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Abstract

The superelastic beta titanium alloy, Gum Metal, has been found to accumulate plastic strain
during tensile load cycling in the superelastic regime. This is evident from the positive drift of
the macroscopic stress vs. strain hysteresis curve parallel to the strain axis and the change in its
geometry subsequent to every load-unload cycle. In addition, there is a progressive reduction in
the hysteresis loop width and in the stress at which the superelastic transition occurs. In-situ
synchrotron X-ray diffraction has shown that the lattice strain exhibited the same behaviour
as that observed in macroscopic measurements and identified further evidence of plastic strain
accumulation. The mechanisms responsible for the observed behaviour have been evaluated using
transmission electron microscopy, which revealed a range of different defects that formed during
load cycling. The formation of these defects is consistent with the classical mathematical theory
for the b.c.c. to orthorhombic martensitic transformation. It is the accumulation of these defects
over time that alters its superelastic behaviour.
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1. Introduction1

In 2003, Saito et al. [1] presented their findings on a novel metastable β-titanium2

alloy (Ti-36Nb-2Ta-3Zr-0.3O wt.%), Gum Metal, that exhibited a unique combination3

of attractive mechanical properties. These included a high tensile strength in excess of4

1 GPa, a low elastic modulus of ≈70 GPa in the hot worked condition (≈55 GPa after cold5

rolling) as well as superelastic and superplastic behaviour. These ‘super’ properties were6

attained by selecting a composition that simultaneously satisfied three theoretically pre-7

dicted electronic parameters: electron per atom ratio (e/a=4.24), bond order (Bo=2.87)8

and d electron orbital energy level (Md=2.45 eV).9
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The authors noted that the material exhibited very little hardening even after substan-10

tial cold work. Based on this and their microstructural observations, it was stipulated11

that the material underwent plastic deformation via a dislocation free mechanism. They12

claimed that no martensitic transformation took place during cold work. Instead, the13

unstable β lattice readily formed giant faults by ideal shear and thus accommodated the14

plastic strain. However, the in-situ synchrotron X-ray work of Talling et al. [2,3], has15

conclusively proven that a reversible stress induced martensitic transformation, whereby16

the body-centred cubic (bcc) β phase transforms to the orthorhombic α′′, is responsible17

for the superelastic behaviour.18

Despite this, the mechanisms responsible for the peculiar mechanical behaviour of Gum19

metal are complex and remain a subject of ongoing work. Morris et al. [4] have shown that20

the propensity of Gum Metal for undergoing the martensitic transformation is orientation21

and texture dependent. Furthermore, structures commonly referred to as “giant faults”,22

nanodisturbances, twinning, dislocations and α′′ are typically observed in the β phase23

after cold working of Gum Metal as well as other superelastic alloys like Ti-2448 and24

Ti-12Mo. Their exact role in the deformation processes remains to be determined, while25

there has been no evidence to date that their origin is assisted by dislocation glide [1,5].26

Furthermore, cold work results in the formation of large number of fine stress-induced27

ω phase precipitates [6–8]. These have a hexagonal crystal structure that results from28

the systematic collapse of the {111} planes in the β phase. Since cold working increases29

the tensile strength of Gum Metal, it is likely that the formation of the ω phase plays30

an important role. Lastly, plasticity that is mediated by dislocation glide has also been31

reported in derivative alloys [9,10,5].32

Due to its low elastic modulus and the low toxicity of niobium as a β stabilising element33

[11], Gum Metal is receiving significant attention from the biomedical community as34

a candidate material for orthopaedic implants. In addition, the low modulus and the35

possibility of hysteretic superelastic behaviour make the alloy interesting to engineers36

for energy absorbing applications. Therefore, it is important to understand fully the37

mechanical behaviour of Gum Metal during superelastic load cycling.38

In this work we examine the superelastic behaviour of Gum Metal under cyclic tensile39

loading using synchrotron X-ray diffraction and high-resolution electron microscopy. We40

show that the β → α′′ martensitic transformation introduces a variety of permanent41

lattice defects. This leads to accumulation of plastic strain and changes the shape of42

superelastic hysteresis with every load-unload cycle. Finally, we provide an explanation43

for this accumulation of defects by employing classical mathematical theory to evaluate44

the martensitic transformation in Gum Metal.45

2. Experimental method46

2.1. Material preparation47

The Gum Metal employed in this study was produced using ingot metallurgy. An48

elemental powder compact was melted in a high purity argon atmosphere using a helium49

plasma torch. The initial ingot was then triple remelted with inversions. A billet 60 mm50

in diameter was machined from the button-shaped ingot. It was then subjected to a 6051

minute solution heat treatment at 850 ◦C. DeltaglazeTM 3418 (Acheson, MI, USA) glass52
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lubricant, was subsequently applied to the surface of the billet and it was extruded into53

12 mm rod after a 105 minute heat treatment at 975 ◦C. Inductively coupled plasma54

optical emission spectrometry (ICP-OES) was used to verify the chemical composition55

of the final product: Ti-36.2Nb-1.96Ta-3.16Zr-0.26O wt.%. (LECO analysers were used56

to measure the oxygen and hydrogen content.)57

2.2. In-situ synchrotron X-ray scattering58

The in-situ loading experiment was performed at the I12 beamline of the Diamond59

Light Source synchrotron X-ray facility in Didcot, Oxfordshire, UK. Figure 1 shows a60

schematic representation of the experimental set-up. A ‘dog bone’ tensile test specimen,61

with gauge dimensions of 1.5×1.5×19 mm was electric discharge machined (EDM) from62

the extruded Gum Metal bar, with the tensile axis aligned parallel to the extrusion63

direction. It was subjected to sub-yield cyclic tensile loading between 15 and 700 MPa on64

a purpose built 5 kN frame using a loading rate of 4 MPa s−1. The maximum stress does65

not exceed the yield strength of Gum Metal as can be seen from the full stress vs. strain66

curve in Figure 2. A total of 20 load-unload cycles were carried out. The macroscopic67

strain was recorded using a 10 mm contact extensometer.68

The Debeye-Scherrer diffraction rings formed by the monochromated incident X-ray69

beam (0.5×0.5 mm, 80 keV (λ=0.15498 Å)) were imaged using a Thales Pixium RF434370

2880×2880 pixel 2D area detector positioned 1320.725 mm from the specimen. The im-71

ages were acquired using 2 s exposures, while the detector’s write time was a further 0.5 s72

per image.73

The diffraction ring images were processed using the FIT2D [12] analysis software to74

obtain the intensity vs. 2θ (scattering angle) spectra. The data are taken from a 10◦75

azimuthal bin around 90◦, i.e. aligned to the tensile axis. The instrument parameters76

necessary for the analysis were determined using a powder standard. The Wavemetrics77

IGOR Pro software package was then used to perform fitting of a Gaussian function to78

the individual lattice peaks observed in the integrated spectra.79

2.3. Post-mortem electron microscopy80

Screw-threaded fatigue specimens with a round cross section, a gauge diameter of 5 mm81

and gauge length of 19 mm were prepared using EDM. In order to help isolate the effects82

various deformation related phenomena the specimens were subjected to sub-yield cyclic83

loading in both the superelastic regime 15-750 MPa, as well as below the superelastic84

transition stress between 15-300 MPa. Furthermore, different numbers of load-unload85

cycles were investigated: 1, 2, 20 and 200 cycles at a loading rate of 4 MPa s−1. A 100 kN86

Instron servo-hydraulic thermo-mechanical fatigue (TMF) frame was used to carry out87

the mechanical tests with a contact extensometer to record the macroscopic strain.88

Subsequent to cyclic testing, the specimens were sectioned perpendicular to the load-89

ing axis for electron microscopy. Thicker sections were used to prepare specimens for90

electron backscatter diffraction (EBSD) mapping in the Zeiss Auriga field emission gun91

scanning electron microscope (FEG SEM) with an Oxford Instruments HKL Nordlys92

EBSD detector. Specimen surface preparation involved mechanical grinding using silicon93
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carbide paper followed by polishing using colloidal silica suspension neutralised to ≈pH794

using hydrogen peroxide.95

Thin slices were used to prepare specimens for transmission electron microscopy (TEM).96

Spark erosion was used to prepare 3 mm discs, which were then subjected to twin-jet elec-97

tropolishing using an 8% solution of sulphuric acid in methanol at 18 V and -40 ◦C. Imag-98

ing of the resulting foils was performed using the JEOL JEM 2000FX 200 keV thermionic99

emission TEM and the FEI Titan 80/300 FEG Cs aberration corrected TEM/STEM at100

300 keV.101

3. Results102

3.1. Macroscopic stress-strain behaviour103

Figure 2 shows the stress vs. strain curves recorded during 200 load-unload cycles104

carried out on the TMF load frame. The first observation is the apparent accumulation105

of permanent plastic strain after every cycle, visible as gradual drift of the stress strain106

hysteresis greater residual strains. After 200 cycles, a total of approximately 0.2% strain107

had been accumulated by the specimen.108

It can also be seen from the graph that the shape of the macroscopic behaviour changes109

progressively with every load cycle. For this, it is sufficient to compare the first and last110

load cycles. These have been highlighted by black dashed lines and are on the left and111

right respectively. It is clearly evident that the shapes of the two loops are quite different.112

There are three key observations that can be made:113

The first loop confines a much larger area than the last. This implies that the material114

dissipates significantly more energy per unit volume during the first cycle. It is also115

worth noting that the overall shape of the first loop is different to those of all subsequent116

loops. It has a much broader shape when under high stresses. All subsequent loops are117

approximately three times narrower at their widest point and become progressively closer118

in shape to a classical hysteresis loop. This suggests that significant changes occur in the119

material during the first load cycle that alter its ability to accommodate strain during120

subsequent cycling.121

The threshold stress for the superelastic transition is substantially reduced after 200122

cycles. In the first loading curve the superelastic transition occurs at approximately123

500 MPa. For comparison, this transition occurs at ≈200 MPa in the final loading curve.124

This is a dramatic reduction which is evidence of permanent changes in the alloy that125

make the onset of superelastic behaviour more favourable when the load is reapplied.126

Lastly, there is an apparent reduction in the Young’s modulus of the specimen. The127

gradient of the elastic section of the loading curve drops from ≈65 GPa in the first loading128

curve to ≈55 GPa in the 200th one.129

All of these observations raise important questions about the extent of reversibility of130

the β to α′′ martensitic transformation in Gum Metal. The alloy appears to accumulate131

permanent mechanical damage during load cycling within the limits of the superelastic132

regime. To better explain this behaviour and identify its mechanisms one must examine133

what happens in the material at the microscopic scale, which is described in the following134

two sections.135
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3.2. Synchrotron X-ray scattering136

Figure 3 shows the evolution of the (Intensity vs. 2θ) diffraction spectrum during tensile137

loading of Gum Metal in the first cycle. As the applied tensile stress is increased past the138

superelastic transition from 15 to 700 MPa, Figure 3(a), we can observe appearance and139

gradual rise in prominence of two distinct diffraction peaks. These peaks correspond to140

the {110} and {132} α′′ reflections respectively. Thus, our experiments show the same bcc141

to orthorhombic diffusionless phase transformation that has been described by Talling et142

al. [3,13].143

Upon removal of the applied stress, Figure 3(b), the diffraction peaks attributed to the144

α′′ martensite subsided considerably. This was always found to be the case, irrespective of145

the number of load cycles that the specimen was subjected to. Therefore, any α′′ phase146

that may be retained after removal of the load must occupy an insignificant volume147

fraction and therefore is unlikely to be the source of the observed damage accumulation148

in the material. Figure 3 (c), shows the evolution of the fitted area of the {132} α′′ peak149

during loading and unloading in the first cycle. We observe that the evolution of the150

peak area also exhibits hysteresis and that the final peak area after unloading is smaller151

(i.e. near zero) than that prior to loading. This indicates the α′′ that existed within the152

diffracting before the application of stress has reverted back to β on completion of the153

first cycle. Nevertheless, the superelastic transformation itself must play a significant154

role. In order to better understand the observed phenomena, we now turn to examine155

the changes that take place in the matrix phase, β.156

Taking into account the texture resulting from extrusion, the {110}, {211} and {220}157

reflections were analysed since they all have a component along the loading axis. They158

are persistent, considerably more intense than the α′′ peaks and allow for comparatively159

straightforward and reliable fitting. Figure 4 shows the evolution of the peak position for160

these reflections for selected load-unload cycles. The peak positions also exhibit hysteretic161

behaviour and show similar changes to those observed in the macroscopic stress vs.162

strain curve in Figure 2. Here one can see the same drastic change in the shape of the163

curve from cycle 1 to cycle 2. In particular, there the same change in the width of the164

hysteresis. Figure 5(c) shows how the hysteresis width of the {110} peak is reduced during165

superelastic load cycling. The rate of reduction is comparatively great at the beginning166

and becomes more gradual after approximately 5 cycles. The reduction in the threshold167

stress for the superelastic transformation can also be observed.168

In addition, the {211} peak shows peculiar behaviour. In the case of the first cycle,169

an apparently compressive strain is permanently imparted to the system after loading170

and unloading. The overall shape of the stress vs. strain loop is similar to the first171

cycles for {110} and {220}, but it is reflected in the vertical axis and rotated 90◦ about172

the origin. While we observe that none of the load-unload cycles for the three peaks173

formed closed loops, the first cycle of the the {211} peak shows very clearly the most174

noticeable difference between the initial and final strain values. This is yet more evidence175

of permanent changes in the material. Closure of this substantial gap would require a176

compressive stress. Interestingly, during subsequent load-unload cycles the behaviour is177

similar to that exhibited by the {110} and {220} peaks.178

Lastly, hysteresis drift can be observed in the positions of the {211} and {220} peaks,179

which appear to accumulate compressive and tensile strain respectively. The {110} peak180
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position also exhibits accumulation of tensile strain after twenty load-unload cycles,181

though this change is less noticeable than that those of the other two peaks.182

Other properties of the three diffraction peaks, ({110}, {211} and {220}), also change183

during load cycling and provide additional evidence of mechanical damage accumulation.184

Figure 5(a) shows that the fitted width of the three peaks increases with each subsequent185

load-unload cycle. This increase is gradual for the {110} and {220} widths. In comparison,186

the behaviour of the {211} is very peculiar, showing quite a rapid increase in width during187

the first 5-6 load-unload cycles. After that, the width continues to increase gradually at188

a similar rate to the other two.189

The diffraction elastic constants (DECs) measured using lattice strains also show a190

decreasing trend, Figure 5(b). (A DEC is defined by the gradient of the initial microscopic191

stress with respect to the measured elastic lattice strain for a given lattice plane or192

family of lattice planes. In this study DECs were evaluated between 20 and 200 MPa.)193

The {110} and {220} DECs show a large drop after the second cycle. After that, they194

decrease linearly at a slower rate. In contrast, the {211} stands out again. The initial195

dramatic drop in the DEC is spread over the first 5-6 cycles. This is then followed by a196

slight increase until cycle 10, after which the DEC decreases at approximately the same197

rate as the {110} and {220}.198

The results of the X-ray scattering experiment strongly suggest that significant struc-199

tural changes (i.e. so called mechanical damage) take place in the Gum Metal specimen200

during superelastic load cycling which lead to the observed behaviour. The results sug-201

gest that the α′′ martensite transforms back to β when the sample is unloaded. Thus, the202

mechanisms of the damage accumulation must take place at very fine length scales. To203

shed some light on this, we performed the following examination of the microstructure204

in the extruded material and load-cycled specimens.205

3.3. Electron microscopy206

The extruded bar was sectioned, polished using colloidal silica suspension, etched using207

8 vol.% HF and 15vol.% HNO3 in water and examined in a visible light microscope.208

Sections taken perpendicularly to the extrusion direction showed extensive ‘marbling’209

that is characteristic of cold-deformed bcc material. This indicates that the microstructure210

is not fully recrystallised after extrusion. It also suggests that not all of the plastic211

deformation sustained during the extrusion process has been recovered.212

Figure 6 shows the results of the EBSD analysis performed on the un-cycled Gum Metal213

bar normal to the extrusion direction. The analysis shows that the material exhibits a214

strong texture, with the 〈110〉 crystallographic axes of the grains aligned to the extrusion215

direction, Figure 6(b) and (c). More interestingly however, the composite band contrast216

and Euler angle map in Figure 6(a) shows the nature of the ‘marbling’ effect. The highly217

textured grains appear to form clusters in which their crystallographic misorientation218

relative to one another is small. Indeed, TEM shows that many grains are often separated219

by low-angle twist or tilt boundaries. A characteristic example boundary can be seen in220

the top right hand corner of Figure 7(a). Thus, crystallographic defects may propagate221

more easily between the grains within these domains.222

Bright field TEM overviews of the dislocation content in the extruded and 200 cycle223

specimens are presented in Figure 7. From Figure 7(a) one can see that the extruded ma-224
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terial already contains a population of dislocations. These are observed either as isolated225

segments or as networks. No significant changes to the arrangement and distribution of226

dislocations were observed in the specimen that was subjected to only one load-unload227

cycle.228

However, after 200 cycles, we observe not only an apparent increase in the number229

density of dislocations, but also the formation of distinct slip bands, Figures 7(b) and230

(c). These bands are not observed in the un-cycled material, neither are they present231

after the first load cycle. This indicates that the formation and growth of the slip bands232

is a a gradual process that leads to the accumulation of plastic strain during load cycling.233

Thus, it is the most likely explanation for the hysteresis drift observed in Figure 2.234

The gradual broadening of the diffraction peaks in Figure 5(a) is also consistent with235

this observation. The crystal lattice is distorted by a dislocation core, whereby it is either236

under compression or tension. Thus, accumulation of plastic strain can be observed as237

the broadening of the diffraction peaks in X-ray and neutron scattering experiments238

[14]. However, while all three of the diffraction peaks Figure 5(a) exhibit broadening,239

the most dramatic change takes place in the width of of the {211} peak. Furthermore,240

this change takes place over the first few cycles. This implies that either there is another241

deformation related phenomenon contributing to the broadening, or that the number242

density of dislocations causing the broadening increases tremendously during the first243

few load-unload cycles.244

Figure 8 illustrates the effect of superelastic load-cycling on the distribution of the ω245

phase precipitates. (Both dark field images taken using the ω satellite spots near the246

{110} zone axis and the corresponding diffraction patterns are shown.) In Figure 8(a),247

we see that the material in the as extruded condition already has a population of fine248

ω. However, it should be noted that this distribution is quite uneven and grains still249

exist with hardly any precipitates at all. In other instances, the ω phase can be found250

concentrated in isolated pockets near grain boundaries. This may be a consequence of the251

hot extrusion process, which results in the highly deformed and textured microstructure,252

as is evident in Figure 6.253

Subjecting the Gum Metal to a single load-unload cycle appears to increase the fraction254

of the ω phase precipitates, as well as their apparent size, Figure 8(b). This is evident255

in both the dark field image and the diffraction pattern, where the ω satellite spots are256

considerably brighter. This observation is consistent with the finding of Jones et al. [8],257

who also observed this trend. In contrast with the un-cycled material, the ω phase was258

also more evenly distributed throughout the TEM specimen. After 200 cycles, we observe259

that the amount of the ω phase has increased further, Figure 8(c). The precipitates also260

appear to have either increased in their average size, or to have formed distinct clusters.261

The observed formation of ω phase during the first load-unload cycle coincides with a262

change in the shape of the hysteresis loop that is evident between the first and second263

cycles. Thus, it is likely that the superelastic behaviour is affected by the precipitation264

of ω. Our observations suggest an increase in the ω fraction correlates with the gradual265

decrease in the threshold stress for the superelastic transition. It is possible that the266

presence of ω somehow facilitates the martensitic phase transformation responsible for267

superelastic behaviour. It should also be noted that the formation of slip bands may also268

be contributing to this phenomenon. We therefore propose that a detailed study is carried269

out using small angle neutron/X-ray scattering (SANS/SAXS) to asses the dependence270

of the ω volume fraction and size distribution on superelastic load cycling.271
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Twinning of the bcc β phase is also observed in specimens that have been subjected272

to 200 load-unload cycles. The twinned structures are of two types: solitary laths and273

colonies. Examples of the solitary twins imaged close to the {110} zone axis are shown274

in Figure 9(a-d). They have thicknesses ranging from ≈5 to 50 nm and their ends are275

tapered to a point, Figure 9(d). Such morphology is characteristic of deformation twins276

[15]. Figure 9(e) shows a pseudo diffraction pattern (frequency domain image) generated277

using a fast Fourier transform (FFT) of the high-resolution lattice image in Figure 9(c).278

(N.B. Figure 9(b) shows the same twin at lower magnification.) The spot pattern confirms279

that the structure is indeed twinned β phase. Figure 9(f) is a schematic of the pattern in280

(e), where the red and pink spots correspond to the material within the lath and black281

and grey spots to the material that surrounds it. From the lattice images and diffraction282

patterns in Figure 9 it is possible to deduce that the interface plane of the twin and the283

surrounding material is close to the {112}. It is peculiar that these deformation twins are284

only observed in grains that feature slip bands, and are typically found within the slip285

bands themselves running parallel to them, as can be seen in Figure 9(a). This suggests286

that one type of defect structure may act as the source of the other.287

Figure 10 shows an example of a twin colony found in a specimen that was subjected to288

200 load-unload cycles. Due to the bending of the TEM specimen, the diffraction contrast289

bright field image in 10(a) reveals very well the structure of the colony. One can see290

smaller twins within larger twined regions. Figure 10(b) shows, at greater magnification,291

the structure of the finer twins in the region marked by the square in Figure 10(a). The292

six twins visible in the image have been numbered from left to right. The region imaged293

in Figure 10(b) is aligned to a zone axis (visible from the bend contours in Figure 10(a))294

phase contrast imaging of the lattice is possible. Figure 10(c) shows the lattice structure295

of twin 5 and the interface with the surrounding twins. The banding of the interface296

results from the interface planes not being normal to the image plane, causing slight297

overlap of the twinned crystal in the image.298

Figure 10(d) shows the FFT frequency domain images of twinned regions 1-4. The spot299

patterns indicate that the viewing direction in Figure 10(c) is parallel to the {012} zone300

axis of the bcc β phase and that the observed structures are indeed twins. The measured301

average values of d{002}=1.650 Å and d{112}=1.345 Å (to 4 significant figures) give the302

corresponding values for the lattice constant of 3.300 Å and 3.295 Å. These fit well with303

the lattice parameter measured using synchrotron X-ray diffraction, 3.2907 Å. The values304

measured from the electron image may be larger due to heating imparted on the sample305

by the electron beam. Diffuse streaking and interference spots can be distinguished in306

the frequency domain images, particularly well for twin 3. These are likely to correspond307

to the abundant ω phase. The particular morphology of the twins suggests that they may308

have originated via the reverse transformation of the twinned α′′ phase back to the bcc309

β phase upon unloading.310

4. Discussion311

The results of our study show that load cycling of Gum Metal in the superelastic regime312

induces permanent microstructural changes. Furthermore, the extent and nature of these313

changes depends on the number of load cycles sustained by the material. In order to better314

understand the causes of the observed phenomena, we now consider the nature of the315
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superelastic transformation in Gum Metal. For this, we can employ the phenomenological316

theory of martensitic transformation (PTMT) as outlined by Lieberman, Wechsler and317

Read [16,17] and Mackenzie and Bowles [18–21] to model the cubic to orthorhombic318

transformation of β to α′′.319

The theory allows the prediction of the interface plane, orientation relationships and320

macroscopic distortions for the transformation using only the lattice parameters of the321

austenite and martensite phases as an input. It shows that an interface plane with zero322

distortion (i.e. an invariant plane) minimises the strain energy associated with the trans-323

formation. This is achieved through the twinning of the martensite phase in such a way324

where the relative amounts of the two twin variants, x1 and x2 where x1 = 1−x2, satisfy325

this condition.326

In our calculation we used the following lattice parameters which were measured327

experimentally during the in-situ synchrotron experiment: aβ=3.347Å, aα′′=3.225Å,328

bα′′=4.763Å, cα′′=4.636Å. For comparison, the values reported by Talling et al. [3] were329

also subjected to the analysis (aβ=3.347 Å, aα′′=3.250Å, bα′′=4.853Å, cα′′=4.740Å).330

All results are reported relative to the cubic crystal coordinate system of the parent β331

phase. It should also be noted that left-handed coordinate axes were used, following the332

methodology of the original manuscript by Lieberman et al. [16].333

According to the their approach the total distortion E caused by the transformation334

is given by the following expression:335

E = (1− x2)Φ1T1 + x2 Φ2T2 (1)

The matrices T1 and T1 describe the Bain [22,17] distortion for each martensite variant.336

In the cubic (austenite) reference frame these these were defined as337

T1 =

η1 η2 0
η2 η1 0
0 0 η3

 and T2 =

η1 0 η2

0 η3 0
η2 0 η1

 (2)

where η1 =
√

2(bα′′+cα′′ )/4aβ, η2 =
√

2(−bα′′+cα′′ )/4aβ and η3 = aα′′/aβ. The rotations338

necessary to attain a zero distortion plane are given by the matrices Φ1 and Φ2. The339

PTMT first calculates the relative rotation between Φ1 and Φ2. This allows the relative340

amounts of the twin variants , x1 and x2, that are necessary to attain an invariant plane341

to be determined along with the principal distortion matrix, Fd, where:342

Fd =

λ1 0 0
0 λ2 0
0 0 λ3

 (3)

To satisfy the invariant plane condition, one of the principal distortions, λi, must be unity343

when the correct proportions of the twin variants, x1 and x2, are formed. This condition344

allows one to calculate the solution using linear algebra. This in turn allows the total345

distortion, E, to be determined and with it the critical parameters for the transformation346
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including orientation relationship between the austenite and martensite phases are also347

found.348

Table 1 lists these key properties of the transformation where n is the normal to the349

invariant interface plane; s, m and θ are the direction, magnitude and angle of shear350

respectively; while t is the twin plane between the two martensite variants. The rotation351

matrices Θ and Ω transform the cubic planes and directions to the orthorhombic axis352

systems of the martensite variants 1 and 2 respectively. Their components evaluated for353

the lattice parameters measured in this study are shown below and the corresponding354

orientation relationships are given in Table 2.355

Θ =


0.7190 −0.7039 0.0108

0.6851 0.6994 −0.0255

0.0102 0.0252 0.9632


β→α′′1

(4a)

Ω =


0.7136 −0.0414 −0.7083

0.0025 0.9620 −0.0538

0.6906 0.0370 0.6936


β→α′′2

(4b)

Below are the matrices evaluated using lattice parameters measured by Talling et al.356

and the orientation relationships are shown presented in Table 3.357

Θ =


0.7452 −0.7028 −0.0438

0.6877 0.7273 0.0309

0.0095 −0.0503 0.9697


β→α′′1

(5a)

Ω =


0.7268 0.0192 −0.7229

−0.0165 0.9708 0.0092

0.7061 0.0052 0.7101


β→α′′2

(5b)

One can see from these data that the interface and twin planes, n and t respectively,358

are irrational for both sets of lattice parameters. The implication of this is that these359

interfaces are likely to be semi coherent and feature a stepped geometry that is stabilised360

by the presence of dislocations. This hypothesis is consistent with the experimental evi-361

dence presented in our study since the superelastic transformation results in the creation362

of new interfaces feature lattice defects that lead to an irreversible accumulation of strain.363

That said, the planarity and coherence of these interfaces is difficult to assess: HR TEM364

is sensitive to specimen bending (which is prevalent in foils prepared from highly de-365

formed Gum Metal) and the averaging effect associated with imaging columns of atoms366

also plays a part. Furthermore, no α′′ martensite phase is retained in our specimens that367

would permit a direct evaluation.368

The differences between the the results for the two sets of lattice parameters are also369

of interest. The lattice parameters measured here require two principal distortions that370
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are both smaller than unity, which implies that both are contractions. When using the371

parameters of Talling et al., one of the distortions is greater that unity and one is smaller,372

with the implication that one is an expansion and the other is a contraction. The over-373

all magnitude of shear is also greater for this study. Lastly there is difference in the374

relative amounts of the two twin variants. These discrepancies may be a result of differ-375

ent techniques used to measure the lattice parameters (Synchrotron XRD vs. electron376

diffraction). However, the parameters reported by by Talling et al. are actually aver-377

age values for alloys with different compositions: Ti-36.9Nb-2.0Ta-3.0Zr-0.30O and Ti-378

35.0Nb-2.1Ta-3.1Zr-0.30O wt.%. The Gum Metal used in this study has a lower oxygen379

content (0.26 wt.%). This may contribute to the difference in observed lattice param-380

eters and the PTMT calculation results, since oxygen concentration is known to have381

a strong effect on the martensitic transformation and ω phase formation in β titanium382

alloys [13,10].383

The mathematical transformation theory seems to provide a possible explanation for384

the formation for the increased dislocation density observed as slip bands in Figure 7.385

The glide planes of the dislocation segments making up the slip bands are close to the386

{112} habit planes of the deformation twins. The interface plane normals, n, calculated387

using PTMT are irrational. Their normals have a misorientation from (12̄1̄)β of ≈10.0◦388

and 8.0◦ respectively for the two sets of lattice parameters. It is possible that the nec-389

essary stepped geometry which is required for the high index irrational interface planes390

is accommodated by a
2 〈111〉 {112} dislocations. Thus the observed slip bands may be391

formed at or within the vicinity of the β/α′′ interfaces as the material is subjected to392

superelastic load cycling. When the load is reapplied during each cycle, the remnant de-393

fects may favour the subsequent reformation of the interfaces close to their locations in394

the previous cycle. The application of the load is also likely to propagate the generated395

dislocations, further contributing to the increase in their number density over time.396

This in turn sheds light on the origin of the deformation twins in close proximity or397

within the slip bands, as shown in Figure 9. The current understanding is that defor-398

mation twins are likely to nucleate and grow via defect assisted mechanisms [15,23]. We399

consider that the homogeneous nucleation of twinning dislocations is unlikely. The glide400

planes of the dislocation segments making up the slip bands are close to the {112} habit401

planes of the deformation twins. This observation is in line with “slip band conversion”402

model put forward for b.c.c. metals by Mahajan [24], based on the theories of coupling403

between a
2 〈111〉 {112} screw dislocation slip and twin nucleation [25–27].404

The observations discussed thus far suggest that upon removal of the tensile load the α′′405

phase generally de-twins and reverts back to the β crystal structure. In contrast, Figure406

10 shows twinning of a different nature in the β phase. The twin plane is also {112}, so407

the observed microstructure is unlikely to have formed via the reverse transformation of408

the α′′ twins which have a twin plane that is close to {110}β . This leaves two possible409

routes for the formation of the twinned β microstructure. In the first, the microstructure410

was formed directly via the twinning of the b.c.c. phase. Alternatively, if under load the411

preceding structure was comprised of alternating layers of β and α′′, it is possible that412

upon removal of the load the the martensite phase underwent a reverse transformation,413

but to a twin variant of the original β phase. Thus, the interface β/α′′ interface planes414

would have become twin planes separating two variants of β. This may be possible because415

of the relative proximity of the interface plane to {112}β .416

It is also worth noting that the calculated β/α′′ interface plane normals have a mis-417
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orientation of ≈9.4◦ and 12.8◦ (respectively for the two sets of lattice parameters) from418

(11̄1̄)β , which is the habit plane of the ω phase. Thus, its possible that the precipitates419

of this phase also help accommodate the irrational interface between the austenite and420

martensite phases. Our observations show that load cycling produces more ω phase.421

Thus, both our observations and the classical transformation theory show that defects422

are likely to form during the martensitic that gives rise to superelasticty. The generated423

defects appear to better accommodate the β/α′′ interface and thus lower the activation424

strain energy required for the martensitic transformation. This is the likely cause of the425

of the gradual reduction in the threshold stress for the transformation, as well as the426

overall energy dissipated in the hysteresis, observed in Figure 2.427

5. Conclusions428

In our study we have presented experimental evidence of defect accumulation that429

occurs during tensile superelastic load cycling of Gum Metal, which not only imparts430

a permanent plastic strain on the material, but also alters its superelastic hysteresis.431

The observed defects included dislocations forming distinct slip bands, deformation and432

transformation twins were also present and there was a transformation of the β phase to433

fine athermal ω precipitates.434

Synchrotron X-ray diffraction has identified peculiar behaviour of the {211} diffraction435

peak when binned parallel to the tensile direction, that stood out from that of the {110}436

and {220} reflections. By carrying out a mathematical analysis of the β to α′′ marten-437

sitic transformation using classical PTMT we have showed that the austenite/martensite438

interface plane is irrational and only ≈ 8 to 10◦ from the {211}. This suggests that439

the necessary steps in the interface are accommodated by the a
2 〈111〉 {112} dislocations440

forming the slip bands observed in TEM. The slip bands conversion model then explains441

the formation of deformation twins on the {211} planes. The β/α′′ interface plane normal442

is also ≈ 9 to 13◦ from the {111}, which suggests that the martensitic transformation443

and formation of athermal ω phase are also related.444

The PTMT therefore provides a unified explanation for the origin of the observed445

defect structures and the resulting macroscopic behaviour. The gradual accumulation446

of defects has significant implications for exploiting the superelastic behaviour of Gum447

Metal, particularly in applications such as damping since the strain accumulation and448

changes in hysteresis (and thus energy dissipation characteristics) must be carefully taken449

into account. This may be overcome by fine tuning the alloy composition to produce an450

austenite/martensite interface that is closer to a rational low index plane, the formation451

of which would produce a minimal number of dislocations.452
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 χ

Fig. 1. Schematic representation of the experimental arrangement used to make the in-situ synchrotron

measurements. The data are binned over an azimuthal angle, χ, to produce intensity vs. 2θ spectra.

Adapted from [28].
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lines. Arrows show approximate positions of superelastic transition stress upon loading. The full stress
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Fig. 7. Diffraction contrast bright-field TEM images showing a comparison of dislocation distributions
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SB and white arrows point to the locations of deformation twins.
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Fig. 8. Dark field TEM micrographs showing that superelastic load cycling increases the amount of the

ω phase in Gum Metal: (a) as extruded condition, (b) 1 cycle and (c) 200 cycles.
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Fig. 9. Diffraction contrast bright field TEM images of fine deformation twins observed after 200 load-

-unload cycles, (a) and (b). High-resolution phase contrast lattice imaging showing the structure of the
twin in the middle (c) and at the tip (d). Frequency domain image (e) obtained using FFT of lattice

image (c) and the corresponding schematic denoting showing contributing spot patterns from the twin
(red) and the surrounding matrix (black).

17

Superelastic load cycling of gum metal



500nm

(a) (b) (c)

20nm 2nm

1 2 3

4

(d) 1 2 3 4

000

200

121

121

5

6

4 5

6

Fig. 10. Diffraction bright field TEM image of a twin colony observed after 200 load-unload cycles, (a) and
high-resolution phase-contrast close-up (b) of region marked by the white square in (a). High-resolution

phase contrast lattice image (c) of twin 5 in (b). Frequency domain images (d) of obtained using FFT of

the lattice in twins 1-4 in (b) and corresponding schematic denoting the Miller indices of the spots in 4.

Table 1

Key properties of the β → α′′ martensitic transformation calculated using PTMT [16]. The top and

bottom sets were computed using lattice parameters measured in this study (top) and by Talling et al.
[3] (bottom). The parameters, from left to right respectively, are proportions of the α′′ twins, x1 and

x2, distortion matrix, Fd, interface plane normal, n, direction of shear, s, magnitude of shear, m, angle

of shear, θ and α′ twin plane, t. All vectors are quoted with respect to the cubic coordinate axes of the
β phase.

x1 : x2 Fd n s m θ t

74.0 : 26.0

1.000 0 0
0 0.970 0
0 0 0.979


 0.496
−0.708
−0.503


 0.693

0.672
−0.263

 0.050 1.93◦

 0.005
−0.658

0.714



11.5 : 88.5

1.022 0 0
0 0.976 0
0 0 1.000


 0.514
−0.740
−0.443


 0.593

0.672
−0.444

 0.046 2.66◦

 0.019
−0.732

0.688



18

Superelastic load cycling of gum metal



Table 2

Orientation relationships obtained using lattice parameters measured in this study.

β and α′′ twin 1 β and α′′ twin 2

(11̄0)β 0.87◦ from (100)α′′1 (101)β 2.37◦ from (100)α′′2
(101̄)β 1.61◦ from (010)α′′1 (010)β 3.20◦ from (010)α′′2
(001)β 1.61◦ from (001)α′′1 (101)β 2.17◦ from (001)α′′2
[111]β 1.71◦ from [011]α′′1 [111]β 2.48◦ from [011]α′′2
[111̄]β 1.49◦ from [011̄]α′′1 [111̄]β 2.61◦ from [110]α′′2
[11̄1]β 1.49◦ from [101]α′′1 [11̄1]β 2.63◦ from [01̄1]α′′2
[11̄1̄]β 0.73◦ from [101̄]α′′1 [11̄1̄]β 2.74◦ from [11̄0]α′′2
[100]β 0.86◦ from [110]α′′1 [100]β 0.22◦ from [101]α′′2
[01̄0]β 1.61◦ from [11̄0]α′′1 [001̄]β 3.20◦ from [101̄]α′′2

Table 3

Orientation relationships obtained using lattice parameters measured in by Talling et al. [3].

β and α′′ twin 1 β and α′′ twin 2

(11̄0)β 2.96◦ from (100)α′′1 (101)β 1.09◦ from (100)α′′2
(101̄)β 2.39◦ from (010)α′′1 (010)β 1.11◦ from (010)α′′2
(001)β 3.02◦ from (001)α′′1 (101)β 0.34◦ from (001)α′′2
[111]β 1.74◦ from [011]α′′1 [111]β 0.81◦ from [011]α′′2
[111̄]β 3.26◦ from [011̄]α′′1 [111̄]β 1.07◦ from [110]α′′2
[11̄1]β 2.49◦ from [101]α′′1 [11̄1]β 0.58◦ from [01̄1]α′′2
[11̄1̄]β 3.40◦ from [101̄]α′′1 [11̄1̄]β 1.12◦ from [11̄0]α′′2
[100]β 1.72◦ from [110]α′′1 [100]β 0.98◦ from [101]α′′2
[01̄0]β 3.40◦ from [11̄0]α′′1 [001̄]β 0.57◦ from [101̄]α′′2
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