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A Method for Variance-based Sensitivity Analysis
of Cascading Failures

Aaron S. C. Leavy, Georgios A. Nakas, and Panagiotis N. Papadopoulos, Member, IEEE

Abstract—Cascading failures of relay operations in power
systems are inherently linked with the propagation of wide-
area power system blackouts. In this paper, we consider a
power system cascading failure as an indicator matrix encoding:
what power system relays operated within a cascading failure
inherently capturing the component and the sequence of tripping
events. We propose that this matrix may then be used with
extended forms of variance-based sensitivity estimators to quan-
titatively rank how sensitive observed power system cascading
failures are to power system variables, considering overall system
cascading failures as well as cascading failures grouped by
network area and relay types. We demonstrate our proposed
method by investigating the sensitivity of cascading failures to
relay parameters, system conditions, and fault location using a
version of the IEEE 39 bus model modified to include protection
relays, wind farms, and tap-changing transformers. Input power
system variables included: system operational scenario, distur-
bance location, relay parameters or thresholds. The Case Studies’
results confirm the method’s utility by successfully generating
relative rankings of input variables’ importance with respect to
cascading failure propagation. The results also show cascading
failures’ sensitivity to input variables to be high due to non-linear
relationships between input variables and cascading failures.

Index Terms—Cascading failures, power system cascading fail-
ures, protection relay thresholds, sensitivity analysis, sensitivity
indices, variance-based sensitivity analysis.

I. INTRODUCTION

MANY observed wide-area blackouts have historically
occurred after chains of successive control and pro-

tection relay operations before the afflicted power system
eventually collapsed, as covered in [1], [2]. The profession
has therefore converged towards the concept of cascading
failures. This term-of-art is defined in [2], which reviews
methods and analysis approaches applied to addressing the
cascading failures problem. Cascading failures in electrical
power systems are high impact low probability events, where
the impact can be extremely detrimental to societal functioning
especially where these cascading failures lead to wide-area
blackouts [1]. An active area of cascading failure research
focuses on quantifying the effect of power system variables
or parameters on cascading failure propagation. However, a
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variance-based sensitivity analysis method to quantify the
variance of cascading failures with respect to power system
variables has not been proposed in prior works. This paper
proposes such a variance-based sensitivity method.

Many previous works on cascading failures apply analysis
methods which are fundamentally steady-state in nature, i.e.
they do not model system dynamics. This is a simplification of
realistic analysis of cascading failures, and therefore engenders
new avenues of research into tractable cascading failures
analysis methods explicitly incorporating dynamics [2]. Typ-
ically, these dynamic approaches are in the form of root
mean square (RMS) phasor time domain simulations [2]. In
addition, [3] highlights the lack of understanding and complex
nature of mechanisms participating in cascading failures as
well as the importance and need of cascading failure analysis
tools that capture such mechanisms. Ref. [4] provides an
overview of to cascading failure modelling and simulation
issues.

A particular modelling framework incorporating system
dynamics specifically orientated towards cascading failures
analysis is proposed in [5], which explicitly allows the mod-
elling of typical controller dynamics and protection relays. The
work in [5] compares a proposed dynamics-based framework
with a quasi steady-state framework, and demonstrates the
substantial deviation in observed cascading failures depending
on the choice of dynamics versus steady-state framework.
The authors of [5] also indicate the importance of dynamic
assumptions related to load models employed in the dynamics
framework, which shows cascading failures to be sensitive to
dynamic model approximations. The issue of protection relay
modelling in dynamics studies for the purpose of cascading
failure research is addressed in [6]. The proposal of [6]
is a steady-state approach for generating lists of protective
relays which may be critical to cascading failure propagation.
This highlights these listed relays to be explicitly modelled
in dynamic simulations assessing cascading failures, whilst
ignoring relays deemed to be less important. The authors of [6]
state the critical importance of including protection relays
in cascading failures analysis, yet they show by implication
that not all protective relays may be necessary by the very
demonstration of their proposed method.

The results in [5], [6] indicate that there is the poten-
tial for complex sensitivities when considering modelling
assumptions. Some formal effort has been undertaken to
rigorously address sensitivity analysis in dynamic models
in [7], which reviews a range of sensitivity analysis methods
applied to dynamic simulations. The authors of [7] state that
a variance-based sensitivity method [8]—often referred to
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with the term Sobol method—qualitatively represents a good
balance between computational tractability and result utility
for their motivating problem. However, this approach did not
specifically consider cascading failures nor the implementation
of protection devices.

A successive steady-state approach is proposed in [9] to
model cascading failures, incorporating modelling of a range
of protection relays. Although not the main thrust of their
work, the authors perform a sensitivity analysis of some input
parameters on two measures of resilience. First-order effects
are calculated, which quantify the share of the variance in the
resilience measures which can be individually apportioned to
each of the input parameters, i.e. ignoring interactions between
input parameters.

An investigation into the effects of power re-dispatch policy,
and network line and generator topology hyper-parameters on
both power loss and line failures during cascading failures
is performed in [10]. The work in [10] uses a steady-state
simulation approach, and uses graphical means to assess input-
output relationships. In [11], authors review categories of
approaches to under-frequency load shedding (UFLS) scheme
conceptual design and implementation. UFLS relays are used
to disconnect system load on detection of a low system fre-
quency condition. Such a condition will typically occur during
an acute lack of generation within the system; hence, the UFLS
relays can disconnect load in order to reduce generation-load
imbalance. A key theme of [11] is the complexity of setting
UFLS relay thresholds in a qualitative manner in order to avoid
deleterious propagation of blackouts. Although [11] reviews
approaches in the literature for setting relay thresholds, another
common implied theme is lack of attention paid as part of the
analyses to the actual power system cascading failure itself
which UFLS relay operations themselves are part of. In [12],
cascading failures are investigated using dynamic simulations.
Hidden failures of protection devices are also represented, by
investigating the possibility of the protection devices tripping
before reaching their preset thresholds.

In [13], a modified version of the IEEE 39 bus model is
extended with: demand transformers and tap changers; auto-
matic generation control; the addition of some wind farms; and
the addition of protection relays. The modified model is then
used to generate power system cascading failures via dynamic
simulations including relay modelling whilst considering input
power system operational scenarios and three-phase fault
location. The contribution of [13] are descriptive statistics
results of observed power system relay operations during
cascading failures which show: firstly, inclusion of demand
transformer tap changers in dynamic simulations decreases
the number of cascading failures, and secondly; inclusion of
automatic generation control decreases the number of UFLS
operations. Ref. [13] only provides descriptive statistics results
of observed power system relay operations during cascading
failures which highlight the impact of relevant mechanisms
(tap changers and automatic generation control) to the number
of cascading failures and relay trips. Our proposed method
is demonstrated in this paper using the power system model
developed and used within [13]. However, [13] does not allow
for quantitative assessment to enable the linking of observed

cascading failure relay operations with input power system
operational scenarios and disturbance locations in a manner
which could detect the relative importance of those input
variables with respect to cascading failure propagation. Here
lies the difference between the contributions of [13] and our
paper’s contributions: we propose a method which can be used
to perform variance based sensitivity analysis which allows
ranking of input variables importance with respect to cascading
failure propagation.

In [14], sequences of circuit outages are considered explic-
itly by forming influence graphs from sequence data to create
a Markov chain model. This Markov chain model can then be
used for statistical analysis purposes. Protective relay devices
are intrinsically linked with cascading failure propagation
as it is often protective relays which trip circuits causing
circuit outages of the type studied by [14]. The work in [14]
therefore emphasises the utility of focussing on cascading
failure sequences themselves whether modelled as generic
equipment outages such as the circuit outages in [14], or our
proposed method of considering relay operations explicitly.

We shall now explain the motivation of our work, with
reference to the aforementioned prior works in the literature.

It is clear from [1], [2] that cascading failures repre-
sent a significant risk to successful power system operation.
Yet it is also clear that much work remains to incorporate
reasonable consideration of system dynamics into cascading
failure studies, a task principally complicated by the implied
computational burden. Nonetheless, works such as [5], [6],
[9] add strong emphasis to the need to model dynamics,
particularly protective relays. Both [9], [10] imply that per-
forming sensitivity analysis with respect to cascading failure
studies could provide useful results to engineers. However,
both works are primarily concerned with measures of the
outcomes or impacts of cascading failures rather than the
cascading failure sequences themselves. Explicitly modelling
protective devices in dynamic simulations adds significant
model complexity as evidenced by [5], [6]. This implies that
rigorous sensitivity analysis should be a method available to
engineers to identify how cascading failures may be affected,
and moreover what parameters are most important with re-
spect to dynamic modelling assumptions; this is possible via
our proposed method. The contributions of [14] imply that
cascading failures in power systems are intrinsically linked by
the unique sequence of relay operations observed during the
cascading failure if one assumes that circuit outages are being
driven by relay operations. Considering cascading failures in
this manner allows a quantitative and detailed representation of
cascading failures amenable to performing sensitivity analysis.

The ability to perform sensitivity analysis on cascading
failures themselves—as opposed to the outcomes of cascading
failures such as energy not served or customers interrupted—
would allow engineers to rank the importance of variables
of interest on cascading failures, and therefore offer valuable
information for more targeted planning and operation of the
power system in consideration of these variables. We do not
believe that sensitivity analyses of cascading failures them-
selves with respect to relay parameters have been performed
explicitly in the literature.
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Our contribution is as follows.
1) Power system cascading failures are treated as a novel

indicator matrix of unique ordered relay operations
capturing the exact components involved, and the order
in which the components are tripping. This enables the
application of the proposed variance-based sensitivity
analysis estimators that allows quantitative assessment
on power system cascading failures sequences and not
just the impact of the cascade, offering more infor-
mative assessment. Three Case Studies to show the
methods utility for identifying cascading failures sen-
sitivity to various input variables or parameters, includ-
ing operational scenario variables and protection device
thresholds are presented. Three Aggregations, grouping
cascading failures by relay type and network area are
also proposed, to analyse the impact in a meaningful
manner, e.g. identify specific areas that are affected or
particular mechanisms related to voltage or frequency
related phenomena.

2) Sensitivity analysis indices are therefore estimated for
any input variables to the power system; we specifically
investigate the variables: system demand, wind farm
generation output, disturbance locations, and implicit
and explicit relay threshold settings. Our results show
these variables to non-linearly influence the propagation
of cascading failures.

In consideration of [6], [11] and [13], we perform three Case
Studies in order to demonstrate the utility of our proposed
method for the purpose of systematically determining the
sensitivity of cascading failures to power system variables.
We perform these three Case Studies over three Aggregations,
which are three different ways of aggregating observed power
system cascading failures by characteristic.

II. PROPOSED METHODOLOGY

We shall now explain our proposed method in detail: how
we consider cascading failures as indicator matrices of oper-
ated protection relays capturing the sequence of specific relay
operation (e.g. over-voltage relay operation of a wind farm)
and therefore providing a way to quantitatively characterise
cascading failures. This method therefore allows the engineer
to investigate which power system variables—out of a set
specified by the engineer—cause most of the variance in power
system cascading failures. The we shall explain our estimators
to calculate first order and total effects sensitivity indices given
a cascading failure indicator matrix. This approach enables the
identification of the ranking of impact a set of input variables
have on the appearance and propagation of cascading failures
defined in the detailed manner of the indicator matrices.

The relative ranking of input variables allows identification
of variables that are relatively more important for causing
variance within power system cascading failures. This allows
further studies to be performed predicated on this ranking to
generate policies to mitigate power system cascading failures.
For example, if the parameter thresholds for UFLS relays are
relatively more important for cascading failure propagation
compared to other types of relays within a study, this means

that cascading failure mitigation schemes could be designed by
focussing upon UFLS parameter value setting as a top priority
over all other relay types. Our method’s utility is during
planning timescales and offline analysis and aims at informing
protection scheme design as well as planning or operational
interventions to mitigate the risk of propagation of cascading
failures. For example, identifying important operational pa-
rameters or protection relay thresholds that have an important
role in the propagation of cascades and consequently particular
attention or measures need to be put in place to address this. In
addition, it allows for targeted sensitivity analysis with respect
to particular network areas or mechanisms (e.g. due to voltage
related phenomena).

A. Summary of Methodology

Our method can be summarized via the following list of
steps. We also indicate in brackets which Sections within
Sec. II are relevant to each step.

1) Input power system variables to be investigated for
their effects on cascading failure variance are defined
a priori for the specific case study at hand; upper and
lower bounds for these variables must also be defined
(Sec. II-E).

2) A block of dynamic power system simulations initialised
with initial conditions sampled from these input power
system variables, are run to generate cascading failures
(Sec. II-B, II-E and II-J).

3) The sequences of operated relays are transformed to
cascading failure indicator matrices for a particular
Aggregation, and concatenated to a sequential running
tally of previous cascading failure indicator matrices
(Sec. II-C, II-D and II-I).

4) All cascading failure indicator matrices tallied so far are
then used to estimate first order and total effects indices
(Sec. II-F, II-G, II-H, and II-I).

5) The indices are ranked to show relative importance of
power system variables with respect to cascading failure
variance.

6) Steps 2-4 can be repeated with new independent sim-
ulation blocks drawn from the engineer’s defined input
variables, whilst keeping a running tally of all cascading
failures with each new independent simulation block.
Indices and their rankings will converge towards their
population values with increasing numbers of simulation
blocks.

The input variables to be studied as well as their upper
and lower bounds need to be defined before performing the
sensitivity analysis. This choice can be informed by historic
or forecasted data (e.g. for operational variables like system
demand) or by specific design considerations (e.g. for investi-
gating the sensitivity of protection device thresholds). In our
work, we used engineering judgement to choose upper and
lower bounds depending on the specific case study at hand, as
described in detail in Sec. III-C. In order to consider system
operational conditionsand therefore initial conditions for the
underlying power system simulationsa set of operational power
system variables (e.g. system demand, wind generation, etc.),
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are specified. For example: system demand could be repre-
sented by one variable; or a set of many variables (one per load
location) with individually engineer-specified prior sampling
distributions, depending on the level of detail required in the
analysis.

The simulations we perform do not inherently incorporate
any system or relay uncertainties; the only source of uncer-
tainty in our Case Studies which we use to demonstrate our
proposed method is due to the quasi-Monte Carlo sampling
of input variables as part of the variance-based sensitivity
calculations. For a particular point value of input variables,
the corresponding power system simulations are deterministic.
Uncertainty in model and relay modelling can implicitly
be considered with the choice of input variables and their
associated range, e.g. using the threshold of a protection device
activation as an input variable as shown in the case studies
presented in Sec. III.

Note that our method is agnostic to the specific dynamic
models used to represent power system components within
the underlying power system simulations; the method relies
upon the protection relay operation sequence. Therefore, any
level of detail within for example relay models can be cap-
tured (potentially limited by the simulation framework used).
This will be implicitly considered via the influence of these
dynamic models on the order of protection relay operations
within the cascading failures.

The proposed method is concerned with quantifying the
effect on cascading failure variance due to a set of defined
input variables’ variances, while capturing the detailed dy-
namic behaviour of the system including the effect of pro-
tection devices. This allows for more informative design of
countermeasures with respect to typical contingency analysis
studies. Although we demonstrate our method using three
Case Studies, the method is more interchangeable than just
those Case Studies shown in this paper: the choice of input
variables, and cascading failure Aggregations can be defined as
needed, thus allowing quantitative investigation of the impact
of various parameters on the propagation of cascading failures.

B. Cascading Failures as a Protection Relay Sequence

We consider a cascading failure to be an ordered sequence
of unique protection relays observed to have operated as a
consequence of a disturbance applied in a particular power
system simulation.

Using dummy variables, we then transform a cascading
failure into a two-dimensional matrix format with the matrix
columns indexed by relay name whilst the matrix rows are in-
dexed by event number; event number represents the ordering
in which unique relays operated. Elements within this matrix
are binary-valued, indicating which unique protection relays
have operated in what order during a time domain simulation.
Where a matrix element is equal to 1, this indicates that the
specific relay r operated at the specific event number e; where
as a matrix element with value 0 indicates that a relay r did not
operate at that event number e. This means that only a single 1
may exist in each row and in each column of this matrix
representation of a particular cascading failure sequence. This

TABLE I
AN EXAMPLE OF OBSERVED CASCADING FAILURE SEQUENCES

Sim. No. Sequence
1 Relay A Relay B

2 no relays operated

3 Relay C Relay A Relay D

TABLE II
AN INDICATOR MATRIX REPRESENTATION OF THE CASCADING FAILURE

FROM SIMULATION NUMBER 1 IN TABLE I

Relay Name
Sim No. Event No. Relay A Relay B

1 1 1 0

1 2 0 1

TABLE III
AN INDICATOR MATRIX REPRESENTATION OF THE CASCADING FAILURES

FROM SIMULATIONS NUMBER 1 AND 2 IN TABLE I

Relay Name
Sim No. Event No. Relay A Relay B

1 1 1 0

1 2 0 1

2 1 0 0

2 2 0 0

allows the detailed evolution of relay events to be captured,
i.e. what relays trip in what order with respect to other relays.

C. Cascading Failure Sequence to Cascading Failure Indica-
tor Matrix Transformation

This encoding process can be explained through an example.
Let us assume three separate power system simulations are
performed, resulting in the observed cascading failures as in
Table I

The cascading failures in Table I include four unique relays
labelled: Relay A, Relay B, Relay C, and Relay D. Note
that no relays were observed with the second simulation, thus
the cascading failure from the second simulation is an empty
sequence.

We may then transform the first cascading failure—which
has two events—into an indicator matrix representation as in
Table II.

If we transform the second simulation cascading failure—
even though it is an empty sequence—into an indicator matrix
representation and append with the indicator matrix represen-
tation of the cascading failure result from the first simulation
in Table II, we then have Table III.

As a cascading failure—with three events as well as two
new previously unseen unique relays—was observed in the
cascading failure from Simulation Number 3 in Table I,
appending the indicator matrix representation of the cascading
failure observed in Simulation Number 3 to the indicator
matrix in Table III increases the Event Number and Relay
Name dimension lengths, giving Table IV.
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TABLE IV
AN INDICATOR MATRIX REPRESENTATION OF THE CASCADING FAILURES

FROM ALL SIMULATIONS IN TABLE I

Relay Name
Sim No. Event No. Relay A Relay B Relay C Relay D

1 1 1 0 0 0

1 2 0 1 0 0

1 3 0 0 0 0

2 1 0 0 0 0

2 2 0 0 0 0

2 3 0 0 0 0

3 1 0 0 1 0

3 2 1 0 0 0

3 3 0 0 0 1

D. Overall Cascading Failures Indicator Matrix

We append multiple cascading failure matrices together for a
total of N (K + 2) separate time domain simulations observed
from N separate blocks of simulations and K input variables,
into a results matrix CN with elements csN ,rN ∈ {0, 1}.
The N (K + 2) separate time domain simulations stem from
simulation block matrices A, B, and AB

i and their vectors of
results f (A), f (B), and f

(
AB

i

)
as explained in Sec. II-E.

CN = [csN ,rN ] , sN ∈ SN , rN ∈ RN (1)

SN = {(n, k, eN ) |n ∈ NN , k ∈ K, eN ∈ EN} (2)

NN = {1, 2, · · · , N} (3)

K = {1, 2, · · · ,K,K + 1,K + 2} (4)

RN = {1, 2, · · · , RN} (5)

EN = {1, 2, · · · , EN} (6)

In (1)-(6), K is the number of independent input variables
to which we are interested in determining the sensitivity
of cascading failures. Note in (1)-(6) the subscript N ; this
indicates that the subscripted quantity is after N simulations
blocks have been performed. Therefore, RN is the set of
all unique relays observed to have operated during the N
simulation blocks; similarly, EN is the set of event numbers
observed from the longest cascading failure seen during the N
simulation blocks, i.e. equal in length to the cascading failure
with the most relay operations seen in N simulation blocks.
RN is the number of unique relays observed to have operated
during the N simulation blocks; EN is the largest number of
cascading failure events within any of the sequences observed
to have occurred during the N simulation blocks.

As independent simulation blocks are simulated via time
domain simulations, observed cascading failure sequences (if
any) are transformed to a matrix representation and appended
together. Unique relay columns are appended with any relays
which have not already been observed in previous simulation
blocks. Event number rows are appended such that the number
of unique relay event rows is equal to the longest observed
cascading failure seen in the simulated blocks so far. This
means that all cascading failures from earlier simulation blocks

are included when additional blocks are simulated, so that
the cascading failures result indicator matrix CN+1 may be
defined as in (7)-(12).

CN+1 =
[
csN+1,rN+1

]
, sN+1 ∈ SN+1, rN+1 ∈ RN+1 (7)

SN+1 = {(n, k, eN+1) |n ∈ NN+1,

k ∈ K, eN+1 ∈ EN+1} (8)

NN+1 = {1, 2, · · · , N,N + 1} (9)

K = {1, 2, · · · ,K,K + 1,K + 2} (10)

RN+1 = {1, 2, · · · , RN , · · · , RN+1} (11)

EN+1 = {1, 2, · · · , EN , · · · , EN+1} (12)

Note that even though NN—the simulation block index
set after N simulation blocks—is a subset of NN+1—the
simulation block index set after N + 1 simulation blocks—
no additional unique relays or a greater number of unique
events may necessarily have been observed in the (N + 1)-th
simulation block compared to the preceding (N)-th simulation
block. Therefore the number of unique relays may be the same
between the N simulation block and the N + 1 simulation
block; similarly, the longest cascading failure observed in
the N + 1 simulation block may be the same length as the
longest cascading failure observed in the N simulation block.

In the example in Sec. II-C, R1 = 2, and E1 = 2 since N =
1 for the cascading failure shown in Table II. In Table III, N =
2 but R2 = 2 and E2 = 2 since there are no additional relays
observed and no longer cascading failure than what is observed
in the preceding Table II. However after another simulation
block sample, Table IV gives N = 3, R3 = 4, and E3 = 3
as there are two new relays and a longer cascading failure of
three relay operations observed.

This sequential approach of generating a new simulation
block, observing any cascading failures from the new sim-
ulation block, and appending the results to all previously
observed cascading failures results (including results with no
observed cascading failures) from previous simulation blocks
allows sequential estimation of sensitivity indices after each
simulation block.

Given a cascading failure indicator matrix including the
results of at least one simulation block, we then apply an
extended form of variance-based sensitivity index estimators
to calculate scalar values of sensitivity index estimates for each
input variable; these estimators are shown in (23) and (24) and
are explained in Sec. II-H. After estimating sensitivity indices,
we may rank them from largest to smallest thus indicating
the relative importance of the input variables with respect to
cascading failure sensitivity, i.e. a very large estimate for a
particular input variable implies that cascading failures are
very sensitive to this variable and therefore this would be
ranked highly relative to the other input variables.
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E. Experimental Design for Estimation of Variance-based
Sensitivity Indices

1) Simulation Block Matrices: A matrix of size N ×2K is
created by generating N sample points within a 2K-dimension
unit hypercube, either completely randomly as in a true Monte
Carlo approach or using a quasi random sequence generator
such as a Sobol sequence. The first K columns of the matrix
are then used after rescaling to construct a matrix A, and
the last K columns of the matrix are used after rescaling to
construct a matrix B. Note that the rescaling of the N × K
matrices used to form A and B is to ensure that the i-th
columns in A and B comply with the upper and lower bounds
of the actual input variable Xi.

The two constructed matrices A and B are K columns wide
and N rows long, where K is the number of input variables
under study and N is the number of simulation blocks we
wish to simulate. A set of matrices AB

i is formed from A
and B, where all columns in AB

i are from A except from
the i-th column which is from B. Therefore there are K
different AB

i matrices, where each AB
i matrix is N rows long

and K columns wide. The matrix elements in A, B, and AB
i

represent scalar realizations of input variables Xi.
The A, B, and AB

i matrices represent sampling matrices
specially designed for estimating certain integrals using Monte
Carlo schemes. Interested readers are referred to [8], [15]
and the references therein for a more involved discussion and
conceptual reasoning behind the A, B, and AB

i matrices.
2) Result Matrices: Power system simulations are per-

formed using the simulation block matrices A, B, and AB
i

as inputs. Each row of matrices A, B, and AB
i are separately

evaluated via a power system simulation: each row is used to
set the input variables Xi for the multivariate function f (i.e.
the simulation) for all rows in A, B, and AB

i . This results
in a total of N (K + 2) simulations being performed: N
simulations from A; another N simulations from B; and KN
simulations due to all of the AB

i matrices. Results vec-
tors are therefore given by f (A), f (B), and f

(
AB

i

)
,

where f (A), f (B), and f
(
AB

i

)
are all N elements long

and there are K separate f
(
AB

i

)
vectors.

F. Estimators for Scalar-valued Outputs

Given a set of result vectors f (A), f (B), and f
(
AB

i

)
, the

first order effects sensitivity index Ŝi and total effect sensitivity
index ŜT,i estimators for the i-th input variable are calculated
as shown in (14) and (15), based upon numerators Formula
(b) and Formula (f) respectively in [8, Table II].

V [f (A) , f (B)] =
1

2N

 N∑
n=1

(
f (A)

2
n + f (B)

2
n

)

− 1

2N

(
N∑

n=1

(f (A)n + f (B)n)

)2
 (13)

Ŝi =
1
N

∑N
n=1 f (B)n

(
f
(
AB

i

)
n
− f (A)n

)
V [f (A) , f (B)]

(14)

ŜT,i =
1

2N

∑N
n=1

(
f (A)n − f

(
AB

i

)
n

)2
V [f (A) , f (B)]

(15)

In (13)-(15), subscript n indicates the n-th simulation
block out of N simulation blocks studied. The quan-
tity V [f (A) , f (B)] represents the total variance of all
(quasi) independent simulation block results in vectors f (A)
and f (B).

G. Estimators for Vector-valued Outputs

The estimators Ŝi and ŜT,i in Sec. II-F are only for scalar
outputs of f . Some attention has been paid in the literature
to variance-based sensitivity indices for vector-valued experi-
ments or models, i.e. Y = f (X1, X2, · · · , Xi). A first order
effects sensitivity index is conceptualized and a corresponding
estimator provided for a vector-valued output in [16]. The
first order effects sensitivity index Si for a vector-valued
output Y with J elements of a vector-valued function is shown
in (16), where Si,j are the first order effects sensitivity indices
calculated individually for the i-th input variable and the j-th
output in Y; and V (Yj) is the total variance of the j-th output
in Y.

Si =

∑J
j=1 V (Yj)Si,j∑J

j=1 V (Yj)
(16)

Although not explicitly addressed in [16], it has been
accepted by other researchers that a similar approach to (16)
may be used to determine the total effects sensitivity index
as in (17); although not an exhaustive paper on the subject,
authors in [17, Sec. 2.1] state an equation similar to (17).
Note that in (17), ST,i,j are the total effects sensitivity indices
calculated individually for the i-th input variable and the j-th
output in Y; and V (Yj) is the total variance of the j-th output
in Y.

ST,i =

∑J
j=1 V (Yj)ST,i,j∑J

j=1 V (Yj)
(17)

We assume that the estimators Ŝi and ŜT,i for Si and ST,i

respectively for a vector-valued output are simply calculated
from the estimators Ŝi,j and ŜT,i,j calculated separately for
each scalar-valued output within Y using the estimators in (14)
and (15); this approach is shown in (18) and (19).

Ŝi =

∑J
j=1 V (Yj) Ŝi,j∑J

j=1 V (Yj)
(18)

ŜT,i =

∑J
j=1 V (Yj) ŜT,i,j∑J

j=1 V (Yj)
(19)

H. Extended Variance-based Sensitivity Index Estimators

We propose that the estimators in (18) and (19) may be
extended to another dimension which for the purposes of this
example we shall assume is of length M , giving (20) and (21).
Thus, in (20) and (21) the simulations are assumed to produce
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matrix-valued output Y with length M in one dimension and
of length J in the other dimension.

Ŝi =

∑M
m=1

∑J
j=1 V (Ym,j) Ŝi,m,j∑M

m=1

∑J
j=1 V (Ym,j)

(20)

ŜT,i =

∑M
m=1

∑J
j=1 V (Ym,j) ŜT,i,m,j∑M

m=1

∑J
j=1 V (Ym,j)

(21)

We assume that the concatenation of power system simula-
tions f—where f is constructed from results f (A), f (B),
and f

(
AB

i

)
—takes in as inputs simulation block matri-

ces A, B, and AB
i of size N × K where there are N

(quasi) independent simulation blocks for a K variable prob-
lem, and returns an aggregated cascading failures indicator
matrix CN , i.e. CN = f

(
A,B,AB

i , . . . ,A
B
K

)
and CN is

defined as in (1)-(6).
Therefore, all c(n,1,eN ),rN in CN correspond to the cascad-

ing failure indication of n-th simulation block, eN -th unique
event number, and rN -th unique relay due to the A matrix
inputs; similarly, all c(n,K+2,eN ),rN in CN correspond to the
cascading failure indication of n-th simulation block, eN -th
unique event number, and rN -th unique relay due to the B
matrix inputs. And lastly, all c(n,i+1,eN ),rN , i ∈ {1, 2, · · · ,K}
in CN correspond to the cascading failure indication of n-th
simulation block, eN -th unique event number, and rN -th
unique relay due to the i-th matrix AB

i inputs.
Based upon (20) and (21), we propose estimators Ŝi,N

and ŜT,i,N after N simulation blocks for the indices Si

and ST,i in (23) and (24) respectively. In (22), (23) and (24),
the elements c(n,k,eN ),rN are within CN . Estimators Ŝi,N

and ŜT,i,N are calculated by averaging over sensitivity indices
individually calculated for each unique relay and unique event
number, weighted by their corresponding unique relay variance
and unique event number variance.

VN =
1

2N

EN∑
eN=1

RN∑
rN=1

 N∑
n=1

(
c2
(n,1,eN ),rN

+ c2
(n,K+2,eN ),rN

)

− 1

2N

(
N∑

n=1

(
c(n,1,eN ),rN + c(n,K+2,eN ),rN

))2
 (22)

Ŝi,N =
1

NVN

EN∑
eN=1

RN∑
rN=1

[
N∑

n=1

c(n,K+2,eN ),rN

·
(
c(n,i,eN ),rN − c(n,1,eN ),rN

) ]
(23)

ŜT,i,N =
1

2NVN

EN∑
eN=1

RN∑
rN=1

[
N∑

n=1(
c(n,1,eN ),rN − c(n,i,eN ),rN

)2 ]
(24)

In (22), (23) and (24), all variables and parameters have the
same meaning as those in (1)-(6). The quantity VN in (22)

represents the total variance calculated across all N (quasi)
independent simulation blocks simulated so far. The indices
calculated by (23) and (24) can be used to rank power system
variables with respect to power system cascading failures.

I. Output Aggregations

In this paper, we also consider three of what we refer to as
Aggregations: Overall Cascading Failure Aggregation; Relay
Type Aggregation; and Network Area Aggregation.

These Aggregations represent different ways of aggregating
cascading relay operations. The Overall Cascading Failure
Aggregation aggregates all relay operations within the entire
model, and can be considered as a general measure of cascad-
ing failure sensitivity for the entire modelled power system.
The Relay Type Aggregation aggregates different types of re-
lays into different sets of cascading results, therefore allowing
sensitivity of cascading failures of specific relay types to be
measured separately. Lastly, the Network Area Aggregation
aggregates relays by network area rather than relay type,
and so can be viewed as cascading failure sensitivity within
individual network areas.

These Aggregations allow the comparison of sensitivities of
cascading failures for the same system input variable values.
For example, cascading failures in one part of a network may
have different sensitivities to a set of input variables than
cascading failures in another part of the network for the same
set of input variables. A similar comparison can be made with
relay types; for example, voltage relay cascading failures are
likely to have higher sensitivity to voltage relay thresholds and
this can be seen via the Relay Type Aggregation.

Note that in the preceding discussion the aggregation
of relay indication is assumed to be performed across all
unique relays and cascading failure event numbers, such as
in (22), (23) and (24). We use this aggregation to perform
sensitivity analysis on the total cascading failures within the
entire power system.

However it is possible to consider the cascading failure
indicator matrix results as being assembled from groups
of cascading failure indicator matrix results. It is therefore
straightforward to aggregate unique relays and event numbers
within each of these groups of output cascading failure indi-
cator matrices, then apply (22), (23) and (24) to each of the
groups of indicator matrix results.

These alternative aggregations (aside from the total system
cascading failures aggregation implied until now) could be
applied to different kinds of groups depending upon the
engineer’s specific needs.

J. Quasi Monte Carlo Sampling

We use a quasi Monte Carlo approach using Sobol se-
quences to sequentially generate the (quasi) independent simu-
lation blocks. After each simulation block, the point estimators
for first order Ŝi,N and total ŜT,i,N effects sensitivity indices
are calculated. We use implementations of functions from
the SALib library [18] which are themselves based on [19]
to sequentially generate the simulation block matrices for
subsequent use in time domain simulations. Sobol sequences



8

are an example of a low-discrepancy sequence, which may
be used to generate points within a hypercube such that the
points are highly dispersed to efficiently explore the hypercube
volume.

The quasi Monte Carlo approach allows representative sam-
pling of the input variables such that the estimated first order
and total effects indices will converge towards population
parameters with increasing number of simulation blocks. This
means that the estimates will be representative whilst avoid-
ing computational intractability of exhaustively simulating all
possible scenarios from the defined input variables.

K. Scalability of Method

The simulation blocks require (K + 2) simulations per
block. This simulations are not dependant on each other, there-
fore the are embarrassingly parallel. This means that a comput-
ing platform with multiple processing cores can be used, with
each simulation being run on a separate processor core. Hence,
total wall clock time of our proposed method increases with:
increasing simulation block number, and increasing number
of input variables. Total time can be significantly decreased
by increasing number of processor cores available for parallel
power system simulations per simulation block.

In our Case Studies, we have simulated 2000 blocks on a
PC with 16 GiB RAM and an Intel Core i7-4790 processor
utilising 4 parallel processes. The simulation time is the most
time consuming part of the methodology. The Base Case Study
took 95.5 hours in total, where the power system simulations
took 90.5 hours while the calculation of first order and total
effect estimates took 5 hours. The UFLS Relay Frequency
Threshold Case Study took 148 hours in total, where the power
system simulations took 139 hours while the calculation of
first order and total effect estimates took 9 hours. Lastly, the
Protection Relay Threshold Case Study took 144 hours in total,
where the power system simulations took 138 hours while the
calculation of first order and total effect estimates took 6 hours.

III. TEST SYSTEM CASE STUDIES AND AGGREGATIONS

We now demonstrate our proposed method on three Case
Studies and three Aggregations using a modified form of the
IEEE 39 bus model [20]. This modified IEEE 39 bus model is
the same model as used within the work in [13]. The reason
for using a modified version of the IEEE 39 bus network is
twofold: i) to include the action of protection devices and
relevant mechanisms (e.g. actions of transformer tap changers)
that are important for the representation of cascading failures,
and ii) to include the dynamics of converter interfaced units
(by adding wind generation in this case) that can affect overall
system dynamic behaviour and consequently the evolution of
cascades in power systems with high penetration of converter
interfaced generation.

A. Modified IEEE 39 bus model

Our time domain power system model is identical to the
IEEE 39 bus model in Base Scenario in [13]. We shall
explain how this modified model differs from the IEEE 39
bus model [20].

1) Demand Splitting: All demands were split into five
separate demand blocks; where four of these blocks were equal
to 10% of total demand at that demand location, and the fifth
block equal to 60% of total demand at that demand location.

2) Demand Block UFLS: UFLS protection relays were
added to each of the four 10% demand blocks at each demand
location.

3) Wind Farms: Three aggregated wind farms were added
at busbars 5, 14, and 16 (as numbered in the original IEEE
39 bus model [20]). Each wind farm was modelled as an
aggregated single power converter interfaced machine.

4) Synchronous Machine Dynamics: All synchronous ma-
chines used sixth-order generator models. Each generator was
equipped with: an automatic voltage regulator; a power system
stabiliser; a governor; and an over-excitation limiter.

5) Transformers: Distribution transformers were included
with tap-changers, which were active during the time domain
simulations. The distribution transformers interconnected de-
mand blocks with the transmission network.

6) Protection Relays:
All synchronous generators were modelled with: under-

voltage, over-voltage, under-speed, over-speed, and out-of-
step protection relays. All three wind farms were modelled
with: over-voltage, under-voltage, over-frequency, and under-
frequency protection relays. We refer readers to [13] for more
detail on how these protection relays’ parameters were set.

B. Simulation Setup

We performed 120 s simulations in PowerFactory 2019
SP5 build 19.0.7. Each simulation was initialised from an
optimal power flow (OPF). Each OPF was itself initialised
by setting: total system demand level; and, individual wind
farm productions from each of the three wind farms. The
OPFs were used to: commit synchronous generators in the rest
of the model to supply the remaining system demand which
was not already met by the wind farms’ productions; and, to
calculate steady-state network variable values in preparation
for the phasor time domain simulations.

In addition, the synchronous machines were assumed to
be comprised of four equally-sized aggregated units acting in
a unified manner and loaded sequentially. Hence, the model
(aggregated) machines’ base powers were rescaled based upon
the total generation committed by the OPF, and the assumed
number of sequentially loaded machines required to meet the
total from the aggregated machine.

On running each time domain simulation, a three phase
short circuit fault was applied to the midpoint of one of the 34
circuits within the model. This fault was applied at t = 1 s,
and cleared at t = 1.07 s by disconnecting the fault and
switching out the circuit. This approach models a combined
ideal fault and fault clearance of 70 ms. Following fault
clearance, the time domain simulation was run until t = 120 s.
If any protection relay operation events were recorded during
the simulation, these were stored for later conversion into a
cascading failure indicator matrix as explained in Sec. II.

We performed 2000 simulation blocks for all Case Studies
and all Aggregations, i.e. substituting N = 2000 in Sec. II.
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Note that we did not consider relays which would be
expected to clear the fault, to be part of any cascading failure,
i.e. the actions of ideal transmission line relays to remove
the ideal in-zone applied fault are explicitly excluded from
the cascading failure sequence detection and therefore the
cascading failures indicator matrix.

C. Case Studies

In this paper, we study three Case Studies which use the
same model construction and data as in [13]. Our three Case
Studies are as follows.

1) A Base Case Study, where system demand, wind farm
generation, and disturbance location are considered.

2) A UFLS Relay Frequency Threshold Case Study, where
UFLS tripping threshold design function variables are
investigated in conjunction with the same power system
variables in the Base Case Study.

3) A Protection Relay Threshold Case Study, where the
effects of individual wind farm over-voltage relay trip-
ping thresholds are explicitly quantified simultaneously
in addition to the same power system variables in the
Base Case Study.

1) Base Case Study: Our Base Case was a five variable
sensitivity analysis of cascading failures with respect to system
operational conditions and short circuit fault disturbance loca-
tion. The system operational conditions represented system de-
mand and generation, and in particular the output of the three
added wind farms. The total system demand was apportioned
in equal percentage share to all demands in the model. Non
wind-farm generation was committed to satisfy the shortfall
between wind farm output and total system demand using an
OPF. The aim of this Case Study was to initially determine
the extent of the impact of power system variables on the
evolution of cascading failures. In addition, it was also used to
determine if the ranking of the Base Case Study variables was
qualitatively different from the variable rankings in the UFLS
Relay Frequency Threshold and Protection Relay Threshold
Case Study Case Studies.

The system condition and disturbance location were five
input variables, listed as follows using a short name identifying
label and a description: Fault Loc. fault location; Demand total
system demand and WF 1, WF 2, and WF 3 which were the
first, second and third wind farms productions as a percentage
of each wind farms’ installed capacity respectively. Bounds
were 1 and 34 for Fault Loc., 0.7 and 1.2 for Demand, and
0.0 and 0.1 for WF 1, WF 2, and WF 3.

All variables apart from Fault Loc. were assumed to be
real-valued, and so the transformation from the Sobol samples
between [0, 1] in these variables to be within the actual vari-
able bounds was trivial. Real-valued Sobol samples between
[0, 1] for Fault Loc. were mapped to the integer-valued inter-
val [1, 34] using the inverse transform method assuming all
integers in Fault Loc. were equally probable, which therefore
specified which of the 34 circuits to apply the short circuit
fault.

2) UFLS Relay Frequency Threshold Case Study: We also
studied the sensitivity of cascading failures to the under-
frequency tripping threshold on the UFLS protection relays
spread throughout the model at demand locations. The choice
to study UFLS threshold is motivated by a design challenge,
i.e. the specific threshold of UFLS can be seen a design
parameter and understanding the sensitivities with respect to
it is of use to system operators and planners. Hence, this
Case Study had seven input variables: all five input variables
from the Base Case Study, and an additional two variables as
follows: F coeff. coefficient of linear UFLS frequency threshold
design equation; and F const. constant of linear UFLS fre-
quency threshold design equation. Bounds were 0.0 and 0.1
for F coeff., and 0.1 and 0.9 for F const. respectively.

As each demand had five blocks where four were equipped
with UFLS relays, we assumed the following design equation
to set frequency thresholds f th

l for block relay l based upon
two free design variables F coeff. and F const.. Block relays
were numbered 1, 2, 3, and 4 corresponding to the four
demand blocks per demand location. The design equation (25)
was motivated by [11], which amongst other work indicates
typical UFLS relay tripping thresholds.

f th
l = 60− F coeff. · (l − 1)− F const., l ∈ {1, 2, 3, 4} (25)

3) Protection Relay Threshold Case Study: Our last Case
Study investigates the sensitivity of cascading failures to the
setting of over-voltage tripping thresholds on each of the three
aggregated wind farms. The justification for investigating this
is due to the preponderance of wind farm over-voltage tripping
events observed in the cascading failure results in [13]. The
choice to study activation thresholds of a protection devices
is motivated by understanding sensitivities related to hidden
failures of protection devices, or the impact of incorrect
settings. This Case Study had eight input variables: all five
input variables from the Base Case Study, and an additional
three variables with bounds 1.045 and 1.21 as follows: W1
OV, W2 OV, and W3 OV; representing first, second and third
wind farm over-voltage relay tripping thresholds respectively.

IV. DISCUSSION AND COMPARATIVE ASSESSMENT OF
RESULTS

The point estimates for all input variables in all three Case
Studies for the Overall Cascading Failure Aggregation are
included in Table V. Only a subset of results are included here
for the Relay Type and Network Area Aggregations. The point
estimates for all input variables for the UFLS Relay Frequency
Threshold Case Study for the Relay Type Aggregation are
given in Table VI. The point estimates for all input variables
for the Base Case Study for the Network Area Aggregation
are given in Table VII. In Table VII, the area aggregations are
as follows based upon [20]: Area 1: all relays at busbars 16,
19–24, and 33–36; Area 2: all relays at busbars 1–3, 17–18,
25–30, and 37–38; and Area 3: all relays at busbars 4–15,
31–32, and 39.

We found that the estimated first order effects sensitivity
indices for all input variables over all three Case Studies
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TABLE V
FIRST ORDER AND TOTAL EFFECTS SENSITIVITY INDEX POINT ESTIMATES AGGREGATED ACROSS CASCADING FAILURES

First Order Effects Total Effects
Input Base UFLS Design Params. Prot. Relay Thres. Base UFLS Design Params. Prot. Relay Thres.

Variable Mag. Rank Mag. Rank Mag. Rank Mag. Rank Mag. Rank Mag. Rank

Fault Loc. 0.10319 1 0.036383 1 0.081407 1 0.94748 1 0.94154 1 0.99618 1
Demand 0.0095928 2 0.001314 4 0.003392 3 0.82575 2 0.7586 4 0.89187 2

WF 1 0.0018148 4 -0.00003413a 7 0.000424 4 0.67888 5 0.53242 6 0.7068 4
WF 2 0.0018148 4 0.00030717 6 0.000424 4 0.69185 4 0.58325 5 0.69387 5
WF 3 0.0023334 3 0.00051195 5 -0.00084799a 7 0.72309 3 0.5258 7 0.7422 3
F coeff.. — — 0.0034813 3 — — — — 0.76952 3 — —
F const.. — — 0.014028 2 — — — — 0.83578 2 — —
W1 OV — — — — 0b 5 — — — — 0.18635 7
W2 OV — — — — 0.0046639 2 — — — — 0.36994 6
W3 OV — — — — -0.000424a 6 — — — — 0.10812 8

a Point estimate outwith the closed interval [0, 1].

TABLE VI
FIRST ORDER AND TOTAL EFFECTS SENSITIVITY INDEX POINT ESTIMATES AGGREGATED BY RELAY TYPES ON THE UFLS RELAY

FREQUENCY THRESHOLD CASE STUDY

First Order Effects Total Effects
Input Freq. Relays OOS Relays Volt. Relays Freq. Relays OOS Relays Volt. Relays

Variable Mag. Rank Mag. Rank Mag. Rank Mag. Rank Mag. Rank Mag. Rank

Fault Loc. 0.080722 2 0.17865 1 0.037758 1 0.42497 2 0.94197 1 0.91459 2
Demand 0.0092425 3 0 3 -0.0020977a 5 0.23789 3 0.7349 2 0.73668 3

WF 1 0.0008644 7 0 3 -0.0034087a 7 0.085177 7 0.36542 5 0.36618 7
WF 2 0.0045547 6 0 3 -0.0028843a 6 0.090014 5 0.35324 6 0.40433 5
WF 3 0.0046545 5 0 3 0.00026221 3 0.089383 6 0.38166 4 0.38545 6
F coeff.. 0.0081121 4 0 3 -0.00078663a 4 0.15908 4 0.27609 7 0.72711 4
F const.. 0.518044 1 0.016241 2 0.034612 2 0.85551 1 0.41008 3 0.92324 1

a Point estimate outwith the closed interval [0, 1].

TABLE VII
FIRST ORDER AND TOTAL EFFECTS SENSITIVITY INDEX POINT ESTIMATES AGGREGATED BY NETWORK AREA ON THE BASE CASE STUDY.

First Order Effects Total Effects
Input Area 1 Area 2 Area 3 Area 1 Area 2 Area 3

Variable Mag. Rank Mag. Rank Mag. Rank Mag. Rank Mag. Rank Mag. Rank

Fault Loc. 0.22357 1 0.10036 1 0.18618 1 0.95326 1 0.94819 1 0.92693 1
Demand 0.014749 2 0.0048563 4 0.0079225 2 0.72232 2 0.79643 2 0.73243 2

WF 1 0.0038814 4 0.011331 2 -0.0015845a 4 0.50768 5 0.63698 5 0.54863 4
WF 2 0.0031051 5 0.0048563 4 -0.003169a 5 0.52243 3 0.64791 3 0.53477 5
WF 3 0.0077627 3 0.0080938 3 0.0007922 3 0.51079 4 0.64265 4 0.55061 3

a Point estimate outwith the closed interval [0, 1].

were very small and similarly valued near zero, apart from:
the F const. from Sec. III-C2 in the UFLS Threshold Case
Study with Frequency Relay Grouping in the Relay Type
Aggregation; and, Fault Loc. for all Case Studies and Ag-
gregations This means that with the exception Fault Loc. and
the aforementioned F const.. variable, the cascading failures
produced during the Cascading Failures, Relay Types, and
Network Area Aggregations are insensitive to the sole effects
of each of the individual input variables for all Case Studies.
The cascading failures produced in all three Aggregations can
be regarded as having a small sensitivity to the individual
effect of the Fault Loc.

Many of the point estimates first order effects indices are
slightly negative; this is indicative of the population parameters
being very small positive numbers or zero, and there are
insufficient samples to cause these specific point estimates to
converge to either 0 or a slightly positive number. Note that
the numerator in (23) is not guaranteed to always return non-
negative values even if the underlying population indices are
zero or small positive numbers. Therefore, negative sample in-
dex values should be interpreted by the engineer as indicating
zero or small positive valued population indices.

In the UFLS Threshold Case Study with Frequency Relay
Grouping in the Relay Type Aggregation, the F const.. variable
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has a large first order index. This is expected since this variable
is interpreted as a constant term in (25) which is therefore a
first order term in the sensitivity analysis.

However all input variables had large total effect sensitivity
indices much further towards unity over all three Case Studies.
This coupled with near zero first order index results implies
that cascading failures are sensitive to interactions between
the input variables in all three Case Studies and over all three
Aggregations. In the context of power systems, this means that
these input variables cannot be considered in isolation with
respect to their influence on cascading failures; the influence in
all variables at once must be considered due to the interaction
between the input variables.

Fault Loc. total effect sensitivity index is often very close to
unity showing consistently that the fault location is the most
impactful variable considered in our studies. System demand
total effect sensitivity index is also large for all three Case
Studies over all three Aggregations, but not as large as the
Fault Loc. total effect sensitivity index tended to be. The wind
farm generation variables total effect sensitivity indices have
some, but relatively lower total order sensitivity impact on
cascading failures in all three Case Studies and Aggregations;
the wind farms’ generation tended to have similar index esti-
mates across all three Case Studies and Aggregations. These
observations imply to power system engineers that cascading
failures themselves in power systems are very sensitive to short
circuit fault location and system demand.

One notable example of Fault Loc. not being the ranked
input variable for total order effects is the Relay Type Ag-
gregation for the UFLS Relay Frequency Threshold Case
Study, with results in Table VI. For the Frequency relay and
Voltage relay groupings, the highest ranked input variable is
F const., but this variable is only ranked third in the Out-
of-step relay grouping. These results are noticeably different
from the Overall Cascading Failure Aggregation results for the
same UFLS Relay Frequency Threshold Case Study (results in
Table V), where Fault Loc. is ranked first and F const. second.
Our method makes these changes in input variable rankings
apparent by allowing consideration of different Aggregations.

Note that in the UFLS Relay Frequency Threshold Case
Study, the F coeff. and F const. variables had quite significant
index estimates. This makes intuitive sense as UFLS relay
operation is seen very often in cascading failures in this
particular modified IEEE 39 bus model as observed in [13];
changing the thresholds of UFLS relays influences many of
the relays within our IEEE 39 bus model and therefore if and
when they will trip during cascading failures.

The total effects sensitivity indices for the over-voltage
relay thresholds in the Protection Relay Threshold Case Study
are ranked smallest out of the eight input variables even
though wind farm over-voltage tripping is observed to occur
frequently in [13].

These results in Tables V, VI, and VII imply that the
variance in the observed cascading failures—i.e. the observed
operated relays—is qualitatively affected non-linearly by the
input variables variances in all three Case Studies and all three
Aggregations. The cascading failures are primarily influenced
by Fault. Loc. and somewhat highly by Demand. The system

Demand affects generators’ commitments and thus impacts
system dynamics and therefore system variables observed
by relays. Moving fault location will also change the relays
which operate during a cascading failure, hence why cascading
failures have high sensitivity to Fault Loc.

While Fault Loc. and System Demand seem to be generally
important inputs in our Case Studies, it should be noted that
this cannot necessarily be generalised for different protection
functions investigated or for different systems. In general, our
method provides relative rankings for the input variables and
needs to be applied in the particular context. The discrepancy
of very high total effects sensitivity indices but very small
first order effects sensitivity indices indicates that the power
system cascading failure is a highly non-linear event. This
therefore provides evidence that modelling cascading failures
using linear additive models is likely to lead to simplistic
assumptions and therefore neglect of important aspects related
to how cascading failures evolve. Thus, methods to more
efficiently and tractably perform global sensitivity analysis
incorporating consideration of non-linearity should be investi-
gated preferentially over attempts to provide contributions on
cascading failures reliant on assumed linear additive models.

V. CONCLUSION

Power system cascading failures caused by chains of pro-
tection relays operating and eventually leading to blackouts
remain high impact low probability events. The capability to
assess cascading failures sensitivity to power system variables
would offer engineers a useful tool in design of planning or
operational schemes to limit cascading failure risk, as well as
understand important system parameters and variables when
performing studies. Our method effectively determines the
cascading failure in terms of relay tripping and the sequence
of relay tripping events. This is an advantage of our method
as it allows the quantification of the impact of input power
system variables on this detailed sequence.

It is well known that cascading failure propagation is de-
pendant on system operational conditions, including: generator
commitment and dispatch, system demand, fault location,
and relay thresholds. Investigating how cascading failures
themselves may be affected by these influences can allow
engineers to create targetted mitigations. This is an improve-
ment on previous sensitivity approaches, which typically look
at quantities such as lost load due to a cascading failure, rather
than the cascading failure itself.

We consider cascading failures to be encoded by an ordered
progression of operated protection relays which captures the
evolution of cascading failures in detail, which allows us to
apply variance-based sensitivity analysis using our proposed
method to the matrix to quantify the sensitivity of observed
cascading failures to input system variables.

We applied our proposed method to a modified version of
the IEEE 39 Bus model via three Case Studies and three Ag-
gregations. The Aggregations are: Overall Cascading Failures,
Relay Type, and Network Area. Overall Cascading Failures
aggregation provides cascading failure sensitivity indices for
all cascading failures in the entire network; Relay Type Aggre-
gation aggregates cascading failures from different relay types
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separately; and Network Area aggregates cascading failures
separately based upon the area of the network which cascading
failure events occur within. Previous literature has indicated
possible influences on cascading failure sensitivity from UFLS
relays, and wind farm over-voltage relays. Therefore these
three Case Studies assess cascading failure sensitivity to:
fault location and operational background; design equation of
UFLS relay tripping thresholds; and wind farm over-voltage
relay tripping thresholds. The three Aggregations indicate the
flexibility of the method for grouping cascading failures for
different purposes, such as total network cascading failures,
cascading failures by relay types, and cascading failures by
network area. This flexibility indicates that the method can
be deployed to find cascading failure sensitivity with respect
to any kind of user specified cascading failure groupings, as
well as user-specified system variables or parameters acting as
input variables to the sensitivity analysis.

The Case Study results highlight the utility of the proposed
method to generate point estimates of sensitivity indices which
can be used by engineers to rank the relative importance
of power system variables with respect to power system
cascading failures. The results also highlight the non-linear
effect of cascading failure mechanisms with respect to studied
variables, which indicates to engineers that cascading failures
should not be studied using additive linear models.
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