 
gives rise to genomic instability and subsequent apoptosis (9). Several PARP inhibitors are 
currently approved as monotherapies for the treatment of locally advanced or metastatic 
breast cancer for patients with breast cancer harboring germline BRCA1/2 mutations or HER2-
negative receptor status (8). In 2022, olaparib was approved by the FDA as an adjuvant 
treatment for patients with human epidermal growth factor receptor 2 (HER2)-negative and 
germline BRCA-mutated breast cancers following readout from the OlympiA trial (10).  
 
While PARP inhibitors present a therapeutic opportunity for targeting DDR defects in breast 
and ovarian cancers, emerging evidence has shown a role for oncometabolites- small 
molecule intermediates of cellular metabolism- in determining the response to these 
chemotherapies. The biology of oncometabolites and their role in modulating DDR has been 
increasingly studied over the past few years, guiding new combination therapies and novel 
biological targets for drug discovery (1).    
 
Metabolic reprogramming- a key feature of all cancers (11)- gives rise to chemoresistance in 
both treatment-naïve and treatment-resistant breast cancers (12). As with genomic instability, 
drivers of metabolic reprogramming can be broadly classified as intrinsic and extrinsic in origin 
(13). Intrinsic stimuli such as oncogenes and tumour suppressor genes, modulate cellular 
metabolism in breast cancer with several regulators including BRCA1/2, MYC, 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and p53 as examples. The functional 
interplay between these regulators of cellular metabolism, mediates DNA damage repair 
pathways and subsequent response to DDR chemotherapies. Recent evidence has shown 
that the upregulation of glucose utilization and glutamine metabolism are required to sustain 
increased tumour bioenergetic and biosynthetic demand, which vary according to the cellular 
genetic makeup (14). Intermediates from glucose and glutamine metabolism have been 
identified as key oncometabolites regulating the response to chemotherapy drugs, presenting 
novel biomarkers and potential actionable targets for novel drug discovery (13).  
 
DDR mechanisms induce cellular metabolic changes through interference with purine and 
pyrimidine biosynthetic pathways, amino acid metabolism, protein biosynthesis and energy 
metabolism, impacting several metabolic routes (15). Mediators of DDR pathways, including 
PARP regulate several pathways exemplified by the pentose-phosphatase pathway, the TCA 
cycle and glycolysis. In breast cancer, PARP inhibition reduces glucose consumption and 
alters amino acid and nucleotide metabolism depending on the different cellular subtypes (16). 
Moreover, BRCA-1 deficient breast tumors appear to rely on glucose consumption through 
enhanced glycolysis (17). Differences in the metabolic signature between cell lines harboring 
different DNA repair mutations and measuring their response to PARP inhibitors can inform 
the rationale for selecting PARP inhibitors in certain breast cancer types and explore potential 
additional vulnerabilities as druggable targets (18).  
 
DNA repair and regulation of metabolism are critical for maintaining homeostasis in normal 
human cells. However, the extensive dysregulation and aberrant function of both these 
pathways promotes tumorigenesis. Until recent, DNA repair and metabolic pathways have 
routinely been researched as distinct fields within their own right, but growing emerging 
research evidence an intrinsic inter-dependency between these pathways. Here, we report 
the differential cellular response of breast cancer cell lines with DDR defects to olaparib 
exposure through combined analysis of DNA damage and metabolomics profiling. Combined 
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evaluation of the DNA damage response and metabolic reprogramming offers new 
opportunities in the development of novel chemotherapies against cancer.  
 
 
MATERIALS  
 
Cell lines and chemicals 
All cell lines used in this study were purchased from the vendor and maintained in accordance 
with manufacturer instructions. All cell culture reagents were obtained from Gibco (Thermo 
Fisher Scientific). MCF7 (RRID:CVCL_0031, Sigma, EACC collection) and MDA-MB-231 cells 
(RRID:CVCL_0062, ATCC) were purchased and maintained in Dulbecco’s Modified Eagle 
Medium (DMEM, high glucose) supplemented with 10% v/v FBS (high glucose, Invitrogen), 
1% v/v non-essential amino acids (NEAA) and 1% v/v penicillin-streptomycin (Invitrogen). 
Corresponding cell line origins, hormone receptor status and mutational profiles are included 
in Table 1.  HCC1937 cells obtained from ATCC (RRID:CVCL_0290) were maintained in 
RPMI supplemented with 10% v/v FBS and 1% v/v penicillin-streptomycin. All cell lines were 
maintained at 37 °C in a pre-humidified atmosphere containing 5% v/v CO2 and used within 
ten passages for the purposes of this work (passage 2-10). 
Olaparib (SantaCruz Biotechnology Inc.) was prepared as a 100 mM stock solution in DMSO, 
aliquoted and stored at -20 °C until use. γH2AX, p53BP1 primary antibodies (Cell Signalling 
Technologies) were used for foci immunostaining alongside the Alexa Fluor® 488-conjugated 
secondary antibody (Fisher Scientific). 
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Table 1 Cell lines used in this study and their corresponding clinicopathologic profiles (ER: 
estrogen receptor, PR: progesterone receptor, and HER2: Human epidermal growth factor 2 
receptor) 

Cell Line Histology Subtype Immunoprofile Genetic 
alterations 

MCF-7 Metastatic 
Adenocarcinoma 

Luminal A ER+, PR+, HER2- PIK3CA, 
CDKN2A, 
GATA3, 
PIK3CA, TP53 

MDA-MB-
231 

Metastatic 
Adenocarcinoma 

Basal ER-, PR-, HER2- BRAF, 
CDKN2A, 
KRAS,  
NF2,  
TP53 

HCC1937 Primary 
Ductalcarcinoma 

Basal-like ER-, PR-, HER2- BRCA1, TP53 

METHODS 
 
Cell Viability Assays 
MCF-7, MDA-MB-231 and HCC1937 cells undergoing exponential growth were seeded at a 
density of 4,000 cells/well in 96 well plates and incubated overnight to facilitate cell 
attachment. On the following day, cells were exposed to either blank growth medium (control) 
or growth medium containing different concentrations of olaparib (treatment medium) ranging 
from 0.01-500 µM for seven days at 37 °C and 5% v/v CO2. Treatment media were replaced 
every three days with treatment medium. Following a seven day treatment, cell viability was 
measured using CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay (Promega) 
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 
(MTS) reagent. The resultant absorbance at 490 nm was measured using a model GM3500 
Glomax® Explorer Multimode Microplate Reader (Promega).  
 
Growth curves represent percentage cell growth following treatment with different 
concentrations of olaparib and are plotted as a semi-log dose-response curve. The half 
maximal inhibitory concentration (IC50) was determined using a linear regression model. 
Statistical analysis was performed using GraphPad Prism (RRID:SCR_002798, v.9.0.1). 
Three independent biological replicates (five wells per treatment concentration) were 
performed for each cell line. 
 
Immunostaining for γH2AX and p53BP1 
Foci immunodetection for γH2AX and p53BP1 was performed in both control (growth medium) 
and for cells treated with olaparib (IC10, IC25 and IC50 doses) for seven days. Briefly, cell 
monolayers were fixed in chilled 4% w/v formaldehyde containing 2% w/v sucrose in PBS, 
followed by fixation in ice-cold methanol (100% v/v). Subsequently, cells were permeabilized 
in 0.25% v/v Triton X-100 in PBS, blocked with 5% v/v goat serum/5% w/v BSA, 
immunoprobed with either a primary rabbit anti- γH2AX antibody (RRID:AB_420030) (1:1000) 
or primary rabbit anti-P53BP1 (1:200) antibody (RRID:AB_11211252, CST #2675 for p53BP1) 
overnight at 4 °C. Cell monolayers were treated with goat, anti-rabbit Alexa Fluor® 488 
conjugated secondary antibody and counterstained with DAPI. Image acquisition was carried 
out using an Invitrogen EVOS Auto Imaging System (AMAFD1000-Thermo Fisher Scientific) 
with a minimum of 100 cells imaged per treatment condition. Resultant foci images were 
analysed in Cell Profiler (v.4.2.1.) using a modified version of the speckle counting pipeline. 
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Sample preparation and metabolite extraction 
MCF-7, MDA-MB-231 and HCC1937 cells were seeded at a density of 2 x 106 cells per well 
in 6-well plates, and exposed to growth medium containing olaparib at IC10, IC25 and IC50 
doses, as determined from the MTS assay (n=5 per treatment concentration). Following 
exposure to olaparib, the growth medium was aspirated from each well, centrifuged to remove 
cell debris, and stored at -80 °C. Next, treated cells were washed with pre-chilled PBS, with 
the metabolites quenched and extracted in a final volume of 1.5 mL pre-chilled (-80°C) mixed 
solvent (Methanol:Acetonitrile:Water=50:30:20). Resultant cell pellets were collected, and 
submerged in liquid nitrogen, vortexed and sonicated for 3 minutes in an ice-water bath. This 
procedure was performed in triplicate. Resultant extracts were centrifuged at 13,000x g for 10 
minutes at 4 °C and the pellets were retained for protein quantification using the Bradford 
assay. The resultant supernatant was collected, and dried with a Speed vac centrifuge 
(Savant-SPD121P). Dried metabolite pellets were reconstituted in Acetonitrile:Water (50:50) 
at volumes normalized to the relative protein content. Quality control (QC) samples were 
prepared by pooling samples across all control and treatment groups. Solvent blank and QC 
samples were inserted in analytical batch after every five samples to assess the stability of 
detecting system. 
 
Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) 
Metabolite separation was performed on a binary Thermo Vanquish ultra high performance 
liquid chromatography system where 5µl of reconstituted cellular extract was injected on to a 
Thermo Accucore HILIC column (100mm x 2.1 mm, particle size 2.6 µm). The temperature of 
the column oven was maintained at 35 °C while the autosampler temperature was set at 5 °C. 
For chromatographic separation a consistent flow rate of 500 µl/min was used where the 
mobile phase in positive heated electrospray ionisation mode (HESI+) was composed of buffer 
A (10 mM ammonium formate in 95% acetonitrile, 5% Water with 0.1% formic acid) and buffer 
B (10 mM ammonium formate in 50% acetonitrile, 50% Water in 0.1% formic acid). Likewise, 
in negative ionisation mode (HESI-) buffer A (10 mM ammonium acetate in 95% acetonitrile, 
5% water with 0.1% acetic acid) and buffer B (10 mM ammonium acetate in 50% acetonitrile, 
50% water with 0.1% acetic acid). The elution gradient used for the chromatographic 
separation of metabolites is included in supplementary information.  
 
A high-resolution Exploris 240-Orbitrap mass spectrometer (ThermoFisher Scientific) 
performed full scan and fragmentation analyses. Global operating parameters were set as 
follows: spray voltages of 3900 V in HESI+ mode, and 2700 V in HESI- mode. The temperature 
of transfer tube was set as 320 °C with a vaporiser temperature of 300 °C. Sheath, aux gas 
and sheath gas flow rates were set at 40, 10 and 1 Arb, respectively. Data dependent 
acquistions (DDA) were performed using the following parameters: full scan range was 70 – 
1050 m/z with a MS1 resolution of 60,000. Subsequent MS/MS scans were processed with a 
resolution of 15,000. High-purity nitrogen was used as nebulising gas and as the collision gas 
for higher energy collisional dissociation. Further details are included in supplementary 
information. 
 
Mass Spectrometry Data Processing 
Raw data files obtained from Thermo Scientific XcaliburTM software 4.2 were imported into the 
Compound DiscovererTM 3.2 software (CD) where the “Untargeted Metabolomics with 
Statistics Detect Unknowns with ID Using Online Databases and mzLogic” feature was 
selected (supplementary information). The workflow analysis performs retention time 
alignment, unknown compound detection, predicts elemental compositions for all compounds, 
and hides chemical background (using Blank samples). For the detection of compounds, mass 
and retention time (RT) tolerance were set to 3 ppm and 0.3 min, respectively. The library 
search was conducted against the mzCloud, Human Metabolome Database (HMDB) and 
Chemical Entities of Biological Interest (ChEBI) database. A compound table was generated 
with a list of putative metabolites (known and unknown). Among them, we selected all the 
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known compounds fully matching at least two of the annotation sources. The selected 
metabolites were then used to perform pathway and statistical analysis. 
 
Pathway Analysis with MetaboAnalyst  
Prior to analysis of the metabolic pathways with MetaboAnalyst 5.0 (RRID:SCR_015539, 
https://www.metaboanalyst.ca/), a HMDB identification code was assigned to each selected 
metabolite. A joint pathway analysis was performed by integrating the genes relative to each 
cell line (Table 1) with the list of ID compounds and their associated Log2 Fold change values. 
The integration method combined both genes and metabolites into a single query, then used 
to perform the enrichment analysis. This latter was based on a hypergeometric test. Finally, 
important nodes (compounds) were scored based on their betweenness centrality, and 
pathway analysis results were generated. 
 
Statistical Analysis  
All data are presented as mean ± standard deviation (n≥5). For metabolomics analysis, 
Principal Component Analysis (PCA) was performed to test analytical reproducibility of QC 
injections, reduce the dimensionality of our data and determine the metabolic profiles of the 
different sample groups. Differential analysis was also used to compare differences between 
control and treatment groups, then plotted in a Volcano plot (log-fold change vs. -log10 p-
value). Peak areas were log10 transformed and p values were calculated for the sample group 
by analysis of variance (ANOVA) test.  A p value<0.05 and fold-change of 1.5 was deemed to 
be statistically significant.  
 
RESULTS 
 
Olaparib sensitivity analysis 
To determine the olaparib dose range for subsequent foci and metabolomics experiments, we 
measured the sensitivity of MCF7, MDA-MB-231 and HCC1937 cell lines to olaparib exposure 
over a seven day treatment duration. The rationale behind exploring sensitivity to olaparib in 
these cell lines, was to perform a comparison between two triple-negative (MDA-MB-231 and 
HCC1937) and a non triple-negative (MCF-7) cell line. 
 
 

 
 
Figure 1 Corresponding MTS dose-response curves for MCF7, HCC1937 and MDA-MB-231 
cells treated with ascending doses of olaparib (0.1-500 µM) for seven days. The corresponding 
R2 values for fitted dose-response curves in MCF7 (IC50= 10 µM), MDA-MB-231 (IC50= 14 µM), 
and HCC1937 (IC50= 150 µM) cells were 0.89, 0.91 and 0.85, respectively.  

Our results show that exposure to olaparib caused a reduction in cell viability in all cell lines 
in a dose-dependent manner (Figure 1). We observed superior efficacy of olaparib in reducing 
cell viability in both MCF7 and MDA-MB-231 cells, with a calculated half maximal inhibitory 
concentration (IC50) of 10 µM and 14 µM, respectively. However, in the case of HCC1937 
cells, a higher concentration of olaparib was required to achieve the same reduction in cell 
viability (150 µM), indicating a lower efficacy of response to olaparib in this cell line. 
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Exposure to olaparib induces dose-dependent formation of γH2AX and 53BP1 foci in 
breast cancer cells  
 
PARP inhibition induced by olaparib exposure results in the accumulation of DNA damage in 
cells by compromising their DDR mechanisms. Therefore, we next investigated the extent to 
which olaparib exposure at various doses (IC10, IC25 and IC50- determined from MTS assays) 
promotes the accumulation of DNA double strand breaks (DSBs) in MCF-7, MDA-MB-231 and 
HCC1937 cell lines. Key markers for DNA DSB formation include phosphorylated histone H2 
variant H2AX (γH2AX) (19) and the damage sensor p53-binding protein 1 (p53BP1), which 
are rapidly recruited to sites of DNA damage and their accumulation is directly proportional to 
the number of DSB lesions (20). To measure the extent of DNA DSB formation, we performed 
immunofluorescence of phosphorylated 53BP1 foci and gamma-H2AX. 
 

 
Figure 2 The formation of p53BP1 foci in response to treatment with either growth medium or 
medium containing olaparib at various concentrations. Representative images of 
immunolabelled P53BP1 foci (red), DAPI (blue) nuclear counterstain and composite (p53BP1 
(red) and DAPI (blue)) in MCF-7, MDA-MB-231, and HCC1937 cells treated with olaparib for 
seven days (a-c). Corresponding p53BP1 foci counts determined using Cell Profiler (d-f). 9 
repeats with on average >100 cells per each sample. p-values have been determined through 
ANOVA test. Dunnett’s multiple comparison test was used as a follow up to ANOVA test and 
the p-values were represented as: non-significant=ns, 0.05=*, 0.005=**, 0.0005=***, 
>0.00005=****. 
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Figure 3 The formation of γH2AX foci formation in response to treatment with either growth 
medium or medium containing olaparib at various concentrations. Representative images of 
immunolabelled γH2AX foci (green), DAPI (blue) nuclear counterstain and composite (γH2AX 
and DAPI) in MCF-7, MDA-MB-231, and HCC1937 cells treated with for seven days (a-c). 
Corresponding γH2AX foci counts determined using Cell Profiler (d-f). (>100 cells per sample). 
Dunnett’s multiple comparison test was used as a follow up to ANOVA and corresponding p-
values were represented as: non-significant=ns, 0.05=*, 0.005=**, 0.0005=***, >0.00005=****. 

Based on our results, p53BP1 and γH2AX foci levels increased in a dose-dependent manner 
in both MCF7 and MDA-MB-231 cells in response to ascending doses of olaparib (Figure 
2a,b,d,e; Figure 3a,b,d,e). However, in HCC1937 cells, the expression of both markers was 
observed to decrease at the highest olaparib treatment dose (150 µM), in comparison to the 
15 and 50 µM exposure doses (Figure 2c,f; Figure 3c,f). Generally, HCC1937 cells showed 
a higher number of both p53BP1 (mean >10 foci per cell) and γH2AX foci (mean > 20 foci per 
cell), compared to the MCF7 and MDA-MB-231 cells, where a mean of <10 foci per cell were 
measured for both markers. These results are consistent with the dose-dependent sensitivity 
of MCF7 and MDA-MB-231 cells in response to olaparib exposure, further confirming cell-line 
dependent response to olaparib exposure. 
 
 
Biomolecular pathways altered in response to olaparib exposure vary across different 
cell lines 
To comprehensively measure the extent of variation induced by olaparib exposure in MCF-7, 
MDA-MB-231 and HCC1937 cell lines, we profiled their metabolome using an in-house 
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untargeted liquid chromatography-mass spectrometry-based metabolomics pipeline. In 
Figure 4 we describe the pipeline of the untargeted metabolomic study. After data acquisition, 
data processing and analysis were performed in Compound Discoverer 3.2.  First, we used 
the principal component analysis (PCA) to visualise and interpret the clustering of quantified 
metabolite data to examine global differences between treatment groups and cell lines 
examined, which was followed by pairwise PCA analyses between control and treated groups 
across positive and negative analysis modes (Figure 4).  

 
Figure 4 Statistical analyses of global metabolic features identified in MCF7, MDA-MB-231 
and HCC1937 upon exposure to IC10, IC25 and IC50 olaparib doses for seven days acquired in 
positive and negative ionization mode. a) Workflow used in this study to perform pathway 
analysis from metabolomics analyses. b) Global PCA score plots of the analysed breast 
cancer cell lines for data acquired in positive and negative ionization mode. For each sample 
group, five replicates were used. Data points in the two-dimensional PCA score plot were 
central scaled. c) PCA pairwise analysis and differential analysis of metabolites altered in IC50-
treated cells, d) Volcano plots displaying upregulated (blue) and downregulated (grey) 
metabolic features by representing the log2 fold change in altered features and the -log10 
adjusted p-values with cut off values selected at >1.5 and <0.05, respectively.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.14.495928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.14.495928
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

 
Pooled quality control (QC) data confirm the stability of the data acquisition system across all 
the measurements performed in positive and negative ionization acquisition modes (Figure 4 
b). Distinct clustering patterns were observed, with better separation for the IC50 olaparib 
treatment dose across all cell lines (Figure 4 c; Figure S 1). Volcano plots indicate the 
differential number of metabolic features that are significantly altered following exposure to 
olaparib, relative to control (Figure 4 d.; Figure S 2). From a metabolic perspective, we 
observed that HCC1937 (BRCA1-mutated) cells were the most susceptible to exposure at the 
IC50 olaparib treatment dose, while the MCF7 cells showed a higher number of significantly 
altered metabolic features at the IC25 olaparib treatment concentration (Table S 2). Together, 
these findings show a differential dose- and cell line- dependent metabolic response to 
olaparib exposure. 
 
Amino acid and lipid metabolism are significantly altered in response to olaparib 
exposure  
To analyse specific biomolecular pathways altered by olaparib exposure, we used 
MetaboAnalyst to identify key metabolic pathways significantly perturbed by olaparib 
treatment, and performed enrichment analysis for both control and treated samples (Figure 
5, Figure S 3). Among the enriched pathways ranked in the top ten, we selected altered 
pathways with a corresponding pathway impact >0.1, and a p-value <0.05. (Table S 3a,b).  
 

 
Figure 5 Pathway enrichment analysis of MCF7 (10 µM), MDA-MB-231 (14 µM) and 
HCC1937 (150 µM) cells following a seven-day exposure to olaparib. Enrichment analysis 
was based on the hypergeometric test. Topological analysis was based on betweenness 
centrality. The tight integration method was used by combining genes and metabolites into a 
single query. A p<0.05, and pathway impact >0.1 were deemed significant.  

 
 
Across all cell lines examined, the top ten putative pathways significantly altered in 
Metaboanalyst (see Figure 5) were based on amino acid (arginine biosynthesis, glutamine, 
glycine, serine and threonine metabolism) and lipid metabolism (butanoate metabolism). 
Following the identification of metabolic pathways altered by olaparib exposure, we 
constructed a Venn diagram (Figure S 4) to outline common overlapping  and cell line-specific 
altered metabolic features.  
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Overlapping enriched pathways are mostly represented by amino acid metabolism (glutamine, 
glutamate, aspartate, alanine, arginine and proline), suggesting a strong reliance of breast 
cancer cell metabolism on amino acids under baseline conditions (control samples). Upon 
olaparib exposure, the same pathways (amino acid metabolism) were among the most 
significantly-altered across all cell lines, while fatty acid (butanoate metabolism) and vitamin 
B6 metabolism were only significantly perturbed in MCF-7 cells. 
 
Next, we explored individual metabolites that were associated with significantly altered 
metabolic pathways in response to olaparib exposure and evaluated relative changes in their 
levels between control and treatment samples. These results are presented through a 
heatmap clustering analysis (Figure 7). A correlation analysis between each metabolite is 
shown in Figure S 4, and a wider list of compounds specific for each cell type is provided in 
Supplementary Table 4. 
 
 

 
Figure 7 Heatmap cluster analysis of relevant metabolites associated with the pathways 
altered upon exposure to olaparib in MCF7 (10 µM), MDA-MB-231 (14 µM) and HCC1937 
(150 µM) cells for seven days. Clustering and distance function are Ward and Euclidean, 
respectively. Normalised areas indicate chromatographic peaks areas that have been 
normalised based on the QC samples in order to compensate for batch effects. 
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Multiple amino acids (glutamine, glutamate, arginine, proline, methionine, glycine, threonine, 
taurine, and hypotaurine) were found to be downregulated following olaparib exposure 
(relative to control) in all cell lines examined. An overview of their chemical properties is given 
in Supplementary Table 5. Arginine and proline metabolism were significantly downregulated 
by olaparib exposure, with downregulation of their derived polyamines detected in all cell lines 
examined. Conversely, catabolic products of arginine and proline metabolism (N8-
Acetylspermidine, N1-N8-Diacetylspermidine, and N1-N12-Diacetylspermine) were 
upregulated. Elevated levels of serine were observed in MCF7 and MDA-MB-231 cells, while 
downregulation of serine was detected in the HCC1937 cells.  
 
Alpha-ketoglutarate (α-KG- glutamine-derived intermediate of the TCA cycle), was 
upregulated in MCF7 and downregulated in MDA-MB-231 and HCC1937 cells. A negative 
correlation was observed between α-KG and glutamine levels, and a positive correlation 
between α-KG, and citric and fumaric acid (TCA cycle intermediates). Aspartate (a TCA cycle 
product), accumulated in the KRAS-mutant MDA-MB-231 cells, while aspartate 
downregulation was observed in MCF7 and HCC1937 cells. Glucose levels were found to be 
significantly elevated relative to control samples in HCC1937 cells. Asparagine (a byproduct 
of aspartate) was absent in MDA-MB-231 cells, while its accumulation was detected in MCF7 
and HCC1937 cells. In parallel, accumulation of AMP was observed in both MCF7 and 
HCC1937 cell lines, while it was absent in MDA-MB-231 cells and accumulation of PPi was 
detected in all cell lines examined following olaparib exposure. 
 
In the case of lipid metabolism, we observed a global downregulation of phosphocholines (PC) 
and phosphoethanolamines (PE) in all cell lines following olaparib treatment. Acylcarnitine 
levels varied across the cell lines, with an overall upregulation of long (C14 – C21) and very-
long chain acylcarnitines (>C22) in all cell lines treated with olaparib. Moreover, we observed 
elevated alpha-linoleic acid (a polyunsaturated fatty acid-PUFA) levels in MCF7 and MDA-
MB-231 cells, which was absent in HCC1937 cells. 
 
Other metabolites included in the enrichment study – which did not emerge as significantly 
altered- were implicated in glucose and nucleotide metabolism. Compared to non-treated 
cells, elevated levels of glucose were detected in all the cell lines upon treatment with olaparib, 
while downregulation of most nucleobases was observed. Finally, NAD+ downregulation was 
detected in all cell lines treated with olaparib. 
 
An overview of the metabolic features altered in response to olaparib exposure is given in 
Figure 8. We mapped cell line differences in metabolite levels through the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) database.  
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Figure 8 A summary of putatively identified metabolic pathways altered in response to olaparib 
exposure. Significantly altered features with a Log2 fold change of >1.5 (blue-upregulated and 
grey-downregulated). MCF-7 ( ), MDA-MB-231 ( ), and HCC1937 ( ).
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DISCUSSION 
 
PARP inhibitors have shown promising results in the treatment of metastatic breast cancers 
harbouring germline BRCA1/2 mutations (21,22). Recent clinical studies have shown 
evidence of PARP inhibitor efficacy in the management of breast cancer, irrespective of 
tumour BRCAness. Prior work has shown that BRCA1-mutated cells carrying a TP53 mutation 
are resistant to treatment with PARP inhibitors (23). Therefore, additional factors beyond 
BRCAness may govern sensitivity to PARP inhibition.  
 
In this study we analyzed the sensitivity of two triple-negative (MDA-MB-231 and HCC1937) 
and MCF-7 (ER+, PR-, HER2-) cell lines to olaparib PARP inhibition (PARP1/2). The rationale 
for selecting these cell lines was to explore how their different genetic profiles define the 
observed differential biomolecular perturbations in response to olaparib treatment.  Initially, 
we examined the responsiveness of MCF-7, MDA-MB-231 and HCC1937 cell lines to olaparib 
exposure using the MTS cell viability assay (Figure 1). Our results showed differential 
sensitivity to olaparib exposure across the cell lines examined, with MCF-7 and MDA-MB-231 
showing sensitivity to olaparib treatment at lower micromolar concentrations, and the BRCA1-
mutant HCC1937 cell line showing less sensitivity (IC50- 150 µM). These findings are in 
agreement with previous reports of HCC1937 resistance to PARP inhibition, where the 
identification of predictive biomarkers of response to PARP inhibitor treatments was 
recommended beyond BRCA1/2 status (23).  
 
Our analysis of γH2AX and 53BP1 DNA DSB immunolabelled foci (Figure 3) showed a higher 
occurrence of DNA damage foci in HCC1937 cells in comparison with MCF-7 and MDA-MB-
231 cells with wild-type BRCA status. These observations suggest that BRCA status does not 
necessarily translate to olaparib sensitivity, and additional DDR components may define 
responsiveness. At present, routine clinical decision making surrounding the selection of 
treatment interventions are based on BRCA status, anatomical location, hormone receptor 
status and tumour stage, with very limited attention given to other mediators of DDR- namely 
homologous recombination- known to confer a BRCAness phenotype similar to BRCA 1 or 2 
loss. Several recent studies have used whole-genome sequencing or the integration of 
homologous recombination panel scoring systems to provide an additional framework for 
predicting responders to PARP inhibitor treatment (24,25).  
 
Genetic biomarkers are routinely used in the clinical stratification of breast cancers and 
predicting treatment-emergent resistance (26). While genome-wide studies have improved 
patient stratification efforts, they lack the potential to account for functional phenotypic effects 
resulting from protein expression levels, or gain- or loss of function effects. Metabolomics has 
emerged in the past decade as an additional research toolbox for studying potential 
biomarkers of breast cancer with a range of applications ranging from early detection to the 
discovery of new metabolites and prognostic classification of patients with breast cancer (27).  
 
Our goal in the present study was to apply combined analysis of DNA damage foci formation 
with global untargeted mass-spectrometry based metabolomics to map the metabolic changes 
occurring following exposure to olaparib. We examined the baseline differences in cellular 
metabolism across the cell line panel and extended this evaluation to examine cell line 
dependent response to olaparib treatment. Under baseline cell culture conditions, we found 
overlapping metabolic features (alanine, aspartate, glutamine, arginine, proline, glycine, 
serine, and threonine) occurring across all three breast cancer cell lines studies, and metabolic 
signatures that were unique to specific cell lines (MCF7: sphingolipid and glycerophospholipid 
metabolism; MDA-MB-231: taurine and hypotaurine metabolism; HCC1937: glyoxylate and 
dicarboxylate metabolism) (Figure 5-6). 
 
Our analysis of metabolites significantly altered in response to olaparib treatment correlate 
with reports from Bhute et al, where metabolic markers of PARP inhibition were reported as 
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changes in amino acid metabolism (glutamine and alanine), downregulation of osmolyte levels 
(taurine, and GPC), phosphocreatine, lactate and pyruvate in MCF7 cells (28). We reported 
downregulation of those metabolites also in the MDA-MB-231 and HCC1937 cells, while low 
levels of fumarate were observed only in the HCC1937 cells (Figure 7, supplementary Table 
4).  Bhute et al. also reported increased NAD+ levels for cells treated with veliparib. In our 
results NAD+ levels increased in the MCF7 cells treated with olaparib at the IC10 treatment 
concentration, accompanied by a decrease in NAD+ levels at ascending concentrations of 
olaparib. Reduced levels of NAD+ were also detected in the MDA-MB-231 and HCC1937 cells 
at all treatment concentrations. Recent studies have shown that in TNBC cells, olaparib 
enhances the signalling pathways of other NAD+-dependent deacetylase (i.e., sirtuins) (28, 
29). These findings are in agreement with our observation of downregulation of acetyl-amino 
acids and upregulation of methyl-pyridines, -pyrrolidines, and -nucleosides (supplementary 
Table 4). Further studies are needed to confirm the divergence of NAD+ flow towards 
alternative pathways and its association with specific breast cancer subphenotypes. 
 
Glutamine- a precursor for protein, nucleotide, and lipid biosynthesis- is a fundamental amino 
acid in breast cancer cell metabolism, playing a pivotal role in providing anaplerotic 
intermediates for the tricarboxylic acid (TCA) cycle (30). Previous reports have indicated a 
reduction of glutamine levels only for the TNBC cells after treatment with veliparib, and in the 
MCF7 cells only in combination with other DNA damage repair agents (16,28). Our results 
show reduced glutamine levels in all cell lines treated with olaparib, suggesting increased 
glutamine utilisation. Once internalised by cells, glutamine can be converted to glutamate and 
alpha-ketoglutarate (α-KG). α-KG- also a by-product of isocitrate- is oxidised in the TCA cycle 
through a reaction catalysed by isocitrate dehydrogenase (IDH), which is frequently mutated 
in cancer. Several studies have studied α-KG as an oncometabolite, where elevated levels 
induce the reversal of enhanced glycolysis through downregulation of the Hypoxia-inducible 
factor (HIF1), which following PARP inhibition leads to cell death (31,32). Recent findings have 
shown that mutant IDH - and the consequent synthesis of aberrant α-KG forms - confers a 
BRCAness phenotype (33), downregulating the expression of the DNA repair enzyme Ataxia-
telangiectasia mutated (ATM) kinase (34), altering the methylation status of loci surrounding 
DNA breaks (35). Together, these alterations lead to homology-dependent repair (HDR) 
impairment and increase susceptibility to PARP inhibition. On this basis, the reduced α-KG 
levels observed in olaparib-treated MDA-MB-231 and HCC1937 cells shows the basis for 
potential resistance to the anti-proliferative effects of olaparib. The increased utilisation of α-
KG by HCC1937 cells, is paralleled by an increased consumption of serine at ascending doses 
of olaparib (supplementary table 4). These observations are consistent with reports that in 
BRCA1-mutated TNBC cell lines, approximately 50% of α-KG results from the flux of serine 
metabolism (36).  
 
Glutamine is also a source of nitrogen groups for the synthesis of nucleobases and 
nucleotides, either directly or through a process involving the transamination of glutamate and 
the TCA cycle-derived oxaloacetate that generates aspartate (37-39). Our results show low 
levels of glutamine are associated with overall reduction in nucleobase and nucleotide levels. 
MCF7 and HCC1937 cells showed accumulation of adenosine monophosphate (AMP), which 
represents a depleted energy and nutrient status of the cells known to activate the metabolic 
sensor AMP-activated protein kinase (AMPK) leading to cell growth inhibition (40). Different 
studies have considered activation of AMPK a metabolic cancer suppressor and an attractive 
therapeutic target for TNBC (41), however, its signalling network in response to PARP 
inhibition in different breast cancer cells needs to be established. Opposite to what observed 
by Bhute et al, Aspartate, a byproduct of the TCA cycle, accumulated in the MDA-MB-231 
cells after PARP inhibition compared to its reduction in the MCF7 and HC1937 cells. Lowered 
plasma aspartate levels have been diagnosed in breast cancer patients suggesting an 
increased tumour utilisation of this metabolite (42). Moreover, we observed that aspartate 
metabolism is relevant both in the baseline model and in response to olaparib, which suggests 
a role of this metabolite in regulating the different metabolic phenotypes of breast cancer cells. 
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However, its role has been poorly investigated and little is known about its association with 
PARP inhibition.  
Among the pathways of aspartate utilisation, asparagine is converted through the enzyme 
asparagine synthetase (ASNS). The reaction requires glutamine as a substrate and 
consumption of adenosine triphosphate (ATP) to produce adenosine monophosphate (AMP) 
and pyrophosphate (PPi). Physiological levels of asparagine occur at levels of <0.05 mM in 
human plasma (44). Cancer cells harbouring mutant KRAS (e.g. MDA-MB-231), possess 
lower ASNS expression levels, leading to lower baseline aspartate levels explaining the 
rationale for the lack of aspartate detection in MDA-MB-231 lines (45). In breast cancer cells 
the increased bioavailability of asparagine promotes metastatic progression (45), due to its 
role in protein synthesis and regulation of amino acid homeostasis (46). We found elevated 
asparagine levels in olaparib-treated MCF7 and HCC1937 cells, suggesting a role for 
asparagine in the observed responses to exposure to PARP inhibitor.  
 
Beyond asparagine synthesis, aspartate amidation through ASNS presents a source of amino 
building blocks for the synthesis of arginine in the urea cycle, which is in turn responsible for 
the synthesis of polyamines catalysed by ornithine decarboxylase (ODC). Polyamine 
accumulation previously has been correlated with the increased proliferation of both hormone-
dependent and independent breast cancer cells (47), and recently found to contribute to 
BRCA1-mediated DNA repair (48). Moreover, metabolic profiling of plasma samples from 
patients with TNBC revealed an increase of diacetyl spermines associated with elevated 
expression of MYC, a well-known oncogene driving TNBC development and proliferation. 
Here, we found elevated diacetyl spermine levels following olaparib treatment in both TNBC 
and non-TNBC cells, suggesting an upregulation of polyamine catabolism, irrespective of cell 
line BRCA- and hormone receptor- status. Parallel to their relevance in cellular metabolism, 
amino acids serve also as biological buffers through regulation of cellular pH. Low extracellular 
pH is associated with positively charged amino acids and a known hallmark of cancer arising 
from enhanced glycolysis, production and altered lactate metabolism, resulting in altered 
mTOR pathway activation, ultimately regulating cancer cell metabolism (49, 50).  
 
Glutathione (GSH) is involved in the protection against ROS and regulation of intracellular 
redox homeostasis. Elevated GSH levels have previously been reported in TNBC compared 
to luminal breast cancers, suggesting the relevance of GSH to our observations of lower 
sensitivity to olaparib in TNBC cell lines (17,51).  
 
Lipids mediate various cellular biological functions, including energy storage, cell membrane 
structural composition and signal transduction, the increased biosynthesis of which is a marker 
of metabolic rewiring observed in malignant breast cancers (52,53). Our findings show 
downregulation of fatty acid biosynthesis following olaparib treatment, with a reduction in 
phospholipid levels including lysophosphatidylcholines and glycerolphosphocholines in all cell 
lines (supplementary Table 4). Poly-unsaturated fatty acids (PUFAs), have previously been 
implicated in MCF7 and MDA-MB-231 cell apoptosis through the induction of lipid peroxidation 
and altered cellular redox state (54). Moreover, elevated PUFA levels have been associated 
with the proteolytic cleavage of PARP and its inhibition, leading to cell death (55). On this 
basis, the reduced PUFA levels observed in HCC1937 cells may indicate their resistance to 
olaparib treatment. Only a limited number of studies have reported a correlation between 
PUFAs and breast cancer subphenotypes, requiring further validation by additional studies. 
 
Future targeted metabolomics studies using additional TNBC cell lines and clinical tumour 
clinical specimens are required to validate our observations. Validation of our findings could 
define prognostic biomarkers that will aid diagnose and enable the implementation of precision 
medicine in the management of breast cancer.  
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CONCLUSION 
 
Our data show differential sensitivity of breast cancer cell lines to olaparib treatment that was 
dose-dependent and demonstrated the increased sensitivity of TNBC cells to DNA damage 
foci accumulation. The application of metabolomics to the study of breast cancer remains in 
its infancy, with only a handful of studies reporting combined metabolomics and phenotypic 
analyses. Data acquired from metabolomics analysis can be validated against routine 
molecular biology and phenotypic assays, providing a powerful platform for biomarker 
detection or the discovery of novel actionable pathways for drug development. 
 
Our results show that fingerprinting the metabolic profile of cells can be a powerful tool for 
uncovering potential oncometabolites or mechanisms giving rise to chemoresistance. Findings 
from such studies may provide potential additional actionable targets for modulating response 
to drug treatment or the design of new drug combinations that will overall enhance DNA 
damage efficacy, ultimately improving patient response to radiotherapy and adjuvant 
chemotherapy.  
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Supplementary Information 
 
Elution Gradient used for LC-MS  
 
Buffer A composition:10 mM ammonium acetate in 95% acetonitrile, 5% water with 0.1% 
acetic acid 
Buffer B composition: 10 mM ammonium acetate in 50% acetonitrile, 50% water with 0.1% 
acetic acid 
 
Table S 1 Corresponding elution gradient used for the chromatographic separation of 
metabolite extracts 

 

Retention (min) Flow (mL/min) %A %B Curve 

0.000 0.500 99.0 1.0 5 

1.000 0.500 99.0 1.0 5 

3.000 0.500 85.0 15.0 5 

6.000 0.500 50.0 50.0 5 

9.000 0.500 5.0 95.0 5 

10.000 0.500 5.0 95.0 5 

10.500 0.500 99.0 1.0 5 

14.000 0.500 99.0 1.0 5 
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LC-MS/MS method summary 
 
 

• Method Settings 
Application Mode: Small Molecule 
Method duration (min): 14 
 

• Global Parameters 
Ion Source 

Ion Source type: H-ESI 
Spray Voltage: Static 
Positive Ion (V): 3900 
Negative Ion (V): 2700 
Gas Mode: Static 
Sheath Gas (Arb): 40 
Aux Gas (Arb): 10 
Sweep Gas (Arb): 1 
Ion Transfer Tube Temp (°C): 320 
Vaporizer Temp (°C): 300 
APPI Lamp: Not in use 
Use Ion Source settings from Tune: False 
FAIMS Mode: Not Installed 

MS Global Settings 
 Infusion Mode: Liquid Chromatography 
 Expected LC Peak Width (s): 6 
 Advanced Peak Determination: False 
 Mild Trapping: True 
 Default Charge State: 1 
 Enable Xcalibur AcquireX method modifications: False 
 Internal Mass Calibration: EASY-ICTM 
 Mode: Run Start 
 

• Experiment 
Start Time (min): 0 
End Time (min): 14 
Full Scan 
 Orbitrap Resolution: 60,000 
 Scan Range (m/z): 70-1050 
 RF Lens (%): 50 
 AGC Target: Standard 
 Maximum Injection Time Mode: Custom 
 Maximum Injection Time (ms): 100 
 Microscans: 1 
 Data Type: Profile 
 Polarity: Positive/Negative 
 Source Fragmentation: Disabled 
 Use EASY-CTM: On 
 

• Filters 
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Apex Detection 

Desired Apex Window (%): 50 
Intensity 
 Intensity Threshold: 5.0e4 
 Data Dependent Mode: Number of Scans 
 Number of Dependent Scans: 5 
ddMS2 Scan 
 Multiplex Ions: False 
 Isolation Window (m/z): 2 
 Isolation Offset: Off 
 Collision Energy Type: Normalised 
 HCD Collision Energies (%): 15,30,45 
 Orbitrap Resolution: 15,000 
 Scan Range Mode: Auto 
 AGC Target: Standard 
 Maximum Injection Time Mode: Auto 
 Microscans: 1 
 Data Type: Profile 
 Use EASY-ICTM: On 
 
 
Mass Spectrometry Data Processing  
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• Input Files 
.raw data  
 

• Select Spectra 
Spectrum Properties Filter: 

Lower RT Limit:  0 
Upper RT Limit:  0 
First Scan:  0 
Last Scan:  0 
Ignore Specified Scans:  (not specified) 
Lowest Charge State:  0 
Highest Charge State:  0 
Min. Precursor Mass:  0 Da 
Max. Precursor Mass:  5000 Da 
Total Intensity Threshold:  0 
Minimum Peak Count:  1 

Scan Event Filters: 
Mass Analyzer:  (not specified) 
MS Order:  Any 
Activation Type:  (not specified) 
Min. Collision Energy:  0 
Max. Collision Energy:  1000 
Scan Type:  Any 
Polarity Mode:  Is - 

Peak Filters: 
S/N Threshold (FT-only):  1.5 
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Replacements for Unrecognized Properties: 
Unrecognized Charge Replacements:  1 
Unrecognized Mass Analyzer Replacements:  ITMS 
Unrecognized MS Order Replacements:  MS2 
Unrecognized Activation Type Replacements:  CID 
Unrecognized Polarity Replacements:  + 
Unrecognized MS Resolution@200 Replacements:  60000 
Unrecognized MSn Resolution@200 Replacements:  30000 

General Settings: 
Precursor Selection:  Use MS(n - 1) Precursor 
Use Isotope Pattern in Precursor Reevaluation:  True 
Provide Profile Spectra:  Automatic 
Store Chromatograms:  False  

 

• Align Retention Times 
General Settings: 

Alignment Model:  Adaptive curve 
Alignment Fallback:  None 
Maximum Shift [min]:  0.3 
Shift Reference File:  True 
Mass Tolerance:  3 ppm 
Remove Outlier:  True 

 

• Detect Compounds 
General Settings: 

Mass Tolerance [ppm]:  3 ppm 
Intensity Tolerance [%]:  30 
S/N Threshold:  3 
Min. Peak Intensity:  500000 
Base Ions:  [M+H]+1; [M-H]-1 
Min. Element Counts:  C H 
Max. Element Counts:  C90 H190 Br3 Cl4 K2 N10 Na2 O15 P6 S5 

Peak Detection: 
Filter Peaks:  True 
Max. Peak Width [min]:  0.5 
Remove Singlets:  True 
Min. # Scans per Peak:  5 
Min. # Isotopes:  1 

Isotope Grouping: 
Min. Spectral Distance Score:  0 

Remove Potentially False Positive Isotopes:  True 
 

• Group Compounds 
Compound Consolidation: 

Mass Tolerance:  5 ppm 
RT Tolerance [min]:  0.2 
Fragment Data Selection: 
Preferred Ions:  [M+H]+1; [M-H]-1 

 

• Fill Gaps 
General Settings: 

Mass Tolerance:  5 ppm 
S/N Threshold:  1.5 
Use Real Peak Detection:  True 
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• Apply QC Correction 
General Settings: 

Regression Model:  Linear 
Min. QC Coverage [%]:  30 
Max. QC Area RSD [%]:  30 
Max. Corrected QC Area RSD [%]:  25 
Max. # Files Between QC Files:  15 

 

• Mark Background Compounds 
General Settings: 

Max. Sample/Blank:  5 
Max. Blank/Sample:  0 
Hide Background:  True 

 

• Search ChemSpider 
Search Settings: 

Database(s):  ChEBI; Human Metabolome Database 
Search Mode:  By Formula or Mass 
Mass Tolerance:  5 ppm 
Max. # of results per compound:  100 
Max. # of Predicted Compositions to be searched per Compound:  3 
Result Order (for Max. # of results per compound):  Order By Reference Count (DESC) 
Predicted Composition Annotation: 
Check All Predicted Compositions:  False 

 

• Apply mzLogic 
Search Settings: 

FT Fragment Mass Tolerance:  10 ppm 
IT Fragment Mass Tolerance:  0.4 Da 
Max. # Compounds:  0 
Max. # mzCloud Similarity Results to consider per Compound:  10 
Match Factor Threshold:  30 

 

• Predict Compositions 
Prediction Settings: 

Mass Tolerance:  5 ppm 
Min. Element Counts:  C H 
Max. Element Counts:  C90 H190 Br3 Cl4 N10 O18 P3 S5 
Min. RDBE:  0 
Max. RDBE:  40 
Min. H/C:  0.1 
Max. H/C:  4 
Max. # Candidates:  10 
Max. # Internal Candidates:  200 

Pattern Matching: 
Intensity Tolerance [%]:  30 
Intensity Threshold [%]:  0.1 
S/N Threshold:  3 
Min. Spectral Fit [%]:  30 
Min. Pattern Cov. [%]:  90 
Use Dynamic Recalibration:  True 

Fragments Matching: 
Use Fragments Matching:  True 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.14.495928doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.14.495928
http://creativecommons.org/licenses/by-nc/4.0/


26 
 

Mass Tolerance:  5 ppm 
S/N Threshold:  3 

 

• Assign Compound Annotations 
 General Settings: 

Mass Tolerance:  5 ppm 
Data Sources: 
Data Source #1:  mzCloud Search 
Data Source #2:  Predicted Compositions 
Data Source #3:  MassList Search 
Data Source #4:  ChemSpider Search 
Data Source #5:  Metabolika Search 
Data Source #6:  (not specified) 
Data Source #7:  (not specified) 

Scoring Rules: 
Use mzLogic:  True 
Use Spectral Distance:  True 
SFit Threshold:  20 
SFit Range:  20 

 

• Search mzCloud 
General Settings: 

Compound Classes:  All 
Precursor Mass Tolerance:  10 ppm 
FT Fragment Mass Tolerance:  10 ppm 
IT Fragment Mass Tolerance:  0.4 Da 
Library:  Autoprocessed; Reference 
Post Processing:  Recalibrated 
Max. # Results:  10 
Annotate Matching Fragments:  True 

DDA Search: 
Identity Search:  Cosine 
Match Activation Type:  True 
Match Activation Energy:  Match with Tolerance 
Activation Energy Tolerance:  20 
Apply Intensity Threshold:  True 
Similarity Search:  None 
Match Factor Threshold:  60 

DIA Search: 
Use DIA Scans for Search:  False 
Max. Isolation Width [Da]:  500 
Match Activation Type:  False 
Match Activation Energy:  Any 
Activation Energy Tolerance:  100 
Apply Intensity Threshold:  False 
Match Factor Threshold:  20 

 

• Differential Analysis 
General Settings: 

Log10 Transform Values:  True 
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ANOVA analysis of olaparib dose-dependent DNA DSB immunofoci formation 
 
Table S 2 Corresponding p-values obtained from single-factor ANOVA analysis of dose-
dependent γH2AX and 53BP1 foci formation following seven day exposure to olaparib in MCF-
7, MDA-MB-231 and HCC1937 cells 

 
 

Cell line Foci p-value 

MCF-7 53BP1 

γH2AX 

0.011 
 

4.876 x 10-10 

MDA-MB-231 53BP1 

γH2AX 

0.0009 

4.096 x 10-10 

HCC1937 53BP1 

γH2AX 

1.204 x 10-6 
 

1.441 x 10-5 
 
 
Panel of individual PCA pairwise analysis of MCF7, MDA-MB-231 and HCC1937 at their 
relative IC10, IC25 and IC50 doses of Olaparib 
 

 
 
Figure S 1 PCA pairwise analysis of untargeted metabolomics data collected, in both positive 
and negative mode, from MCF7, MDA-MB-231, and HCC1937 cells treated with their relative 
IC10, IC25 and IC50 doses of Olaparib. For each sample, 5 replicate were used. Data points in 
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the two dimensional PCA score plot were central scaled. The plot was designed on R through 
the ggplot2 graphical package 
 
 
Pairwise differential analysis of metabolites identified in MCF7, MDA-MB-231 and 
HCC1937 cells in positive and negative mode 
 

 
Figure S 2 Volcano plots show the log2 fold change and the -log10 adjusted p-values in 
metabolite levels induced by treatment with different doses of Olaparib (IC10, IC25, and IC50)  
in MCF7, MDA-MB-231 and HCC1937 cells. Data were selected at the cut off values adj-
p<0.05 and fold change >1.5. Blue and grey boxes indicate metabolites having their levels 
significantly upregulated and downregulated in the different samples, respectively. 
 
 
Table S 2 Global differential metabolites between samples treated with IC10, IC25 and IC50 of 
Olaparib and their relative control (non-treated) samples. Metabolites identified in both positive 
and negative mode with p-value = <0.05  and Log2 Fold Change = >1.5. 
 

Sample HESI + HESI - 

MCF7 IC10/Ctrl 41 10 

MCF7 IC25/Ctrl 111 62 

MCF7 IC50/Ctrl 41 15 

MDA231 IC10/Ctrl 2 1 

MDA231 IC25/Ctrl 12 1 

MDA231 IC50/Ctrl 34 9 

HCC1937 IC10/Ctrl 36 2 

HCC1937 IC25/Ctrl 107 13 

HCC1937 IC50/Ctrl 134 43 
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Figure S 3 Enrichment analysis of non-treated MCF7, MDA-MB-231 and HCC1937 cells. 
 
 
Table S 3 Enriched metabolic pathways in different breast cancer cells (MCF7, MDA-MB-231, 
and HCC1937) before and after treatment with IC50 dose of Olaparib. FDR = False Discovery 
Rate.  
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Figure S 4 Venn diagram representing the enriched metabolic pathways in MCF7, MDA-MB-
231 and HCC1937 cells.a) Metabolic pathways in the absence of the drug and b) following 
seven days treatment with olaparib at IC50 doses. 
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Table S 4 Classification of the relevant metabolites identified in MCF7, MDA-MB-231 and HCC1937 at all Olaparib doses (IC10, IC25 
and IC50) after seven days treatment. The table shows the class, name, Log2 fold change, and the p-value (p) of each compound. 
PC: phosphocholine; PE: phosphoethanolamine; PUFA: poly unsaturated fatty acid; SM: Sfingomyelin.   

MCF7 MDA-MB-231 HCC1937 

Class Name Log2 
fold 
chang
e 
IC10 

p Log2 
fold 
chang
e 
IC25 

p Log2 
fold 
chang
e 
IC50 

p Log2 
fold 
chang
e 
IC10 

p Log2 
fold 
chang
e 
IC25 

p Log2 
fold 
chang
e 
IC50 

p Log2 
fold 
chang
e 
IC10 

p Log2 
fold 
chang
e 
IC25 

p Log2 
fold 
chang
e 
IC50 

p 

Amide Nicotinamide -0.54 0.0
8 

-0.54 0.2
6 

-0.14 0.2
9 

-0.07 0.5
0 

-0.16 0.0
5 

-0.45 0.0
3 

0.35 0.0
7 

0.33 0.0
1 

-0.1 0.2
8 

Amine N-Oleoyl 
ethanolamine 

-1.48 0.1
3 

-0.81 0.6
3 

-0.08 0.6
1 

-0.46 0.2
9 

-3.19 0.0
2 

-0.61 0.2
6 

-1.64 0.1
7 

-2.48 0.0
3 

-1.16 0.0
2 

Amine Triethanolamine 1.03 0.5
6 

-0.6 0.0
3 

0.05 0.1
5 

2.87 0.4
3 

0.57 0.7
6 

3.05 0.4
1 

-0.46 0.4
7 

0.42 0.1
3 

0.39 0.5
0 

Amino acid 3-Sulfinoalanine -1.05 0.4
5 

-1.75 0.0
3 

-1.07 0.1
5 

- - -0.65 0.3
3 

- - 0.32 0.7
1 

-0.41 0.6
4 

-0.67 0.0
2 

Amino acid 4-Guanidinobutanoic  
acid 

-1.26 0.0
1 

-2.03 0.0
0 

-1.13 0.0
0 

-0.22 0.4
9 

-0.28 0.5
7 

-0.46 0.1
6 

-1.03 0.0
8 

-1.82 0.0
1 

-1.81 0.0
0 

Amino acid 4-Hydroxyproline -1.01 0.0
0 

-2.1 0.0
0 

-1.08 0.0
1 

-0.37 0.1
6 

- - -0.39 0.1
4 

-0.33 0.4
4 

-0.3 0.3
3 

-0.87 0.0
2 

Amino acid 4-Oxoproline -0.7 0.3
4 

0.88 0.0
3 

0.16 0.2
4 

0.36 0.5
5 

-0.27 0.0
3 

0.81 0.0
6 

0.64 0.0
3 

1.03 0.0
1 

1.47 0.0
0 

Amino acid Betaine - - -0.84 0.0
0 

-0.04 0.7
2 

-0.02 0.2
6 

-0.17 0.1
1 

-0.44 0.0
2 

-0.05 0.7
2 

-0.03 0.4
9 

-0.39 0.0
0 

Amino acid Choline -3.71 0.1
1 

-2.14 0.0
2 

-2.11 0.0
7 

0.06 0.4
6 

-1.3 0.0
3 

-1.53 0.0
0 

-2.08 0.0
0 

-2.87 0.0
0 

-3.71 0.0
0 

Amino acid Citrulline -0.27 0.5
8 

1.76 0.0
1 

-0.39 0.0
4 

-0.33 0.2
2 

-0.25 0.0
5 

-0.29 0.0
2 

-0.08 0.4
7 

0.31 0.5
1 

0.06 0.9
1 

Amino acid Creatine -0.31 0.5
7 

-1.68 0.0
0 

-0.47 0.0
5 

-0.82 0.0
1 

-0.35 0.1
8 

-1.12 0.0
1 

0.05 0.2
6 

-0.37 0.0
3 

-0.7 0.0
1 

Amino acid Creatinine - - -0.12 0.1
8 

0.1 0.7
3 

-0.46 0.0
4 

-0.38 0.0
6 

-0.36 0.1
5 

-0.13 0.4
4 

0.31 0.3
7 

-0.2 0.2
8 

Amino acid Gamma- 
Aminobutyric acid 

-0.93 0.0
0 

-1.75 0.0
0 

-0.74 0.0
0 

-0.16 0.1
4 

-0.09 0.1
5 

-0.2 0.1
4 

-0.21 0.7
1 

0.02 0.8
7 

-0.52 0.0
0 

Amino acid Glycine -1.26 0.0
0 

-2.08 0.0
0 

-0.99 0.0
0 

- - - - - - - - - - - - 

Amino acid Hypotaurine 0.29 0.3
0 

-0.35 0.1
0 

-0.61 0.0
3 

0.25 0.5
5 

-0.2 0.0
7 

-0.54 0.0
0 

-0.72 0.0
2 

-0.55 0.0
0 

-1.26 0.0
0 

Amino acid L-Alanine -0.83 0.0
0 

-1.66 0.0
0 

-0.91 0.0
1 

- - - - - - - - - - - - 
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Amino acid L-Arginine 6.65 0.0
0 

-0.46 0.0
2 

-0.07 0.5
6 

-0.08 0.5
6 

-0.14 0.6
5 

0.25 0.3
6 

0.02 0.4
9 

0.25 0.0
6 

-0.19 0.0
8 

Amino acid L-Asparagine 0.3 0.3
3 

-0.38 0.2
2 

0.99 0.0
4 

- - - - - - 0.9 0.1
6 

1.07 0.1
3 

1.31 0.1
3 

Amino acid L-Aspartic acid -0.64 0.0
4 

-2.2 0.0
0 

-1.38 0.0
0 

0.32 0.0
7 

0.33 0.2
7 

0.79 0.0
2 

-0.14 0.8
9 

-0.5 0.0
1 

-1.62 0.0
0 

Amino acid L-Cystathionine 5.15 0.0
0 

-2.06 0.0
0 

-0.32 0.1
2 

-0.13 0.9
3 

1.19 0.4
2 

0.79 0.6
4 

-1.68 0.0
0 

-2.2 0.0
0 

-3.8 0.0
0 

Amino acid L-Glutamic acid -1.26 0.0
0 

-2.08 0.0
0 

-1.3 0.0
0 

-0.35 0.5
3 

-0.71 0.0
2 

-1.14 0.0
0 

-0.4 0.1
1 

-0.49 0.0
3 

-2.06 0.0
0 

Amino acid L-Glutamine -11.37 0.0
2 

-0.97 0.0
0 

-0.38 0.0
6 

-0.05 0.2
0 

0.17 0.4
3 

-0.09 0.7
1 

-0.21 0.0
3 

-0.32 0.0
0 

-0.51 0.0
0 

Amino acid L-Isoleucine - - -1.49 0.2
7 

-0.59 0.9
7 

-1.39 0.9
8 

1.52 0.3
1 

-0.28 0.6
5 

0.07 0.1
8 

-0.56 0.7
3 

0.12 0.9
5 

Amino acid L-Leucine - - -1.39 0.0
0 

-0.41 0.1
2 

0.22 0.4
0 

- - -0.5 0.0
7 

- - -0.63 0.0
4 

-1.31 0.0
0 

Amino acid L-Lysine -1.11 0.0
1 

-1.04 0.0
2 

-0.42 0.3
4 

-0.3 0.0
7 

-0.41 0.1
2 

0.09 0.4
7 

0.18 0.2
5 

0.28 0.0
1 

-0.35 0.0
0 

Amino acid L-Methionine -0.93 0.0
0 

-2.25 0.0
0 

-1.04 0.0
0 

-0.07 0.2
3 

-0.31 0.0
3 

-0.39 0.1
1 

0.06 0.9
6 

-0.14 0.2
3 

-0.87 0.0
0 

Amino acid L-Ornithine - - - - - - - - - - - - 0.18 0.5
5 

0.29 0.0
8 

-0.12 0.6
6 

Amino acid L-Phenylalanine -1.31 0.7
4 

- - - - -0.12 0.3
6 

-0.37 0.0
3 

-0.28 0.0
5 

-0.18 0.8
6 

-0.32 0.1
9 

-0.72 0.0
0 

Amino acid L-Proline -1.26 0.0
0 

2.04 0.1
2 

-0.33 0.5
3 

0.07 0.6
4 

-0.25 0.4
4 

-0.39 0.1
4 

- - - - - - 

Amino acid L-Serine 2.18 0.0
0 

2.52 0.0
0 

2.09 0.0
0 

0.25 0.2
3 

0.33 0.4
5 

0.88 0.0
0 

-0.09 0.6
9 

-0.33 0.0
1 

-0.97 0.0
0 

Amino acid L-Tryptophan -1.57 0.0
0 

-2.36 0.0
0 

-1.34 0.0
0 

-0.33 0.0
7 

-0.77 0.0
3 

-0.91 0.0
1 

-0.27 0.4
8 

-0.75 0.0
2 

-0.84 0.0
0 

Amino acid L-Tyrosine 0.08 0.7
1 

-2.29 0.0
0 

-1.25 0.0
0 

-0.35 0.0
3 

-0.51 0.0
0 

-0.55 0.0
2 

0.11 0.0
2 

-0.36 0.1
3 

-1 0.0
1 

Amino acid L-Valine -1.16 0.0
0 

-1.41 0.0
0 

-0.56 0.0
1 

0.12 0.5
8 

0.09 0.9
1 

0.36 0.9
6 

0.07 0.8
4 

0.21 0.9
7 

0.58 0.4
0 

Amino acid N-a-Acetyl- 
L-arginine 

- - -1.61 0.0
0 

-0.64 0.0
1 

0.49 0.5
2 

-0.19 0.3
6 

-0.55 0.1
3 

-0.34 0.2
2 

0 0.5
0 

-0.39 0.0
2 

Amino acid N-Acetylaspartyl 
glutamic acid 

-0.53 0.1
1 

-1.53 0.0
0 

-0.68 0.0
7 

0.2 0.6
8 

-0.27 0.3
9 

-0.06 0.1
9 

-1.29 0.0
1 

-0.83 0.0
0 

-2.86 0.0
0 

Amino acid N-Acetylisoleucine -0.13 0.0
2 

0.25 0.0
9 

-0.05 0.5
2 

2.42 0.3
6 

0.37 0.7
7 

1.37 0.4
9 

0.02 0.6
4 

0.13 0.0
2 

0.11 0.2
0 

Amino acid N-Acetylleucine - - 0.87 0.6
5 

0.44 0.7
4 

- - 0.43 0.5
9 

- - - - - - 0.7 0.4
5 

Amino acid N-Acetyltaurine -0.37 0.0
5 

-0.82 0.0
0 

-0.65 0.0
1 

0.14 0.9
1 

-0.16 0.2
2 

-5.89 0.0
2 

-0.74 0.1
3 

-0.7 0.0
1 

-1.08 0.0
0 

Amino acid Ornithine 4.83 0.0
0 

-0.4 0.2
5 

-0.23 0.2
2 

-0.54 0.0
8 

-0.61 0.0
1 

-0.26 0.1
9 

0.18 0.5
5 

0.29 0.0
8 

-0.12 0.6
6 
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Amino acid Pyroglutamic acid -10.3 0.0
2 

-0.73 0.0
3 

-0.17 0.5
1 

-0.05 0.2
0 

0.19 0.4
2 

-0.29 0.5
6 

-0.25 0.0
1 

-0.34 0.0
1 

-0.61 0.0
0 

Amino acid Taurine -0.37 0.0
5 

-0.82 0.0
0 

-0.65 0.0
1 

0.14 0.9
1 

-0.16 0.2
2 

-5.89 0.0
2 

-0.74 0.1
3 

-0.7 0.0
1 

-1.08 0.0
0 

Amino acid Thiamine 5.36 0.3
8 

-1.22 0.0
0 

-0.87 0.0
0 

-1.15 0.0
1 

-0.44 0.0
5 

-0.31 0.2
5 

-0.3 0.4
7 

-0.15 0.4
3 

-1.07 0.0
0 

Amino acid Threonine 0.06 0.3
6 

1.4 0.5
0 

0.57 0.9
4 

-1.9 0.6
0 

-0.52 0.0
9 

0.64 0.5
1 

-0.22 0.6
6 

-0.3 0.0
8 

0.67 0.3
4 

Benzenoid Benzoic acid 0.64 0.8
6 

0.3 0.4
3 

0.11 0.4
3 

0.39 0.0
2 

0.13 0.5
6 

0.34 0.3
9 

-0.17 0.2
5 

-0.24 0.0
4 

0.76 0.0
1 

Carbohydr
ate 

D-Glucose -0.23 0.9
4 

0.96 0.0
2 

0.21 0.2
3 

-0.21 0.3
8 

-0.37 0.0
4 

0.09 0.1
7 

1.09 0.0
3 

0.92 0.0
0 

0.84 0.0
0 

Carbohydr
ate 

Glyceraldehyde  
3-phosphate 

-1.45 0.0
0 

-2.31 0.0
0 

-1.43 0.0
0 

0.22 0.2
7 

-0.22 0.1
8 

-1.31 0.0
2 

0.19 0.8
6 

-0.26 0.2
8 

-1.7 0.0
0 

Carbohydr
ate 

Mannose  
6-phosphate 

-0.32 0.2
0 

-0.72 0.0
9 

-0.2 0.3
0 

0.78 0.0
1 

0.01 0.8
7 

0.22 0.3
1 

0.33 0.0
1 

0.67 0.0
0 

0.47 0.0
2 

Carbohydr
ate 

N-Acetyl- 
glucosamine 1-
phosphate 

-1.31 0.0
0 

-2.41 0.0
0 

-1.56 0.0
0 

-0.14 0.0
9 

-0.63 0.0
0 

-1.21 0.0
0 

- - - - - - 

Carbohydr
ate 

Threonic acid -0.73 0.0
3 

-0.91 0.0
1 

-0.3 0.6
8 

-0.53 0.0
4 

-0.33 0.1
1 

-0.78 0.0
2 

-0.51 0.0
1 

-0.59 0.0
0 

-1.62 0.0
0 

Carboxylic  
acid 

5-L-Glutamyl-taurine 2.22 0.0
1 

1.24 0.0
1 

2.07 0.0
0 

- - - - - - - - - - - - 

Carboxylic  
acid 

Citric acid -0.43 0.0
8 

-1.27 0.0
0 

-0.3 0.2
0 

0.1 0.8
1 

-0.23 0.9
4 

- - - - - - -0.91 0.0
0 

Carboxylic  
acid 

Dodecanedioic acid 0.42 0.7
0 

0.65 0.0
6 

0.47 0.0
9 

1.82 0.4
0 

0.07 0.6
6 

-1.08 0.6
3 

0.25 0.3
3 

0.28 0.1
5 

0.43 0.1
1 

Carboxylic  
acid 

Fumaric acid - - - - - - - - - - - - 0.3 0.1
6 

0.11 0.0
9 

-2.33 0.0
0 

Carboxylic  
acid 

L-Lactic acid -0.58 0.0
2 

-0.45 0.0
7 

0.41 0.2
6 

0.05 0.6
5 

-0.37 0.0
4 

-0.46 0.0
9 

-0.08 0.8
4 

0.1 0.2
7 

-0.93 0.0
0 

Carboxylic  
acid 

Phthalic acid - - -1.55 0.0
0 

-0.68 0.4
7 

-0.52 0.6
5 

0.66 0.3
4 

- - - - - - - - 

Carboxylic  
acid 

Pyruvic acid -0.69 0.0
1 

-0.99 0.0
0 

-0.64 0.0
0 

1.74 0.4
5 

-0.33 0.9
5 

-0.01 0.1
0 

-0.51 0.0
1 

-0.61 0.0
0 

-1.22 0.0
0 

Carboxylic  
acid 

Succinic acid -0.87 0.1
1 

-1.21 0.0
5 

-0.64 0.2
5 

- - - - - - - - - - - - 
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Carboxylic  
acid 

Tetradecanedioic acid -0.36 0.1
0 

-0.22 0.2
8 

-0.56 0.0
4 

- - - - - - 0.17 0.4
3 

0.12 0.5
3 

0.21 0.1
1 

Carnitine 2-Methylbutyroyl 
carnitine 

-0.71 0.0
0 

-1.99 0.0
0 

-1.15 0.0
0 

0.06 0.9
8 

-0.36 0.0
2 

-0.9 0.0
0 

-0.3 0.1
0 

-1.16 0.0
0 

-3.31 0.0
0 

Carnitine Butenylcarnitine - - 1.09 0.2
9 

-0.16 0.6
0 

1.2 0.0
0 

1.88 0.0
0 

2.94 0.0
1 

1.11 0.3
0 

1.5 0.0
0 

1.19 0.0
1 

Carnitine Decanoylcarnitine 0.41 0.8
1 

-0.09 0.9
7 

0.22 0.9
7 

0.04 0.9
0 

-1.42 0.3
1 

1.01 0.8
9 

-1.45 0.6
0 

-0.9 0.5
9 

-0.71 0.9
6 

Carnitine Dodecanedioyl 
carnitine 

-1.31 0.3
8 

0.61 0.1
1 

0.01 0.9
5 

2.94 0.4
7 

0.86 0.5
9 

- - 1.22 0.0
2 

1.13 0.0
4 

1.77 0.0
0 

Carnitine Heptadecanoyl  
carnitine 

- - -1.82 0.3
7 

1.25 0.0
0 

0.24 0.7
2 

-0.97 0.0
6 

-0.38 0.3
3 

0.67 0.6
8 

0.24 0.8
4 

1.2 0.0
4 

Carnitine L-Carnitine -0.17 0.8
2 

0.03 0.5
4 

-0.35 0.1
1 

-0.38 0.4
0 

0.39 0.7
9 

1.69 0.5
8 

1.07 0.0
5 

0.53 0.0
7 

0.98 0.0
0 

Carnitine L-Hexanoylcarnitine 0.56 0.5
5 

1.38 0.2
7 

-0.03 1.0
0 

-0.37 0.1
2 

-1.3 0.0
0 

-1.62 0.0
0 

-0.88 0.0
0 

1.75 0.0
0 

1.71 0.0
0 

Carnitine L-Palmitoylcarnitine -8.48 0.1
9 

0.34 0.5
3 

0.47 0.4
9 

0.13 0.8
6 

-0.89 0.1
3 

-0.92 0.1
1 

0.05 0.6
9 

1.24 0.0
9 

1.63 0.0
3 

Carnitine Pentadecanoyl 
carnitine 

-1.63 0.1
5 

-0.49 0.1
4 

0.03 0.9
2 

0.72 0.2
1 

- - -1.17 0.8
4 

-1.05 0.0
9 

-2.71 0.0
0 

-1.37 0.0
2 

Carnitine Propionylcarnitine -15.38 0.0
0 

-1.42 0.2
1 

-0.65 0.6
3 

0.12 0.8
5 

0.17 0.8
6 

-0.87 0.0
0 

0.14 0.6
1 

-0.89 0.0
2 

-2.79 0.0
0 

Carnitine Stearoylcarnitine -1.15 0.8
5 

2.03 0.0
1 

2.42 0.0
6 

-0.37 0.9
1 

-1.02 0.1
7 

-0.68 0.2
1 

1.09 0.2
1 

1.6 0.0
3 

2.06 0.0
1 

Carnitine Tiglylcarnitine -0.41 0.1
1 

-0.29 0.0
2 

0.22 0.4
0 

0.04 0.8
7 

-0.15 0.0
7 

-0.46 0.0
4 

0.05 0.3
0 

0.09 0.3
1 

-1.88 0.0
0 

Carnitine trans-2- 
Dodecenoylcarnitine 

-0.98 0.5
5 

0.81 0.7
8 

-0.53 0.1
8 

-0.57 0.7
8 

-0.35 0.0
7 

0.32 0.3
3 

-0.88 0.0
2 

-0.53 0.0
7 

-0.82 0.0
0 

Carnitine trans-Hexadec- 
2-enoyl carnitine 

- - -0.74 0.0
5 

0.39 0.9
3 

0.2 0.7
5 

-0.91 0.1
9 

-0.51 0.2
9 

-0.76 0.1
1 

-1.24 0.0
1 

-1.18 0.0
1 

Ceramide Cer(d18:1/16:0) -0.62 0.2
2 

-2.41 0.0
2 

-0.66 0.0
9 

0.42 0.9
3 

-1.65 0.1
1 

-1.28 0.1
5 

-1.47 0.0
2 

- - -2.71 0.0
0 

Ceramide Cer(d18:1/24:1(15Z)) -2.34 0.1
4 

-2.65 0.0
2 

-3.01 0.0
7 

- - - - - - -1.52 0.1
2 

-3.55 0.0
1 

-3.72 0.0
1 

Cholesterol  
ester 

Cholesteryl acetate -1.41 0.6
2 

-0.91 0.0
4 

-0.8 0.1
8 

-0.09 0.1
6 

-0.4 0.1
0 

-1.31 0.0
0 

- - - - - - 

Fatty acid Glycerol 3-phosphate -1 0.0
0 

-1.57 0.0
0 

-0.66 0.0
1 

-0.56 0.1
1 

-0.79 0.1
4 

-2 0.0
0 

-0.11 0.6
1 

0.02 0.9
3 

-0.77 0.0
2 

Fatty acid Linoleamide -2.79 0.1
2 

-1.52 0.6
3 

-0.07 0.9
7 

-0.06 0.5
6 

-3.04 0.0
4 

0.04 0.6
8 

-1.17 0.3
8 

-0.8 0.3
6 

-1.23 0.2
9 

Fatty acid Stearic acid -0.4 0.4
7 

0.43 0.4
4 

-0.27 0.5
9 

0.24 0.7
6 

0.72 0.8
0 

0.74 0.7
2 

0.25 0.4
5 

0.31 0.1
0 

0.74 0.0
0 
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Fatty acid Stearoylethanolamide - - - - - - - - -1.21 0.0
3 

-1.25 0.0
3 

-0.78 0.5
9 

-1.33 0.1
7 

-1.38 0.1
3 

Fatty acid Tetraglyme - - 0.72 0.1
1 

-2.02 0.0
4 

0.82 0.3
9 

0.68 0.8
2 

2.35 0.1
8 

0.73 0.0
8 

0.38 0.0
1 

0.89 0.0
0 

Fatty amide Oleamide -2.79 0.1
2 

-1.52 0.6
3 

-0.07 0.9
7 

-0.06 0.5
6 

-3.04 0.0
4 

0.04 0.6
8 

-1.17 0.3
8 

-0.8 0.3
6 

-1.23 0.2
9 

Furanone Ascorbic acid -0.03 0.9
6 

-0.83 0.0
3 

-0.21 0.2
4 

1.34 0.4
9 

- - 1.43 0.3
4 

-2.16 0.0
0 

-1.55 0.0
0 

-0.25 0.0
9 

Inorganic  
compound 

Pyrophosphate -0.04 0.2
9 

0.93 0.0
1 

0.48 0.1
9 

0.55 0.3
1 

0.63 0.1
5 

0.94 0.0
2 

0.88 0.0
7 

1.51 0.0
1 

1.67 0.0
0 

Keto acid Acetoacetic acid 7.66 0.0
1 

-0.48 0.0
0 

-0.04 0.2
3 

-0.07 0.3
9 

-0.21 0.0
5 

-0.69 0.0
0 

-0.17 0.3
4 

-0.42 0.0
2 

-1.47 0.0
0 

Keto acid alpha-Ketoglutaric 
acid 

-0.39 0.0
1 

-1.35 0.0
0 

0.35 0.0
1 

0.49 0.0
1 

0.12 0.2
0 

-0.3 0.1
3 

-0.64 0.0
0 

-0.35 0.0
4 

-0.62 0.0
1 

Keto acid Levulinic acid - - - - - - - - -1.14 0.0
1 

-0.57 0.0
3 

-1.08 0.0
9 

-0.77 0.0
1 

-2.36 0.0
0 

Nucleobas
e 

Adenine -1.24 0.0
0 

-1.92 0.0
0 

-0.76 0.0
1 

- - - - - - -0.27 0.1
6 

-1.61 0.0
0 

-5.17 0.0
0 

Nucleoside 2'-Deoxycytidine - - - - - - - - - - - - -0.4 0.5
4 

-0.09 0.6
5 

-0.9 0.0
0 

Nucleoside 5'-
Methylthioadenosine 

-0.95 0.2
1 

-1.43 0.0
0 

-0.76 0.0
0 

-1.54 0.1
9 

-0.39 0.5
8 

-0.79 0.8
3 

-0.56 0.0
5 

-0.73 0.0
0 

-0.89 0.0
0 

Nucleoside Adenosine -0.95 0.2
1 

0.86 0.0
1 

1.1 0.1
2 

-1.54 0.1
9 

-0.39 0.5
8 

-0.79 0.8
3 

-0.56 0.0
5 

-0.73 0.0
0 

-0.89 0.0
0 

Nucleoside Thymidine - - - - - - - - - - - - -0.25 0.2
1 

0.17 0.8
8 

-2.14 0.0
3 

Nucleotide 3'-AMP - - 0.86 0.0
1 

1.1 0.1
2 

- - - - - - - - - - 0.44 0.9
4 

Nucleotide CDP-ethanolamine - - - - - - - - - - - - 2.51 0.0
0 

- - 2.85 0.0
0 

Nucleotide Cytidine  
5'-diphosphocholine 

- - - - - - - - - - - - 1.41 0.0
0 

1.67 0.0
0 

1.25 0.0
1 

Nucleotide NAD 4.71 0.2
7 

-1.48 0.0
0 

-0.55 0.0
4 

0.54 0.2
4 

-0.03 0.1
8 

-0.45 0.0
1 

-0.27 0.1
6 

-0.59 0.0
0 

-0.95 0.0
0 

Nucleotide NADH -0.5 0.0
2 

-1.18 0.0
0 

-0.48 0.0
5 

- - - - -4.74 0.0
0 

- - - - - - 

Nucleotide Uridine -0.82 0.0
2 

-1.87 0.0
0 

-1.03 0.0
1 

0.42 0.3
6 

-1.05 0.4
3 

-1.99 0.0
1 

-0.64 0.0
5 

-0.71 0.0
2 

-1.01 0.0
0 

Nucleotide Uridine  
5'-
diphosphogalactose 

- - - - - - -0.05 0.2
4 

-0.22 0.0
7 

-0.84 0.0
1 

- - - - - - 

Nucleotide Uridine 5'- 
diphosphoglucuronic 
acid 

-0.6 0.0
0 

-1.41 0.0
0 

-0.95 0.0
0 

0.11 0.7
7 

- - - - -0.54 0.0
2 

-0.9 0.0
0 

-1.94 0.0
0 
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Nucleotide Uridine diphosphate- 
N-acetylglucosamine 

-0.49 0.0
3 

-1.99 0.0
0 

-1.37 0.0
0 

-0.86 0.0
4 

-0.66 0.0
3 

-1.69 0.0
0 

-0.51 0.0
3 

-1.03 0.0
0 

-2.03 0.0
0 

Nucleotide Uridine  
diphosphategalactose 

-0.91 0.0
2 

-1.44 0.0
0 

-0.58 0.0
1 

- - - - - - -0.72 0.0
2 

-1.13 0.0
0 

-2.66 0.0
0 

PC 1,2-Dipalmitoleoyl-sn- 
glycero-3-
phosphocholine 

- - -3.11 0.0
1 

-2.79 0.0
3 

0.47 0.2
5 

-1.75 0.1
3 

-1.31 0.0
6 

- - - - - - 

PC LysoPC(14:1(9Z)/0:0) -1.74 0.5
8 

-3.65 0.0
0 

-2.42 0.0
1 

- - - - - - - - - - - - 

PC LysoPC(24:1(15Z)) -2.41 0.5
3 

-2.05 0.0
4 

-1.76 0.1
7 

0.75 0.3
0 

-1.42 0.2
2 

-2.09 0.0
5 

-2.55 0.0
3 

-4.21 0.0
0 

-3.98 0.0
1 

PC LysoPC(P-16:0/0:0) -1.87 0.3
1 

-0.97 0.1
1 

-1.33 0.2
0 

- - - - - - -1.88 0.0
5 

-3.34 0.0
1 

-3.25 0.0
1 

PC PC(16:0/18:1(9Z)) - - -0.82 0.2
2 

-0.68 0.7
6 

0.42 0.2
7 

-1.48 0.2
6 

-1.24 0.0
5 

-0.62 0.1
3 

-2.79 0.0
0 

-2.88 0.0
0 

PC PC(16:0/18:3 
(9Z,12Z,15Z)) 

-4.22 0.3
1 

-0.46 0.1
1 

-1.24 0.1
2 

0.45 0.2
4 

- - - - -0.48 0.3
3 

-1.25 0.0
1 

-1.52 0.0
3 

PC PC(18:1(9Z)e/2:0) - - -0.49 0.1
4 

-1.53 0.1
4 

0.52 0.4
9 

-1.36 0.1
4 

-1.86 0.0
1 

-2.8 0.0
3 

-3.98 0.0
0 

-3.3 0.0
1 

PE 1-oleoyl-2-linoleyl-sn- 
glycero-3-
phosphoethanolamine 

-0.81 0.0
7 

-2.51 0.0
0 

-1.81 0.0
0 

- - - - - - -0.58 0.2
7 

-1.57 0.0
2 

-3.21 0.0
0 

PE 1-Palmitoyl-2-linoleoyl 
PE 

-0.81 0.0
7 

-2.65 0.0
0 

-1.61 0.0
1 

0.02 0.8
5 

-0.88 0.2
6 

-0.29 0.4
6 

- - - - - - 

PE LysoPE(18:0/0:0) - - -1.93 0.3
4 

-1.02 0.3
7 

- - - - -1.17 0.1
5 

-2.13 0.0
3 

-2.82 0.0
0 

-1.44 0.0
6 

PE LysoPE(18:1(9Z)/0:0) -1.23 0.0
1 

-2.06 0.0
0 

-1.09 0.0
0 

0.79 0.1
2 

- - - - - - - - - - 

PE PE(16:0/22:6 
(4Z,7Z,10Z,13Z,16Z,19
Z)) 

-0.05 0.7
2 

-0.68 0.0
1 

-0.12 0.2
8 

- - -1.27 0.5
5 

- - - - - - - - 

PE PE(18:0/20:4 
(5Z,8Z,11Z,14Z)) 

- - -0.1 0.1
4 

0.15 0.1
3 

1.43 0.3
2 

-0.51 0.4
0 

0.17 0.6
2 

2.08 0.4
0 

1.74 0.7
2 

1.64 0.4
1 

PE PE(P-16:0/20:4 
(5Z,8Z,11Z,14Z)) 

0.51 0.7
2 

0.04 0.4
7 

0.6 0.4
8 

- - -0.34 0.1
5 

- - - - - - - - 

Peptide Carnosine 5.16 0.0
0 

-0.22 0.4
2 

0.04 0.7
8 

-0.15 0.2
7 

-0.44 0.0
1 

-0.36 0.0
3 

-0.93 0.0
4 

-1.16 0.0
0 

-1.53 0.0
0 

Peptide L-Glutathione  
(reduced) 

-1.02 0.0
0 

-3.26 0.0
0 

-1.35 0.0
0 

-0.04 0.3
7 

-0.29 0.1
0 

-1.65 0.0
1 

-0.63 0.0
1 

-1.24 0.0
0 

-1.72 0.0
0 

Peptide L-Glutathione  
(oxidized) 

- - 1.48 0.0
1 

- - 1.24 0.1
2 

- - - - -0.17 0.5
6 

- - - - 

Peptide Ophthalmic acid 5.85 0.0
8 

-2.18 0.0
0 

0.2 0.3
6 

0.38 0.0
0 

0.52 0.0
0 

0.82 0.0
1 

1.59 0.0
0 

1.62 0.0
0 

1.47 0.0
0 
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Peptide Pro-leu 8.41 0.0
0 

-1.03 0.0
0 

0.1 0.9
7 

0.97 0.0
0 

1.22 0.0
0 

1.33 0.0
0 

-0.22 0.7
3 

-0.11 0.6
9 

-0.45 0.0
0 

Phenylketo
ne 

Kynurenine -1.65 0.2
7 

- - - - - - -0.28 0.4
4 

1.24 0.0
8 

- - - - - - 

Polyamine N-Acetylputrescine -1.25 0.0
0 

-2.83 0.0
0 

-2.4 0.0
0 

- - - - - - - - - - - - 

Polyamine N1,N12-Diacetyl 
spermine 

1.84 0.4
0 

3.11 0.0
0 

5.71 0.0
0 

3 0.0
0 

3.68 0.0
0 

4.5 0.0
0 

4.79 0.0
0 

4.4 0.0
0 

5.44 0.0
0 

Polyamine N1,N8-Diacetyl 
spermidine 

1.03 0.0
0 

0.5 0.0
0 

2.15 0.0
0 

1.13 0.0
0 

1.37 0.0
0 

0.71 0.0
1 

1.27 0.0
0 

0.53 0.0
0 

0.5 0.0
1 

Polyamine N8-Acetyl 
spermidine 

8.44 0.0
2 

0.73 0.0
0 

2.71 0.0
0 

1.01 0.3
2 

1.22 0.0
0 

0.77 0.0
0 

1.03 0.0
0 

0.62 0.0
0 

0.04 0.8
0 

PUFA Alpha-Linolenic  
acid 

- - 0.61 0.9
3 

1.98 0.3
7 

-0.29 0.6
0 

-1.03 0.8
3 

0.31 0.6
2 

-1.26 0.5
2 

-1.34 0.5
9 

-1.47 0.5
2 

PUFA Linolenelaidic acid - - 2.32 0.9
6 

-1.85 0.0
2 

0.05 0.5
3 

-1.74 0.1
7 

1.01 0.2
6 

-1.36 0.5
9 

-2.73 0.1
8 

0.01 0.5
2 

Pyridine Pyridoxal - - 0.82 0.1
0 

0.24 0.9
3 

1.31 0.5
3 

1.01 0.7
1 

1.04 0.6
3 

0.19 0.6
2 

0.22 0.4
1 

0.23 0.7
6 

Pyridine Pyridoxamine -1.36 0.1
7 

-1.96 0.0
1 

-0.32 0.8
2 

1.79 0.3
8 

0.01 0.8
0 

0.51 0.6
7 

-0.09 0.4
4 

0.06 0.6
9 

-0.48 0.2
2 

Pyridine Pyridoxine -0.74 0.0
1 

-1.5 0.0
0 

6.99 0.0
0 

- - - - -1.13 0.6
6 

0.6 0.8
5 

1.39 0.0
4 

- - 

Pyrrolidine 1-Methyl 
pyrrolidine 

- - 2.06 0.0
2 

0.92 0.0
8 

-0.25 0.2
3 

0.91 0.6
3 

0.16 0.9
0 

0.88 0.0
1 

1.01 0.0
1 

1.54 0.0
0 

Pyrrolidine Pyrrolidine -0.6 0.3
4 

-0.89 0.5
5 

-0.82 0.3
3 

-0.99 0.6
5 

-2.59 0.0
9 

1.87 0.5
0 

-2.09 0.0
4 

-0.07 0.5
5 

-0.25 0.2
2 

SM SM(d18:0/14:0) -3.11 0.1
3 

-2.31 0.0
4 

-3.1 0.1
0 

- - - - - - -2.34 0.0
2 

-3.86 0.0
0 

-4.08 0.0
0 

SM SM(d18:1/16:0) -4.02 0.0
9 

-5.16 0.0
1 

-3.9 0.0
4 

1.05 0.2
7 

-1.27 0.2
9 

-1.2 0.0
9 

-2.31 0.0
4 

-3.37 0.0
0 

-4.28 0.0
0 
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Figure S 4 Pearson’s correlation analysis between the relevant metabolites identified within each different breast cancer cell line. Pearson’s 
coefficient is set in a range of 1 to -1, indicative of a positive and negative correlation, respectively. 
 
 
Table S 5 Chemical properties of the identified amino acids altered upon treatement with IC50 dose of Olaparib. 

 
Name Polarity S N O C:H  

Glutamine Polar - 2 3 0.5 

Arginine Polar - 4 2 0.4 

Proline Non-polar - 1 2 0.6 

Methionine Non-polar 1 1 2 0.5 

Glycine Non-polar - 1 2 0.4 

Threonine Polar - 1 3 0.4 

Taurine Zwitterion 1 1 3 0.3 

Hypotaurine Zwitterion 1 1 2 0.3 
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Alanine Non-polar - 1 2 0.4 

Asparagine Polar - 2 3 0.5 

Aspartate Polar - 1 4 0.6 

Serine Polar - 1 3 0.4 
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