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Abstract

An observation of the dislocation mechanisms operating below a naturally

initiated hot salt stress corrosion crack is presented, suggesting how hydrogen

may contribute to embrittlement. The observations are consistent with the hy-

drogen enhanced localised plasticity mechanism. Dislocation activity has been

investigated through post-mortem examination of thin foils prepared by focussed

ion beam milling, lifted directly from the fracture surface. The results are in

agreement with existing studies, suggesting that hydrogen enhances dislocation

motion. It is found that the presence of hydrogen in (solid) solution results in

dislocation motion on slip systems that would not normally be expected to be

active. A rationale is presented regarding the interplay of dislocation density

and the hydrogen diffusion length.

Key words: Titanium alloys, TEM, Dislocation, Fatigue, Hydrogen

embrittlement

1. Introduction

Titanium alloys are widely used in aerospace applications, as they offer high

usable specific fatigue strengths at temperatures up to ∼ 550 ◦C [1, 2, 3, 4]. In

the vast majority of cases titanium alloys are highly corrosion resistant, which

has also lead to their use in petrochemical and chemical process industries.5

However, under certain environmental conditions, the adherent and protec-
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tive TiO2 scale is broken down, exposing the underlying metal to attack [5].

The unwelcome discovery of this problem in the 1960s lead to extensive re-

search [6, 7, 8, 9, 10, 11, 12], which has continued to the present day [13, 14].

In 1972, Blackburn et al (in [15]), found titanium to be susceptible to stress10

corrosion cracking (SCC) under a variety of aggressive media, including nitric

acid, nitrogen tetroxide and molten salts. Particular consideration was given to

the effect of NaCl at temperatures above ∼ 300 ◦C [9]. Titanium was found to

be highly vulnerable to SCC in the presence of aqueous sodium chloride, which

was of particular concern in aerospace service applications.15

Soon after the vulnerability of Ti alloys to SCC was discovered, hydrogen

began to be implicated in the process. Some studies suggested a mechanism

involving the production of HCl(g), and a consequent dissociation of the hy-

drogen chloride into chloride ions and dissolved hydrogen in solution [8, 9, 11].

Hydrogen is known be detrimental to the mechanical properties of Ti alloys,20

including a loss in ductility and enhanced crack growth rates in fatigue [16].

Several mechanisms for this have been offered. Hydrogen has a terminal solu-

bility as high as 50 at.% in the bcc β-phase, compared to ∼ 7 at.% in the hcp

α-phase. In hydride forming near-α alloys, this might lead to formation and

cleavage of brittle hydride precipitates. However, the operative mechanism in25

non-hydride forming systems is still under debate. Many authors hypothesise

that interstitial hydrogen will segregate to α/β interfaces [17], where it might

weaken the cohesive strength (hydrogen-enhanced decohesion, HEDE), resulting

in intergranular separation of the interfaces [18, 19, 10]. Shih et al. [20], consider

there to be minimal experimental evidence supporting this interface decohesion30

theory. Instead, they propose an alternative mechanism, supporting previous

work by Beachem, where hydrogen enhanced localised plasticity (HELP) in the

vicinity of the crack tip is suggested [21, 22]. Another postulated mechanism

is adsorption-induced dislocation emission (AIDE), where hydrogen adsorbed

within a few atomic distances of the crack tip results in dislocation emission35

from the crack tip [23, 24, 25]. The difference compared to the HELP mecha-

nism chiefly concerns whether hydrogen diffusion into the bulk is implied.
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Not only is hydrogen more soluble in the beta phase, it is also able to diffuse

much more rapidly in the body centred cubic (bcc) β structure than in the close-

packed α phase [26]. In two-phase α/β titanium alloys, a continuous beta phase40

is then supposed to provide a “short circuit path” for hydrogen transport [27,

18, 19]. Pao and O’Neal [28] suggested that hydrogen diffusion in the continuous

beta ligaments of Ti-6242S could be the rate controlling process for hydrogen

enhanced fatigue crack growth. Thus, lamellar microstructures with continuous

β-phase could be more vulnerable to hydrogen effects.45

The α/β alloy, Ti-6Al-2Sn-4Zr-6Mo (Ti-6246 - wt.%) offers an increase in

operating temperature of up to 150◦C when compared to the workhorse alloy,

Ti-6Al-4V (Ti-64 - wt.%), predominantly due to its high strength owing to the

formation of fine-scale secondary α. Therefore Ti-6246 is now commonly used

in applications up to 500 ◦C, whereas Ti-64 is restricted to cooler locations in50

the jet engine.

In a companion study [29], we examined the formation mechanism of a blue-

coloured fatigue crack initiation feature observed at the origin of several fracture

surfaces from elevated temperature spinning rig and test specimens, some of

which were found to have reduced fatigue lives. Evidence of chlorine within the55

“blue spot” was observed by scanning transmission electron microscopy based

energy dispersive X-ray analysis (STEM-EDX). The blue spot was also found to

possess a thick (∼ 200 nm) TiO2 oxide scale. Further evidence for 35Cl−, 23Na+

and 16O− was found using focussed ion beam-secondary ion mass spectrometry

(FIB-SIMS). A hot salt stress corrosion cracking (HSSCC) mechanism was pro-60

posed as an explanation for the apparent change in fracture mode seen at the

fatigue crack origin.

In summary, the corrosion mechanism was held to operate as follows. First,

the (NaCl) salt deposit reacts with atmospheric moisture and the oxide to pro-

duce HCl(g) and sodium titanate. This reaction disrupts the oxide scale, al-65

lowing the HCl to then react with the exposed metal, forming titanium alloy

chlorides and hydrogen. The volatile alloy chlorides can then escape from the

corrosion crack to react with moisture, precipitating a TiO2 corrosion product
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and re-forming HCl. The hydrogen produced can then diffuse into the metal at

the crack tip, where it remains because hydrogen concentrates at regions of high70

stress triaxiality [12, 30]. Therefore, the extent of embrittlement is controlled by

a competing reaction of hydrogen charging vs. hydrogen diffusion, with hydro-

gen assisting the cracking process. Eventually, and with a finite supply of salt,

the Cl supply will become exhausted due to losses from the system, resulting

in a decrease in hydrogen charging. Therefore beyond a certain crack length, a75

transition from HSSCC to conventional fatigue crack propagation was observed.

Therefore it remains to explain how the hydrogen embrittling mechanism

operated in practice, through HELP or otherwise, in this naturally initiated

cracking process. Previously, Robertson and co-workers have used hydrogen-

containing in situ straining cells in the TEM to examine the effect of hydrogen80

on dislocation activity [20, 31, 32, 33]. These studies suggested that hydrogen

enhances dislocation motion by locally reducing the stress required to cause

motion and/or increasing the velocity. Shih et al. showed that by adding and

removing hydrogen from the environment cell, they could control slip activity

at the crack tip [20]. Hydrogen shielding was proposed as a rationale for this85

enhanced mobility [31, 32, 33].

In this work we examine the dislocations underlying the “blue spot” corrosion

fatigue crack origin, compared to the low cycle fatigue situation, to determine if a

change in dislocation mechanisms is observable. This will be of particular utility

for the investigation of failures where hydrogen-enhanced cracking is suspected90

to be involved.

2. Material and Experimental Procedures

[Figure 1 about here.]

The Ti-6246 material used during this study was provided by Rolls-Royce

plc., and was tested at the Mechanical Testing Operations Center (MTOC),95

Rolls-Royce Deutschland. Two specimens were examined (“blue spot” specimen

U7-086 [29] and “datum” specimen LCF127 ) which were tested at 450 ◦C with
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a maximum stress (σmax) of 600 MPa (U7-086) and 640 MPa (LCF127) and

an R ratio of 0.1. The material was processed with a final heat treatment in

the β phase field followed by ageing in the α + β phase field, to produce the100

lamellar microstructure shown in Figure 1. The microstructure consisted of

coarse, high aspect ratio primary α laths, and fine secondary α laths residing

within a retained β matrix. Fully lamellar microstructures are used to maximise

fracture toughness [5], with elevated strength provided by the fine secondary

alpha phase.105

The spatial and crystallographic orientation of facetted fracture features at

the hydrogen embrittled origin were determined using quantitative tilt fractog-

raphy (QTF) and electron backscattered diffraction (EBSD). A Zeiss Auriga

field emission gun - secondary electron microscope (FEG-SEM), fitted with an

Oxford Instruments EBSD detector, was used. By identifying the spatial orien-110

tation of the fracture features using QTF [34, 35, 36] it was possible to index

Kikuchi diffraction patterns obtained directly from the fracture surface. Two

facets within the hydrogen embrittled initiation site were analysed, Figure 2.

[Figure 2 about here.]

[Figure 3 about here.]115

In situ FIB lift out was used for the preparation of thin foils from the “blue

spot” origin in U7-086, Figure 2, from the crack initiation site in LCCF127 and

from the region of fatigue crack growth in U7-086, 600µm from the origin. FIB

milling was carefully performed so as to minimise the surface damage due to

irradiation by the Ga+ beam [37, 38], commonly attributed to Ga+ ion implan-120

tation, which can, in some cases, affect defect structures. Initially, a sample was

produced from as-received material that had not undergone further deforma-

tion since forging, using a dual beam FEI Helios NanoLab 600. Approximately

2µm of platinum was deposited onto the region of interest to protect the sur-

face from the 30 kV primary Ga+ beam. After lift-out, the sample was thinned125

down to ∼ 180 nm. The final thinning stage involved low current (28 pA), low
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energy (2 keV) polishing, to remove ∼20 nm of material from the front and back

of the sample. A comparison sample was prepared from the same as-received

material using conventional electropolishing with a solution of 3% perchloric

acid and 40% butan-1-ol in 57% methanol at 24 V and -40 ◦C. Both samples130

provided consistent results in the TEM, see Appendix. All site-specific samples

were then lifted directly from the fracture surface using the same FIB lift-out

procedure. The optimal sample thickness was found to be ∼ 180 nm. This was

thick enough to observe clear Kikuchi lines, while achieving adequate imaging

conditions. For consistency, all analysis was undertaken on primary alpha laths,135

as shown in Figure 3.

Dislocations within grains connected to the fracture surface were examined

using a combination of invisibility contrast conditions, alongside trace analysis,

using a 200 keV JEOL 2000FX TEM. The grains of interest were imaged with

g = {0002}, {01̄11} and {01̄11̄}, as well as {101̄0}, {2̄110} and {01̄12} if pos-140

sible, where g is the reciprocal lattice vector. The Burgers vectors, b, of screw

dislocations were then differentiated by calculating invisibility contrast values as

the scalar product of the reciprocal lattice vector and possible Burgers vectors

(g ·b). Edge discloations were analysed by considering contrast values calcu-

lated by g · (b× l), where l is the line vector. By incorporating trace analysis,145

it was possible (in some cases) to determine the active slip system. Considering

the orientation of the grain with respect to the fatigue loading axis, comparisons

with favourable slip systems according to Schmid factor calculations could also

be made.

3. Results150

3.1. Facet orientation

The spatial and crystallographic orientation of two facets residing within

the hydrogen embrittled initiation site were analysed using QTF/EBSD. It was

found that facet 1 and facet 2 were spatially orientated such that each facet

normal was <10 ◦ away from the tensile loading axis. By accounting for the155
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angular deviation of the facet normal away from the loading direction in the

EBSD, the crystallographic orientation of each facet could then be acquired.

This made it possible to index directly from the fracture surface without the

need for prior sectioning and surface preparation. With reference to the [0001]

pole figures, demonstrated in Figure 4, it can be seen that both facet normals160

lie close to the [0001] direction. In fact, the facet normals are measured to be

orientated ∼14 ◦ away from the [0001] direction, indicating that the plane of

the facet, and thus fracture plane, coincides with either the {101̄7} or {101̄8}

planes, inclined at 15 ◦ and 13 ◦ away from the basal plane respectively. Both the

{101̄7} and {101̄8} planes are known to be common hydrogen habit planes [39],165

indicating that the fracture mechanism is likely to have been modified by the

presence of hydrogen. It should be noted that the three low intensity spots in

Figure 4(b) have arisen from indexing of an adjacent, and differently orientated

grain.

[Figure 4 about here.]170

3.2. Dislocation contrast analysis

Three FIB prepared foils, containing grains 1-4, were lifted directly from

the low cycle fatigue fracture surface that suffered HSSCC (sample U7-086).

Grains 1, 2 and 3 are associated with an area embrittled by hydrogen, near the

fatigue crack origin; Figure 2(LOM) demonstrates the location of foil within175

the hydrogen embrittled origin. Grain 4 resided within a foil that was milled

from an area of fatigue crack propagation, approximately 600 µm from the ori-

gin. Finally, grain 5 was observed within a foil that was milled from the origin

of a different LCF specimen, that had not undergone hydrogen embrittlement

(sample LCF 127). To have the best chance of observing dislocation mecha-180

nisms associated with the fracture process, it was deemed important to analyse

grains connected to the fracture surface, i.e. not subsurface; Figure 3 shows the

positions of the analysed grains with respect to the fracture surface.

[Table 1 about here.]
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3.2.1. Hydrogen assisted fatigue cracking185

Grain 1’s {0002} plane normal was found to be ∼70 ◦ to the tensile-fatigue

loading axis. Figure 5(a) shows bright field (BF) TEM micrographs, imaged

with several diffraction conditions. For g0002, an array of linear dislocation seg-

ments were observed across the width of the primary alpha grain, ∼ 700 nm

to 1.5µm beneath the fracture surface. The dislocations appear to be orien-190

tated almost parallel to the (0002) trace, obtained from the 〈12̄10〉 selected area

diffraction pattern (SADP). Referring to the 4-index hcp coordinate system, it

can be said that the beam direction vector (B) lies in the basal plane of the

crystal and is parallel to two of the 〈a〉 type Burgers vectors. Any dislocations

residing in the basal plane, and imaged under these conditions edge-on, would195

appear as straight line segments, parallel to the (0002) trace. Slight misorien-

tation between the trace and the dislocation segment is likely to result from

the small rotation of the SADP (from which the trace is obtained) when the

sample is tilted away from the pole to reach the required g vector. From trace

analysis, it is therefore implied that the array of dislocations in Figure 5 (g0002)200

has resulted from slip on the basal plane.

Basal glide has frequently been observed in α titanium, but this occurs

almost exclusively with 〈112̄0〉 type Burgers vectors. Under g0002 diffraction

conditions, as in Figure 5 (upper), all screw dislocations with 〈a〉 type 〈112̄0〉

Burgers vectors should have zero contrast, and thus be invisible, which is not205

the case here. It then became necessary to evaluate the edge component also,

incorporating the g · (b× l) criterion. Introducing a perpendicular line vector,

with indices 〈11̄00〉, demonstrates positive contrast for edge dislocations gliding

on (0002) planes, when imaged with g0002. However, for all the {11̄00} glide

planes, there is zero contrast for dislocations with 〈112̄0〉 Burgers vectors. This210

finding eliminates the possibility of prismatic slip in this case. Hence, consid-

ering the contrast criteria and the minimal misorientation between the (0002)

trace and the dislocation segments, one possibility is that the linear dislocations

segments in Figure 5 (g0002) are associated with 〈112̄0〉{0001} type slip systems,
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and have edge character.215

[Figure 5 about here.]

[Table 2 about here.]

An alternative hypothesis could be that these dislocations are of 〈c+ a〉 type.

Both edge and screw character 〈c+ a〉 dislocations have contrast at imaging

conditions of g0002. Glide in the direction of such Burgers vectors is restricted220

to the pyramidal planes {101̄0} and {112̄2}. Under imaging conditions of B ∼

〈21̄1̄0〉, these inclined planes would be viewed at a small angle to the face of

the plane, rather than edge on, and hence may not be expected to appear as

straight lines as they do for conditions of g0002. However, 〈c+ a〉 dislocations

have an inherently higher elastic energy compared to the 〈a〉 type. Hence it is225

reasonable that such dislocations could exist as straight lines to minimise this

energy, rather than the bowed out segments and loops that may be observed

from 〈a〉 type line defects.

The same area was viewed at alternative diffraction conditions of g01̄11̄ and

g01̄11 in an attempt to determine the active dislocation type. Contrast of the230

original linear dislocation array, as seen for g0002, remains for both g01̄11̄ and

g01̄11, in varying intensity. This observation essentially excludes edge 〈c+ a〉

dislocations gliding on first order pyramidal planes, since the invisibility criterion

suggests zero contrast for either g01̄11̄ and g01̄11, in most cases. Table 2 provides

details of the invisibility criterion for a number of g vectors. Furthermore, the235

elastic energy of a dislocation is proportional to the magnitude of the Burgers

vector, with the 〈c+ a〉 energy almost twice that of the 〈a〉 type Burgers vector.

Finally edge 〈a〉 show zero contrast at g0002 for prismatic planes and at g01̄11

for first order pyramidal planes. Hence, it is tentatively suggested that the

linear dislocation arrays observed for grain 1 in Figure 5 are associated with240

edge dislocations undergoing basal slip in the direction of 〈112̄0〉 type Burgers

vectors.

Closer investigation of Figure 5(b) reveals a number of shorter dislocation

segments orientated ∼ 120 ◦ to the (0002) trace. Both the first and second
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order pyramidal slip planes are inclined ∼120 ◦ to the basal plane. First order245

{11̄01} planes are able to slip along either 〈c+ a〉 type 〈112̄3〉 or 〈a〉 type 〈112̄0〉

Burgers vectors, whereas second order {1̄1̄22} planes are restricted to glide in

the 〈c+ a〉 direction only. Under certain diffraction conditions, the short angled

segments move out of contrast whilst those longer sections, parallel to the (0002)

trace, remain in contrast. It is hence implied that the short, orientated segments250

observed have a different Burgers vector to the remainder of the linear array.

The observations made from analysis of grain 2 are consistent with those

from grain 1, which has the same crystal orientation. The uppermost image in

Figure 6 shows the full length of the primary alpha lath, identified as grain 2.

In this case, the straight dislocation segments are observed up to 3 µm beneath255

the fracture surface. Beyond this depth, similar dislocations are not observed.

In fact, beyond 3µm below the surface, only a small group of differently orien-

tated dislocations can be identified at the very tip of the primary alpha lath.

Presumably, these have arisen as a result of grain 2 growth during processing,

and the consequent collision with another primary alpha lath; refer to Figure260

3, hydrogen origin foil 1. These observations again suggest that these disloca-

tion structures are restricted to material only a few microns sub-surface of the

growing crack. Observations based on trace analysis and invisibility contrast

suggest that, like grain 1, the linear dislocation segments spanning across the

lath have edge character, and have arisen from 〈112̄0〉{0001} type slip. Imag-265

ing under g01̄11̄ repeats these findings; Figure 6. With reference to the high

magnification micrograph for g0002 given in Figure 6, the short, inclined dis-

location segments first observed in grain 1, are indicated again in grain 2. In

this instance, at least three individual linear dislocations can be resolved, with

each inclining away from the (0002) trace at angles between ∼ 105 − 120 ◦. A270

collection of non-linear dislocations can also be identified directly beneath the

fracture surface of grain 2 for conditions of g0002; see low magnification image.

These looping dislocations appear to have been emitted from the 200 nm thick

oxide layer, that covers the hydrogen embrittled origin. It is, however, unclear

whether these dislocations were present prior to thin foil preparation, and may275
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in fact be a consequence of the platinum deposition process. For this reason

they will not be discussed in more detail.

[Figure 6 about here.]

[Figure 7 about here.]

The c-axis of grain 3 is inclined at ∼ 25 ◦ to the fatigue loading axis, com-280

pared to a 70 ◦ inclination for both grains 1 and 2. The contrast observed for

grain 3 at each diffraction condition can be described by the invisibility crite-

rion given for edge 〈a〉 1
3 [1̄1̄20] and edge 〈c+ a〉 1

3 [12̄13] dislocations, gliding on

(1̄101) planes in both cases; as given in Table 2. Since dislocation contrast is

observed for g0002 and g101̄0, both screw 〈a〉 and 〈c+ a〉 dislocations can be ex-285

cluded. Similarly, strong contrast for g2̄110 and g0002 eliminates edge 〈a〉 13 [1̄1̄20]

dislocations gliding on basal and prismatic planes respectively; refer to Figure 7.

It is therefore suggested that dislocations are moving on the first order pyrami-

dal (1̄101) plane. Considering the increased elastic energy of 〈c+ a〉 dislocations

compared to the 〈a〉, it is not unreasonable to expect the dislocations to be 〈a〉290

type in nature.

Figure 7 presents increased magnification micrographs of a bright field image

for g01̄12. Two rows of parallel dislocation arrays are seen to give contrast at

these imaging conditions, as discussed above. Consistent with findings from

grains 1 and 2, the dislocations only reside immediately beneath the fracture295

surface, up to ∼ 1.5µm sub-surface. Considering the FIB foil in 3D, but noting

its transparency, it is likely that the discontinuous appearance of the dislocation

segments is an effect of the position and orientation of the dislocations within

the foil. Moreover, because the dislocations do not lie in the plane of the foil,

and thus are restricted to the foil thickness, they appear in short segments where300

they “run out” the front and back planes of the foil. The two rows observed

here, are considered to be dislocations residing on parallel and adjacent sets of

planes.

[Figure 8 about here.]
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3.2.2. Fatigue crack propagation305

Grain 4 was located within a thin foil that was lifted from the U7-086 sample

fracture surface at a crack length of ∼ 600µm. As the crack exceeded ∼100µm

in length, there was an observed transition in the cracking mechanism from

HSSCC near the origin, to a low cycle fatigue crack propagation. Grain 4 has

therefore not experienced any effect of solute hydrogen. Since grains 3 and 4310

have similar crystallographic orientations ({0002} normal ∼ 25 ◦ vs. ∼ 30 ◦

from the loading axis), direct comparisons can be made between them. Figure

8 provides BF diffraction contrast images taken with diffraction conditions of

g0002. A high dislocation density is seen to extend down the length of the

primary alpha laths. This is in stark contrast to observations from hydrogen315

embrittled grains. For grains 1-3, a low density of individual dislocation arrays

were observed, and appeared to be restricted to the first few microns, directly

beneath the fracture surface. The low magnification image given in Figure 8

has been included to demonstrate these differences. Although not included

here, images showing similarly high dislocation densities were also obtained for320

several other diffraction conditions. A high dislocation density visible for several

g vectors indicates that a large number of dislocations were active during the

deformation process. As the dislocations move they will interact with each

other, and likely entangle as they intersect.

Unlike the hydrogen embrittled grains 1-3, where a single slip system could325

be identified, it is likely that dislocations with different Burgers vectors and

gliding on various planes, has led to the high densities observed in grain 4 and

the adjacent laths. However, detailed examination of Figure 8 reveals that

the bands of the most highly dense dislocation entanglements appear to be

almost parallel to the (0002) trace. By observing the highest density bands in330

neighbouring primary alpha grains, it is suggested that these dislocations may

have been transmitted across the secondary alpha/beta matrix ligaments, and

continue into the adjacent primary alpha lath.
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3.2.3. Comparator low cycle fatigue origin

Figure 9 illustrates the dislocations observed in a primary α lath (grain 5)335

beneath the origin of a low cycle fatigue test specimen not subjected to hot

salt stress corrosion cracking, in similar testing conditions. A low magnification

view of the TEM foil is provided in Figure 3. A high density of dislocations

can be observed for g0111, in common with the low cycle fatigue propagation

region (grain 4) already examined. The c-axis of grain 5 is inclined at ∼80 ◦340

to the fatigue loading axis and therefore grain 5 can be directly compared with

grains 1 and 2; see Table 1. The observation of a higher dislocation density in

the low cycle fatigue crack growth region is consistent with those observed in a

conventional low cycle fatigue origin, and quite distinct from those in the hot

salt stress corrosion crack origin region. Thus, an effect of crack length can be345

excluded as an explanation for the observations made.

[Figure 9 about here.]

4. Discussion

4.1. Comparability of FIB and electropolished TEM foils

Several studies have discussed the surface damage associated with FIB pre-350

pared thin foils. When the gallium beam impinges on the sample surface, Ga+

ions are implanted in the lattice of the target material. This can lead to local

compositional variations, as well as amorphisation of the outer layers of the

foil [37]. Gallium penetration depth increases with beam energy (accelerating

voltage). More Ga+ interstitials would therefore be expected after bombard-355

ment at 30 keV compared to 5 keV. These interstitial Ga+ ions impose strain

on the crystal lattice and hence generate strain contrast in the TEM. Kiener et

al. [38] reported that after milling at 30 keV, it was not possible to distinguish

individual pre-existing dislocations from the contrast associated with point de-

fects, in the form of Ga+ interstitials. However, FIB induced damage can be360

controlled by reducing the beam energy. Although Kiener et al. still observed

some surface damage after irradiation at 5 keV, all pre-existing defects remained
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visible. In the present study, final milling at 28 pA and 2 keV was undertaken in

an attempt to remove damaged outer layers, whilst minimising further damage.

[Figure 10 about here.]365

Figure 10 demonstrates two different imaging conditions for: 1. a primary

alpha lath within a FIB prepared foil, and 2. a primary alpha lath within an

electropolished foil. Both samples were prepared from as-received material that

had undergone no further mechanical deformation since the forging process. For

invisibility conditions of g0002, both samples show a low density of linear dislo-370

cation segments, which extend across the width of grain. For both preparation

techniques the dislocations are also distributed throughout the length of the

primary alpha. For an alternative contrast condition of g01̄11, the dislocation

density and distribution is again comparable for the grains in either sample, as

is the general appearance of the dislocation segments. Evidence of FIB dam-375

age can be seen at both imaging conditions, but is more severe for g01̄11. The

supposed FIB damage can be observed as the speckled contrast throughout the

alpha lath, that is likely to be associated with strain accumulation caused by

Ga+ ions implanted during milling. As a result, the dislocations within the

FIB foil are slightly less distinctive than those in the electropolished foil. How-380

ever, the dislocation contrast in the FIB foil remains adequate, so it is possible

to differentiate between the dislocations and the FIB damage. It is hence con-

cluded that preparation using FIB milling has not effected the ability to analyse

dislocations within α titanium laths.

4.2. Facet formation385

Over the past few years, various research groups have raised questions con-

cerning the validity of the common association of planar facet features with a

brittle, cleavage, fracture mechanism. Pilchak et al. found that thousands of

fatigue load cycles could contribute to the formation of a single facet, providing

evidence to contradict the cleavage facet formation theory [40]. Bridier et al.390

discuss observations of both basal and prismatic slip bands, and suggest fatigue
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cracks to have formed from these slip planes [41]. Additionally, Bantounas et

al. found evidence suggesting facets on a high-cycle fatigue fracture surface to

be associated with basal slip [42]. Figure 4 demonstrated pole figures achieved

from direct indexing of facets in the hydrogen embrittled origin region. These395

pole figures suggested the plane of fracture to be a high index plane, such as

(101̄7) or (101̄8), which are known hydrogen habit planes. The facets in question

contain structure, and are certainly not featureless, thus it is suggested that the

formation of these low ∆K features arises via a slip induced mechanism, perhaps

on one of the high index planes stated above.400

Figure 11 demonstrates a representative overview of the general fractography

observed at a crack length of 600µm (grain 4). Both secondary cracking, (a) and

(b), and striated growth, (c) and (d), are plastic processes, indicating that the

material at this crack length has undergone significant plasticity prior to crack

propagation. Not only do the secondary cracks appear to be held open, but the405

fine ligaments of material between individual striations are observed to have torn

apart, 11(d), which is a further indication of significant plasticity. Contrastingly,

the material within the hydrogen embrittled region is largely facetted and has a

macroscopically brittle appearance (grains 1-3); refer to Chapman et al., Figure

4 [29].410

[Figure 11 about here.]

4.3. Grain orientation

It has been well documented that under fatigue loading conditions, grains

will deform via particular slip systems depending on their orientation. For

single crystals, a specific slip system is favoured depending on, 1: the critical

resolved shear stress (CRSS) necessary to initiate slip on the given system (also

dependent on temperature), and 2: the Schmid factor, which is a function

of grain orientation with respect to the loading axis. It is more complicated

for polycrystals, where the orientation of neighbouring grains, as well as the

orientation of adjacent grain boundaries, can affect slip mechanisms. Bantounas
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et al. attempted to predict the active slip system of a given grain by introducing

a term defined as a normalised Schmid factor, m′, given by

m′ = m ·
(
τmin/τ〈uvtw〉{hkil}

)
(1)

where the
(
τmin/τ〈uvtw〉{hkil}

)
component is the ratio of the minimum CRSS

to activate any slip system vs. the CRSS of a particular slip system [43]. Ac-

cording to this rationale, it was expected that grains 1 and 2 would undergo 〈a〉415

prismatic slip, and grain 3 〈a〉 basal slip. Instead, we have suggested above that

grains 1 and 2 underwent 〈a〉 basal slip and grain 3 〈a〉 1st order pyramidal slip.

It is suggested that this lack of conformity indicates a change in deformation

mechanism, that may be attributed to solute hydrogen.

Since it is possible to disregard any effects relating to crack length, grains 1,420

2 and 5 can be directly compared (hard orientation), with the same for grains

3 and 4 (soft orientation); Table 1. Although in each case the grains are only

slightly misorientated, their dislocation density and distribution is very different.

Considering their similar alignment to the loading axis, this disparity cannot

be explained as a consequence of grain orientation. Instead, solute hydrogen at425

or near the crack tip during the fracture of grain 3 is suggested to affect the

plastic behaviour of the grain. This idea is reiterated, since grains 1 and 2 have

a hard, rather than soft, orientation, but still demonstrate a similar dislocation

distribution and density to grain 3.

4.4. Solute hydrogen diffusion430

This study has demonstrated a clear change in micro-deformation mecha-

nisms likely to be associated with solute hydrogen, and the consequent embrit-

tlement via hydrogen enhanced localised plasticity. In this particular case, a

naturally occurring hydrogen embrittled fatigue crack origin has been investi-

gated. Reactions leading to the production of hydrogen and its consequent ad-435

sorption are given in the accompanying paper [29], where it is explained there is

a finite supply of hydrogen. It is also considered that only relatively low concen-

trations of hydrogen are involved in the mechanism, which may explain the lack

16

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



of observed hydride phases. Bache et al. suggested that hydrogen may have the

most significant effect on dislocation behaviour when present in lower concentra-440

tions [44]. Of course, hydrogen diffusivity is proportional to temperature. The

rapid diffusion of hydrogen in the beta phase at elevated temperatures is the

property that makes the HELP mechanism conceivable. For the bulk specimens

discussed in this study, the test temperature was 450 ◦C, which is sufficiently

high to elevate hydrogen mobility. Another observation linked to test temper-445

ature was the inclined dislocation segments in grains 1 and 2. These segments

were observed to have a different Burgers vector to the majority of the linear

dislocation array. When two edge dislocations intersect, one dislocation cuts

through the glide plane of another, creating a jog. A jog will form in the glide

plane of a mobile dislocation when its dislocation line vector is not parallel to the450

Burgers vector of the interacting dislocation. Hence, the jog will lie in the plane

of the intersecting dislocation, and in this case, will have a different Burgers

vector to other dislocations gliding in the original slip plane before intersection.

It is suggested that the short inclined dislocation segments observed in grains 1

are 2 are formed as jogs. Motion of these jogs is a diffusion controlled process455

only possible at elevated temperatures, such as those experienced here. Inter-

estingly, the inclination of these jogs is ∼ 120 ◦ to the basal trace, which is also

the approximate angle between both the {11̄01} and {1̄1̄22} pyramidal planes

with the basal plane. Therefore, it is suggested that under high temperature,

some edge dislocations moved out of their glide plane by climb on the pyramidal460

{11̄01} 〈112̄3〉 or {1̄1̄22} 〈112̄3〉 slip systems.

4.5. A rationale for lower dislocation density with solute hydrogen

It is well documented that hydrogen increases the mobility of dislocations [20,

31, 32, 44, 33]. Shih et al. explain that hydrogen enhances plasticity in the

vicinity of a crack tip (HELP), altering the local deformation mechanism. Since465

localised micro-fracture could then occur at stresses below the macroscopic yield

stress, it can be considered a locally brittle material response, which may explain

the brittle faceted appearance at the hydrogen origin [20].
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The Orowan equation describes the relationship between strain rate ε̇, dis-

location density ρm, average velocity v̄ and magnitude of the Burgers vector b

of the mobile dislocations [45].

ε̇ = bρmv̄ (2)

It has previously been discussed that grains 1-3 have a considerably lower dislo-

cation density than grains 4 and 5. This has been attributed to solute hydrogen470

presence ahead of the fatigue crack origin. This observation can be rationalised

using the Orowan equation and the effect of hydrogen. If hydrogen enhances

dislocation mobility, raising the dislocation velocity, then at a given strain rate

in the crack tip plastic zone, this implies a reduction in the mobile dislocation

density. Therefore, with the hydrogen enhancing the mobility of the disloca-475

tions, it follows that fewer dislocations should be observed. It is understood

that hydrogen enters the lattice at elastic singularities, an example of which is

the material immediately ahead of the advancing crack. As the hydrogen con-

centration is highest at regions such as this, plasticity is constrained locally at

the crack tip.480

For grains 4 and 5, the opposite is observed. Without hydrogen in solu-

tion, dislocations are less mobile. Hence, for the same strain rate, many more

dislocations will be observed, resulting in more dislocation interactions. The in-

creased density meant that more dislocation interactions occurred, making jogs.

As jogs effectively increase the length of the dislocation line, this hardens the485

material, as well as further impeding their motion [46]; the more dislocations

cutting through the “forest” of dislocations, the harder the material becomes.

This is commonly referred to as forest hardening, consistent with observations

from grain 4. It is generally considered that screw dislocations control defor-

mation in the α phase [30, 47], since edge segments are believed to move at490

least 100 times faster [48]. It has also been suggested that solute hydrogen can

“increase the propensity for edge character dislocations” [33], explaining why

the frequency of occurrence of edge dislocations may have been higher in the

hydrogen embrittled grains analysed in this study. It also follows that since edge
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dislocations are considered to be highly mobile [49], their increased presence in495

the hydrogen embrittled grains is consistent with the HELP mechanism and the

Orowan equation.

4.6. Consistency of the HELP mechanism with the observation of macroscopic

hardening

The HELP concept was first introduced by Beachem [21], and has since500

been the subject of extensive TEM investigations by Birnbaum, Shih, Sofronis,

Robertson and coworkers. Shih et al., using in situ straining in the TEM, report

that the velocity of dislocations near a crack tip in a thin foil is enhanced when

hydrogen is added to an environmental cell under constant stress [20]. Birn-

baum and Robertson have since proposed that hydrogen shielding of dislocation-505

dislocation interactions would explain their observation of enhanced dislocation

mobility [31, 33]. They believe that this elastic shielding allows dislocations

to move at lower applied stress levels in the presence of hydrogen, resulting in

localised flow softening at a crack tip.

In contrast, other work [50, 51, 52] has found that hydrogen in solution510

increases the macroscopic flow stress, implying solute hardening. The solubility

of H in Ti at room temperature is approximately 0.1 at.% (∼ 20 ppmw) [53].

These studies suggest that this solute hardening is due to a dislocation pinning

effect, although it should be noted that the hydrogen atom is small compared to

the interstitial site, which is a drawback to this rationale. Beachem, observing515

hydrogen-assisted cracking and an associated reduction in fracture toughness,

suggested that hydrogen unlocks dislocations, rather than pinning them [21].

Therefore it remains to rationalise how hydrogen, e.g. at a hot salt stress

corrosion crack tip, can reduce toughness, enhance dislocation mobility and yet

provide macroscopic hardening. A primary difference between a crack tip or thin520

foil and the bulk is the availability of a free surface. This could allow gliding

dislocations to escape. Therefore, if appealing to the Orowan equation, the

HELP mechanism gives rise higher glide velocities, and so to a lower dislocation

density for a given strain rate, then in the bulk this would then result in larger
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glide lengths and more opportunity for dislocation tangling or forest hardening.525

Whereas, in the presence of a free surface, this straining can occur without a

gradual rise in dislocation density.

In addition, these observations are consistent with the reduction of KIc

with hydrogen content - hydrogen embrittlement is a consequence of enhanced

plasticity and dislocation motion at the crack tip, rather than requiring the530

alternative that decohesion (the formation of free surface) becomes easy even

at the very low H contents in (solid) solution that pertain in the present case,

as proposed by Lynch [54].

Thus, the present observation of a lower dislocation density below a stress

corrosion crack than in low cycle fatigue is consistent with both the observations535

of Shih and the HELP mechanism, and the observation of macroscopic flow

hardening and reduced fracture toughness.

4.7. Critical diffusion length

The significant difference in dislocation density, and its association with so-

lute hydrogen, has been discussed in detail. This was attributed to the ability540

of hydrogen to enhance dislocation motion. It is also observed, that for hy-

drogen embrittled grains, dislocations appear to be restricted to within a 3 µm

depth beneath the fracture surface. Whereas for grain 4 (crack propagation),

the high density of dislocations continue throughout the length of the primary

alpha lath, which intersects the fracture surface at ∼ 90 ◦. This observation can545

be explained by considering the competitive processes of hydrogen charging and

hydrogen diffusion. The reader is referred to the accompanying paper by Chap-

man et al. [29], for a detailed explanation of these reactions, but the important

points are summarised here.

When the rate of hydrogen charging exceeds the rate of hydrogen diffusion,550

the local hydrogen concentration immediately in front of the crack is sufficiently

high to embrittle the material locally, via the HELP mechanism. The grain

experiences highly localised enhanced plastic strain and undergoes deformation

in the vicinity of the crack tip, leading to crack advance.
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It is proposed that the localised nature of the deformation causes HELP555

to act over only the portion of the grain closest to the newly created fracture

surface. It follows that the lower region of the primary alpha lath will not expe-

rience enhanced plasticity before the crack front advances. Therefore, assuming

constant hydrogen charging and diffusion rates at a given temperature, it is

postulated that there is a critical diffusion distance, beyond which charging is560

insufficient to cause embrittlement. Hence, because HELP is not active beyond

this critical diffusion length, LD, hydrogen enhanced fracture mechanisms are

constrained to the uppermost material, estimated at 3 µm for grains 1-3. It

should also be noted, that when LD is of the same order of magnitude as the

crack growth increment per fatigue cycle, there is no possibility for hydrogen565

accumulation over multiple cycles. Recent work by Gaddam et al., discusses

this area in more detail [55].

Alternatively, turning to the AIDE hypothesis, we first consider that at

450 ◦C, then the hydrogen diffusion rate and solubility are both likely high

enough for diffusion to a 3µm depth to occur, in contrast to the AIDE situation570

pertaining at ambient temperatures and high crack growth rates considered by

Lynch [54, 23]. As previously noted, there is also the possibility of the β phase

acting as a fast diffusion path [28]. But, as has been more recently noted by

Lynch [56], it remains possible that dislocation nucleation from hydrogen at the

surface might then result in propagation into the depth of the material, in a575

HELP-like fashion. However, in our view the change in dislocation morphology

(particularly those travelling in ribbons in Figure. 7) suggests that rather more

is occurring than simply hydrogen-stimulated dislocation emission.

5. Conclusions

The dislocation mechanisms underlying a naturally initiated hot salt stress580

corrosion crack have been elucidated and compared to those observed in con-

ventional low cycle fatigue. The following conclusions can be drawn.

1. Hydrogen embrittled grains do not appear to conform to the predictions
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made by the normalised Schmid factor method, as proposed by Bantounas

et al [43].585

2. It is proposed that hydrogen in the vicinity of the crack tip modifies disloca-

tion behaviour (which could be through the AIDE or HELP mechanisms).

3. Irrespective of the grain orientation, the dislocation density is consistently,

and significantly, lower in hydrogen embrittled grains compared to those

from the fatigue crack propagation region and LCF origin.590

4. The effect of crack length is excluded as a contributing factor to the in-

creased dislocation density observed in the LCF propagation region.

5. The Orowan equation is used to explain the reduction in dislocation den-

sity seen within hydrogen embrittled grains, by considering the elevated

dislocation mobility attributed to the onset of HELP at the crack tip.595

6. A rationale for the observed flow softening in thin foils vs. that of macro-

scopic hardening in bulk specimens is proposed.

7. A term defined as the critical diffusion length is introduced. It is suggested

that the competitive reaction between hydrogen charging and hydrogen

diffusion determines the maximum depth beneath the fracture surface that600

is affected by solute hydrogen (with the HELP mechanism in view).

Acknowledgements

The authors wish to acknowledge support from Rolls-Royce plc through-

out this work. We would also like to thank the numerous people involved who

are based at Rolls-Royce Derby, Bristol and Dahlewitz. The authors would605

also like to acknowledge very useful discussions with Prof. Ian Jones. Fi-

nally, we are grateful for funding from the EPSRC; grants EP/H004882/1 and

EP/K034332/1, as well as a DTA CASE conversion EP/J500239/1 for T.P.C.

References

[1] R. Boyer, Titanium for aerospace: Rationale and applications, Advanced610

Performance Materials 2 (1995) 349–68.

22

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



[2] R. Boyer, An overview of titanium in the aerospace industry, Materials

Science and Engineering A A213 (1996) 103–14.

[3] J. Williams, E. J. Starke, Progress in structural materials for aerospace

systems, Acta Materialia 51 (2003) 5775–99.615

[4] G. Crook, M. Horlor (Eds.), Rolls-Royce - The jet engine, 1996.

[5] G. Lütjering, J. Williams, Titanium, Springer Science, 2003.

[6] M. Blackburn, J. Williams, Metallurgical aspects of the stress corrosion

cracking of titanium alloys, in: Proceedings of Conference on Fundamental

Aspects of Stress Corrosion Cracking, 1969.620

[7] R. Ondrejcin, Chlorine gas and fluoride ion in hot-salt stress corrosion

cracking of titanium-aluminium alloys, NASA DP-1179 (1969).

[8] V. Petersen, H. Bomberger, The mechanism of salt attack on titanium

alloys, Stress Corrosion Cracking of Titanium: ASTM Special Technical

Publication 397 (1966) 80–94.625

[9] S. Rideout, M. Louthan Jr., C. Selby, Basic mechanisms of stress-corrosion

cracking of titanium, Stress Corrosion Cracking of Titanium: ASTM Spe-

cial Technical Publication 397 (1966) 137–51.

[10] H. Logan, M. McBee, C. Bechtoldt, B. Sanderson, G. Ugiansky, Chemical

and physical mechanisms of salt stress-corrosion cracking in the titanium 8-630

1-1 alloy, Stress Corrosion Cracking of Titanium: ASTM Special Technical

Publication 397 (1966) 215–29.

[11] J. Myers, J. Hall, Hot salt stress-corrosion cracking of titanium alloys: An

improved model for the mechanism, Corrosion - NACE 33 (1977) 252–7.

[12] M. Garfinkle, An electrochemical model for hot-salt stress-corrosion of635

titanium alloys, Metallurgical Transactions 4 (1973) 1677–86.

23

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



[13] M. Pustode, V. Raja, N. Paulose, The stress-corrosion cracking suscepti-

bility of near-α titanium alloy IMI834 in presence of hot salt, Corrosion

Science 82 (2014) 181–96.

[14] A. Pilchak, A. Young, J. Williams, Stress corrosion cracking crystallogra-640

phy of Ti-8Al-1Mo-1V, Corrosion Science 52 (2010) 3287–96.

[15] B. F. Brown, Stress Corrosion Cracking in High Strength Steels and in

Titanium and aluminium alloys, Naval Research Laboratory, 1972.

[16] E. Tal-Gutelmacher, D. Eliezer, Hydrogen-assisted degradation of titanium

based alloys, Materials Transactions 45 (2004) 1594–600.645

[17] T. MacKay, Effect of stress on microsegregation of hydrogen at elevated

temperatures in titanium and Ti-8Al-1Mo-1V, Metallurgical Transactions

2 (1971) 2299–302.

[18] H. Nelson, Aqueous chloride stress corrosion cracking of titanium - a com-

parison with environmental hydrogen embrittlement, NASA TM X-62314650

(1973).

[19] H. Nelson, A film-rupture model of hydrogen-induced, slow crack growth

in acicular alpha-beta titanium, Metallurgical Transactions A 7A (1976)

621–7.

[20] D. Shih, I. Robertson, H. Birnbaum, Hydrogen embrittlement of α tita-655

nium: in situ TEM studies, Acta Metallurgica 36 (1988) 111–24.

[21] C. Beachem, A new model for hydrogen-assisted cracking (hydrogen “em-

brittlement”), Metallurgical Transactions 3 (1972) 437–51.

[22] I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross,

K.E. Nygren, Hydrogen embrittlement understood, Metallurgical and Ma-660

terials Transactions B 46B (2015) 1085–103.

[23] S.P. Lynch, Hydrogen embrittlement (HE) phenomena and mechanisms,

Corrosion Reviews 30 (2012) 105–23.

24

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



[24] S.P. Lynch, Mechanisms and Kinetics of Environmentally Assisted Crack-

ing: Current Status, Issues, and Suggestions for Further Work, Metallur-665

gical and Materials Transactions A 44A (2013) 1209–29.

[25] S.P. Lynch, A fractographic study of gaseous hydrogen embrittlement and

liquid-metal embrittlement in a tempered-martensitic steel, Acta Metal-

lurgica 32 (1984) 79–90.

[26] E. Tal-Gutelmacher, D. Eliezer, The hydrogen embrittlement of titanium-670

based alloys, Journal of Materials Overview (2005) 46–9.

[27] H. Nelson, D. Williams, J. Stein, Environmental hydrogen embrittlement of

an α-β titanium alloy: Effect of microstructure, Metallurgical Transactions

3 (1972) 469–75.

[28] P. Pao, J. O’Neal, Hydrogen enhanced fatigue crack growth in Ti-6242s,675

Journal of Nuclear Materials 122/123 (1984) 1587–91.

[29] T. Chapman, R. Chater, E. Saunder, A. Walker, T. Lindley, D. Dye, Envi-

ronmentally assisted fatigue crack nucleation in Ti-6Al-2Sn-4Zr-6Mo, Cor-

rosion Science 96 (2015) 87–101.

[30] F. Mignot, V. Doquet, C. Sarrazin-Baudoux, Contributions of internal680

hydrogen and room-temperature creep to the abnormal fatigue cracking of

Ti6246 at high Kmax, Materials Science and Engineering A 380 (2004)

308–19.

[31] P. Birnbaum, H.K. Sofronis, Hydrogen-enhanced localized plasticity - a

mechanism for hydrogen-related fracture, Materials Science and Engineer-685

ing A 176 (1994) 191–202.

[32] P. Ferreira, I. Robertson, H. Birnbaum, Hydrogen effects on the interaction

between dislocations, Acta Materialia 46 (1998) 1749–57.

[33] I. Robertson, The effect of hydrogen on dislocation dynamics, Engineering

Fracture Mechanics 65 (2001) 649–73.690

25

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



[34] V. Sinha, M. Mills, J. Williams, Crystallography of fracture facets in a near-

α titanium alloy, Metallurgical and Materials Transactions A 37 (2006)

2015–26.

[35] V. Sinha, M. Mills, J. Williams, Determination of the crystallographic

orientation of dwell-fatigue fracture facets in Ti-6242 alloy, Journal of695

Materials Science 42 (2007) 8334–41.

[36] G. Themelis, S. Chikwembani, J. Weertman, Determination of the orien-

tation of Cu-Bi grain boundary facets using a photogrammetric technique,

Materials Characterization 24 (1990) 27–40.

[37] L. Giannuzzi, F. Stevie, A review of focused ion beam milling techniques700

for TEM specimen preparation, Micron 30 (1999) 197–204.

[38] D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, FIB damage of Cu and

possible consequences for minitarized mechanical tests, Materials Science

and Engineering A 459 (2007) 262–72.

[39] N. Paton, R. Spurling, Hydride habit planes in titanium-aluminium alloys,705

Metallurgical Transactions A 7 (1976) 1769–174.

[40] A. Pilchak, A. Bhattacharjee, A. Rosenberger, J. WIlliams, Low ∆K

faceted growth in titanium alloys, International Journal of Fatigue 31

(2009) 989–94.

[41] F. Bridier, P. Villechaise, J. Mendez, Slip and fatigue crack formation710

processes in an α/β titanium alloy in relation to crystallographic texture

on different scales, Acta Materialia 56 (2008) 3951–62.

[42] I. Bantounas, D. Dye, T. Lindley, The role of microtexture on the faceted

fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue, Acta

Materialia 58 (2010) 3908–18.715

[43] I. Bantounas, D. Dye, T. Lindley, The effect of grain orientation on fracture

morphology during high-cycle fatigue of Ti-6Al-4V, Acta Materialia 57

(2009) 3584–95.

26

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



[44] M. Bache, W. Evans, H. Davies, Electron back scattered diffraction (EBSD)

analysis of quais-cleavage and hydrogen induced fractures under cyclic and720

dwell loading in titanium alloys, Journal of Materials Science 32 (1997)

3435–42.

[45] D. Hull, D. Bacon, Introduction to Dislocations, Butterworth-Heinemann,

2001.

[46] M. Sangid, The physics of fatigue crack initiation, International Journal725

of Fatigue 57 (2013) 58–72.

[47] P. Castany, F. Pettinari-Sturmel, J. Douin, A. Coujou, In situ transmission

electron microscopy deformation of the titanium alloy Ti-6Al-4V: Interface

behaviour, Materials Science and Engineering A 483-484 (2008) 719–22.

[48] P. Castany, F. Pettinari-Sturmel, J. Crestou, J. Douin, A. Coujou, Exper-730

imental study of dislocation mobility in a Ti-6Al-4V alloy, Acta Materialia

55 (2007) 6284–91.

[49] S. Naka, A. Lasalmonie, P. Costa, L. Kubin, The low-temperature plastic

defomration of α-titanium and the core structure of a-type screw disloca-

tions, Philosophical Magazine A 57 (1988) 717–40.735

[50] H. Matsui, H. Kimura, S. Moriya, The effect of hydrogen on the mechanical

properties of high purity iron I. Softening and hardening of high purity

iron by hydrogen charing during tensile deformation, Materials Science

and Engineering 40 (1979) 207–16.

[51] W. Xie, X. Liu, W. Chen, H. Zhang, Hydrogen hardening effect in heavily740

deformed single crystal α-Fe, Computational Materials Science 50 (2011)

3397–402.

[52] F. Beck, Effect of hydrogen on the mechanical properties of titanium and

its alloys, Technical Report CR-134796, NASA, 1975.

27

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



[53] H. Conrad, Effect of interstitial solutes on the strength and ductility of745

titanium, Progress in Materials Science 26 (1981) 123–403.

[54] S. Lynch, Progress towards understanding mechanisms of hydrogen em-

brittlement and stress corrosion cracking, in: Corrosion-NACE, Nashville,

TN, 2007.

[55] R. Gaddam, M. Perderson, R. Hörnqvist, M.-L. Antti, Fatigue crack growth750

behaviour of forged Ti-6Al-4V in gaseous hydrogen, Corrosion Science 78

(2014) 378–83.

[56] S.P. Lynch, Metallographic and fractographic techniques for characterising

and understanding hydrogen-assisted cracking of metals. In R.P. Gangloff

and B.P. Somerday (eds.), Gaseous hydrogen embrittlement of metals in755

energy technologies - Volume 1: The problem, its characterisation and

effects on particular alloy classes, Cambridge, (2012), 274–346.

28

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



List of Figures

1 Bright field (BF) TEM images: (a) Overview of lamellar α/β
microstructure, (b) and (c) Primary and secondary alpha laths,760

(d) Secondary alpha residing between coarse primary alpha laths. 30
2 The hydrogen embrittled zone is demonstrated by the blue semi-

elliptical feature at the fatigue crack origin. The locations of the
facets for the QTF/EBSD technique, as well as the position of
the foils for dislocation contrast analysis, are given. . . . . . . . . 31765

3 Position of the grains of interest within the respective FIB-prepared
TEM foils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 [0001] pole figures obtained from facets within the hydrogen em-
brittled origin: (a) Facet 1 ∼14 ◦ from the basal plane , (b) Facet
2 ∼14 ◦ from the basal plane. . . . . . . . . . . . . . . . . . . . . 33770

5 BF dislocation contrast images for grain 1, for diffraction condi-
tions of g0002, g01̄11̄ and g01̄11. The white arrows indicate the
direction of the g vector. . . . . . . . . . . . . . . . . . . . . . . . 34

6 BF dislocation contrast images for grain 2: (Upper) Stitch of low
magnification images for g0002, (Lower) Increased magnification775

views for g0002 and g01̄11̄. The dashed box indicates the area
magnified from the stitch in the lower left image. In all cases, the
white arrow indicates the direction of the g vector. . . . . . . . . 35

7 BF dislocation contrast images for grain 3, for diffraction condi-
tions of g0002, g2̄110 and g01̄12. The arrows indicate the direction780

of the g vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8 BF dislocation contrast images for grain 4, for diffraction condi-

tions of g0002. The white arrows indicate the direction of the g
vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 BF dislocation contrast images for grain 5, for diffraction condi-785

tions of g01̄11. The white arrows indicate the direction of the g
vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 BF dislocation contrast images for FIB and electropolished pre-
pared thin foils, for diffraction conditions of g0002 and g01̄11. The
white arrows indicate the direction of the g vector. . . . . . . . . 39790

11 Secondary electron images taken from the fatigue crack propa-
gation region, all at a crack length of ∼600µm, close to the lo-
cation from which the foil containing grain 4 was extracted: (a)
and (b) secondary cracking, (c) and (d) evidence of underlying
microstructure as primary alpha lath structures and torn striations. 40795

29

The dislocation mechanism of stress corrosion embrittlement in Ti-6Al-2Sn-4Zr-6Mo



10 µm 2 µm

2 µm 1 µm

Figure 1: Bright field (BF) TEM images: (a) Overview of lamellar α/β microstructure, (b)
and (c) Primary and secondary alpha laths, (d) Secondary alpha residing between coarse
primary alpha laths.
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Figure 2: The hydrogen embrittled zone is demonstrated by the blue semi-elliptical feature at
the fatigue crack origin. The locations of the facets for the QTF/EBSD technique, as well as
the position of the foils for dislocation contrast analysis, are given.
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Figure 3: Position of the grains of interest within the respective FIB-prepared TEM foils.
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Figure 4: [0001] pole figures obtained from facets within the hydrogen embrittled origin: (a)
Facet 1 ∼14 ◦ from the basal plane , (b) Facet 2 ∼14 ◦ from the basal plane.
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Figure 5: BF dislocation contrast images for grain 1, for diffraction conditions of g0002, g01̄11̄
and g01̄11. The white arrows indicate the direction of the g vector.
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Figure 6: BF dislocation contrast images for grain 2: (Upper) Stitch of low magnification
images for g0002, (Lower) Increased magnification views for g0002 and g01̄11̄. The dashed box
indicates the area magnified from the stitch in the lower left image. In all cases, the white
arrow indicates the direction of the g vector.
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Figure 7: BF dislocation contrast images for grain 3, for diffraction conditions of g0002, g2̄110
and g01̄12. The arrows indicate the direction of the g vector.
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Figure 8: BF dislocation contrast images for grain 4, for diffraction conditions of g0002. The
white arrows indicate the direction of the g vector.
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Figure 9: BF dislocation contrast images for grain 5, for diffraction conditions of g01̄11. The
white arrows indicate the direction of the g vector.
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Figure 10: BF dislocation contrast images for FIB and electropolished prepared thin foils, for
diffraction conditions of g0002 and g01̄11. The white arrows indicate the direction of the g
vector.
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Figure 11: Secondary electron images taken from the fatigue crack propagation region, all at
a crack length of ∼600µm, close to the location from which the foil containing grain 4 was
extracted: (a) and (b) secondary cracking, (c) and (d) evidence of underlying microstructure
as primary alpha lath structures and torn striations.
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Grain ID Description θ

1 Hydrogen Embrittled LCF Origin 71 ◦

2 Hydrogen Embrittled LCF Origin 71 ◦

3 Hydrogen Embrittled LCF Origin 25 ◦

4 LCF Crack Propagation 31 ◦

5 LCF Origin 77 ◦

Table 1: Location and orientation of grains, where θ is defined as the angle between the
loading direction and the c-axis.
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Character Type b Glide Plane
Invisibility Contrast

g0002 g01̄11̄ g01̄11 g01̄12 g2̄110 g101̄0

Screw 〈a〉 1
3 [1̄1̄20] (0001) or (101̄0) or (1̄1̄01) 0 + + + + +

Screw 〈c+ a〉 1
3 [12̄13] (1̄1̄22) or (1̄011) + + + + + 0

Edge 〈a〉 1
3 [1̄1̄20] (0001) + + + + 0 0

Edge 〈a〉 1
3 [1̄1̄20] (1̄100) 0 + + + + +

Edge 〈a〉 1
3 [1̄1̄20] (1̄101) + + 0 + + +

Edge 〈c+ a〉 1
3 [12̄13] (1̄101) + + 0 + + +

Table 2: Demonstrating selected invisibility contrast values, where contrast is defined as +
and invisibility is defined as 0.
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