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Abstract: Photonic realizations of neural network computing hardware are a promising approach
to enable future scalability of neuromorphic computing. The number of special purpose
neuromorphic hardware and neuromorphic photonics has accelerated on such a scale that one
can now speak of a Cambrian explosion. Work along these lines includes (i) high performance
hardware for artificial neurons, (ii) the efficient and scalable implementation of a neural network’s
connections, and (iii) strategies to adjust network connections during the learning phase. In
this review we provide an overview on vertical-cavity surface-emitting lasers (VCSELs) and
how these high-performance electro-optical components either implement or are combined with
additional photonic hardware to demonstrate points (i-iii). In the neurmorphic photonics context,
VCSELs are of exceptional interest as they are compatible with CMOS fabrication, readily
achieve 30% wall-plug efficiency, >30 GHz modulation bandwidth and multiply and accumulate
operations at sub-fJ energy. They hence are highly energy efficient and ultra-fast. Crucially, they
react nonlinearly to optical injection as well as to electrical modulation, making them highly
suitable as all-optical as well as electro-optical photonic neurons. Their optical cavities are
wavelength-limited, and standard semiconductor growth and lithography enables non-classical
cavity configurations and geometries. This enables excitable VCSELSs (i.e. spiking VCSELs)
to finely control their temporal and spatial coherence, to unlock terahertz bandwidths through
spin-flip effects, and even to leverage cavity quantum electrodynamics to further boost their
efficiency. Finally, as VCSEL arrays they are compatible with standard 2D photonic integration,
but their emission vertical to the substrate makes them ideally suited for scalable integrated
networks leveraging 3D photonic waveguides. Here, we discuss the implementation of spatially
as well as temporally multiplexed VCSEL neural networks and reservoirs, computation on the
basis of excitable VCSELSs as photonic spiking neurons, as well as concepts and advances in
the fabrication of VCSELs and microlasers. Finally, we provide an outlook and a roadmap
identifying future possibilities and some crucial milestones for the field.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Neural networks (NN) are concepts fundamentally relying on a connectionist approach to
computation, a concept that was developed based on the most-simplified features of a biological
neuron, see Fig. 1(a). In a biological neuron, an axon typically forms a long-range link that
connects via synapses to the dendrites of the post-synaptic neuron. Furthermore, a neuron’s inner
working principles makes them respond nonlinearly to inputs. Following this principle, a NN
creates and combines a large number of simple nonlinear transformations by artificial neurons, or
perceptrons, while a training phase tweaks the network’s topology such that specific computations
result from emergence. This enables computing outside the classical symbolic programming and
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Boolean logic-gates catalogue: programming is replaced by statistical NN-topology optimization,
while the hardware-concept is based on networks of simple nonlinear units rather than on mostly
serial threads of logic gates with fixed and premeditated topology. The increased flexibility in
programming a computer enables addressing highly abstract computational challenges, and NN's
currently drive a revolution in various areas of economy, technology and society. However, in a
NN concept, all artificial neurons simultaneously express their transformations of input signals,
which intimately links NNs to parallelism.

(a) Biological neuron (b) Photonic perceptron (c) VCSEL neuron
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Fig. 1. (a) Biological neurons form complex connections using synapses, which link axons
and dendrites of pre- and post-synaptic neurons. Crucial for computation is their nonlinearity.
(b) The optical perceptron mimics this functionality by nonlinearly transforming a sum of
optical fields from neurons in layer [ E]lfl, scaled by connection weights W}, to the neuron’s
output field Ef (c) VCSELs can efficiently be coupled to external fields, and their internal
workings make them respond nonlinearly to such optical injection. (d) Linked via photonic
connections, VCSELSs offer a promising roadmap to photonc neural networks.

Today’s computing substrates can follow the connectionist principle only within tight limits,
and the development of scalable, efficient, high performance hardware NNs currently is a
major goal. The principle operations are information transformation, information transduction
across the network, and topology optimization. Leveraging photons is highly promising for
implementing parallel NN interconnects [1] and in particular in combination with photonic NN
(PNN) computing [2,3]. In a photonic perceptron, see Fig. 1(b), optical inputs from the network
are accumulated and nonlinearly transformed. Optical communication is inherently parallel [4],
energy efficient [5] and recent developments in optical memristors indicate a roadmap towards
programmability [6].

However, competitive nonlinear photonic components for artificial neurons have been a
challenge. Lately, the energy consumption of novel photonic devices is approaching that of
their electronic counterpart [7], and a general strategy to enhance nonlinearity is to confine
photons into a tight space or to increase the interaction time, often by using optical resonators
such as the case for lasers. Vertical-cavity surface-emitting lasers (VCSELs) are one of the most
prominent semiconductor lasers, with unique properties making them highly suitable for next
generation PNN hardware. Figure 1(c) illustrates a VCSEL after fabrication and highlights how
a VCSEL-based neuron would receive, transform and send information. VCSELs profit from
high-yield commercially mature fabrication, readily reaching above 30% wall-plug efficiency [8].
Furthermore, due to their low lasing threshold currents and amplitude-phase coupling via Henry’s
alpha factor, they react highly nonlinear to optical input and can therefore act as all-optical as



m Vol. 12, No. 6/1 Jun 2022/ Optical Materials Express 2397

= B
{ g

well as electro-optical artificial neurons. VCSELSs can readily be modulated with >30 GHz
[8]. Such high efficiency and high speed combined result in an ultra low energy per nonlinear
transformation on the order of 10 fJ [9]. Considering the parallelism of a potentially passive
and low-loss massive interconnect comprising >10? connections per channel, this brings PNNs
using VCSELs into the realm of <100 aJ per Operation, compared to 100 fJ. .. 1 pJ in electronic
circuits. Crucially, this is only a current snapshot, and spin-VCSELs [10], high-8 VCSELs
leveraging cavity quantum electrodynamics as well as nanolasers [11] can further reduce this
cost towards the fundamental physical limits on the order of a few photons per operation [12].

VCSELSs emit vertically to their substrates, which allows for efficient testing and for interfacing
with scalable 3D integrated photonic circuits [13] or external optical resonators [14] in order to
establish a PNN’s connections, see Fig. 1(d). Furthermore, in order to realize numerous photonic
neurons they can be arranged in arrays [9], or, as recently demonstrated, one can leverage spatial
multiplexing of a multimode large area VCSEL in order to implement photonic neurons in spatial
modes [15]. An additional concept to extend the number of degrees of freedom are the two
orthogonal polarization directions [16]. Finally, VCSEL structures can be operated in an excitable
regime, either relying on intra-cavity saturable absorbers [17] or on injection-locked induced
excitability [18].

Owing to such promising properties, semiconductor laser-based PNNs have a long standing
history [19]. Initially, the difficulties in training and implementing large NN limited the field’s
progress. With the introduction of reservoir computing (RC) [20] this challenge was efficiently
mitigated, and in combination with a temporal-multiplexing approach [21] large-scale PNNs
could be successfully emulated [22].

In this review, we provide a detailed overview on the implementation of VCSELSs in different
PNN topologies, different VCSEL-based photonic neuron concepts as well as cutting edge
VCSEL fabrication. In Sec. 3 we discuss the temporal-multiplexing approach for PNNs, in Sec.
4 the implementation of PNNS in spatially extended multimode lasers, while excitable photonic
spiking VCSEL neurons are discussed in Sec. 5, the fabrication of modern VCSELSs structures in
Sec. 6. At the end of our review we provide an extensive outlook in Sec. 7, which includes a
roadmap to guide the field’s future development.

2. Principles of a VCSEL

Photonic hardware provides neuromorphic computing with low-loss optical interconnects, intrinsic
non-linearity and ultrafast operation rates [5]. Suitable devices include optical modulators and
different semiconductor lasers such as edge-emitting lasers, resonant tunnelling diode-laser-diode
systems and VCSELSs [23,24]. The latter are of particular interest because of their commercial
availability, their compactness (in comparison to edge-emitters) and their vertical emission with
close-to-ideal Gaussian emission profiles.

VCSELSs can have many different configurations, yet they all feature identical design principles.
Horizontally arranged high-reflectivity dielectric mirrors sandwich a gain material inside the
cavity formed between the two mirrors. Often, this cavity is very short and only half a wavelength
long. These planar structures are then etched to form pillars, or mesas, and optical emission is
through the top-mirror that typically features a slightly lower reflectivity (between ~99.0% and
~99.8%). A schematic illustration of this principle is given in Fig. 2, and details of semiconductor
VCSEL growth can be found in Sec. 6. Mirrors are usually distributed Bragg reflectors (DBRs),
comprising layers of different semiconductor materials transparent at the lasing wavelength yet
with different refractive indices, while optical gain can either be realized using one or more
quantum wells or ensembles of quantum dots.

The dynamics of VCSELSs are usually described using rate equation models. Compared to
standard edge emitting semiconductor lasers, VCSELs do however require a more complex
description, as they can commonly emit in and hence require modeling of orthogonal optical
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Fig. 2. Schematic representation of a VCSEL device. The compact, vertical emitting laser
consist essentially of two doped DBRs, a central cavity with the active area, at least one oxide
aperture, and ring-shaped n- and p-contacts. Inset: Scanning electron microscope image
showing the central area (cross-section) of a VCSEL with two oxide apertures. Reproduced
with permission from Ref. [25]

polarizations and the associated carrier spin-populations. The standard set of equations is based
on the spin-flip model [26]. These features make their numerical description more complex, but
this complexity is an asset for computation and allows for higher dimensionality or complexity of
VCSEL-neurons and excitable behaviour, see Sect. 5.

An important parameter is the carrier’s relaxation oscillation frequency, whose usual timescale
of 0.1.. .10 GHz typically determines the bandwidth of a VCSEL’s nonlinear transformation.
Furthermore, if information is to be injected optically, then the usually 1...5 ps lifetime of a
photon within the VCSEL’s cavity is important. Optical information injection requires locking
the VCSEL serving as photonic perceptron to an external injection laser [27]. Such optical
injection locking can only be realized inside a narrow range of frequency detuning between
injection and response laser. The width of this detuning window is determined by the ratio of
injection and the VCSEL’s emission power, and the VCSEL’s photon lifetime acts as a scaling
factor: the longer the lifetime, the more frequency selective the VCSEL, and consequently the
narrower the injection locking window is for a given power ratio.

3. Time delayed reservoirs

The concept of delay-based reservoir computing was first introduced in the seminal paper of
Appeltant et al. [21]. Mathematically, delay systems are described by delay differential equations
whose temporal solution depends on the present as well as on past states. As such, when delayed
feedback is added, even a low-dimensional system offers the high-dimensional phase space that
forms the basis for RC. In contrast to spatially-extended RC systems, this approach uses only a
single nonlinear node and a linear delayed feedback line with round trip duration 7, as illustrated
in Fig. 3(a). The nonlinear node continuously transforms the information fed back from the
delay line. A number of virtual nodes (or virtual neurons) are then created by discretizing the
continuous output of the delayed system in N time segments of length 6, often fulfilling the
relation N = 7/6. Delay RC process input information /(¢) sequentially and their operation speed
is determined by the long delay length 7: each input sample is mapped onto the complete set of
virtual nodes N and multiplied by a random mask m(r) with periodicity 7. This temporal mask is
introduced to diversify the response of the virtual nodes to the input signal and plays a similar
role as the input weights in a conventional reservoir. Inertia [21] or de-synchronization between
injection mask length and delay 7 [28] realize the reservoir’s internal connections. Typically, the
input masking and the output layer weights are implemented off-line with a digital computer. The
values you(?) (cf. Figure 3(a)) are obtained one at a time in intervals of T from the continuous
analogue output, and they are calculated as a linear combination of the #-spaced states of the
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virtual nodes, creating reservoir state x(t). The samples are then concatenated to state matrix S
where columns represent time and rows represent the neurons.
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Fig. 3. (a) Delay-based reservoir computing. (b) Scheme of the experimental setup for a
VCSEL delay-based reservoir computer. OC: Optical Coupler, PC: Polarization Controller,
VOA: Variable Optical Attenuator, TLS: Tunable Laser Source, PD: Photodiode, EA:
Electrical Amplifier, OI: Optical Isolator. (c) Performance of a VCSEL delay RC on a
classification task as a function of the average optical injected power for parallel (PAR) and
rotated (ROT) feedback [29]. (d) Performance of the same VCSEL RC on prediction (Pred.)
and classification (Clas.) tasks for PAR and ROT feedback as a function of the frequency
detuning [29]. (b)-(d) © 2022 IEEE. Reprinted, with permission, from [29].

Delay-based RC aims at mitigating hardware complexity of spatially-extended systems using a
single nonlinear node only, a delay line and high-bandwidth capabilities for injection and detection.
When implemented in photonics, delay-based RC systems have successfully been employed for
classification, prediction and system-modelling tasks with state-of-the-art results. The specific
motivation for photonic delayed RC implementations is the availability of off-the-shelf fiber-optics
telecommunications hardware and that the physical length of the delay line does not impact the
modulation bandwidth 6!, cf. Figure 3(b). The first optical hardware implementations of RC
were independently developed by Larger et al. [30] and Paquot et al. [28] using optoelectronic
systems. Soon after, the first implementation with a semiconductor laser showed excellent
performance for RC at Gbyte/s rates [31], the system’s injection locking parameter space was
investigated in [27].

Implementations involving VCSELs leverage their polarization properties to improve the
information processing performance and speed. Typically, one of the two optical modes
dominates, but their relative intensities change depending on laser, optical feedback and injection
parameters. Time delayed RC based on VCSELs explore polarization dependencies to build
alternative feedback schemes by rotating the polarization of the feedback or even exploring dual
processing by simultaneously computing with the two modes. Vatin et al. numerically [32] and
experimentally [16] first demonstrated delay-based RC with two-mode polarization dynamics of
a VCSEL. Using either parallel (PAR) or orthogonal (ROT) configurations, a comprehensive
experimental analysis can be found in [29], where the authors analyze the performance of both
feedback configurations with Mackey-Glass prediction and nonlinear channel equalization tasks,
see Fig. 3(c,d). The authors find that ROT feedback degrades the computational performance in
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terms of memory capacity when there is a significant power difference between the two emission
modes [29].

Dual emission also offers the possibility of implementing two tasks in parallel, where each
task is performed by one of the two perpendicularly polarized modes. This was first proposed
numerically in [33] and later on demonstrated experimentally in [34]. Dual task operation
slightly degrades the system’s performance for each task, but nevertheless represents an attractive
advantage of VCSELs. Finally, Harkhoe et al. [35] proposed and numerically investigated the use
of fast spin-flip dynamics in VCSELSs to boost the information processing speed at multi-GSa/s.
The speed of the spin-flip dynamics, which depend on the birrefringence of the VCSEL, can
further be increased by more than one order of magnitude [10].

Delay-based reservoirs enable minimal hardware requirements [22], yet information is still
processed sequentially, requiring complex time multiplexing, while computational speed still
depends on the size of a time-multiplexed PNN layer. It also entails that most implementations
still rely on an external computer to pre-process data, construct the reservoir state and calculate
the output weights for training. In [36], an online learning strategy is implemented to reduce
the influence of the external computer. However, the sequential nature remains a fundamental
feature (and asset) of this system.

4. Spatio-temporal reservoirs

Using large area VCSELs (LA-VCSELs), e.g. with an aperture of 25 ym and leveraging their
highly multimode nature, a truly parallel, spatially multiplexed, VCSEL-based reservoir was
introduced in [15]. Due to parallelism, computing speed does in this system not depend on
the PNN’s size any longer. In addition, an online learning strategy was implemented, making
the system’s computation fully autonomous and relegating the external computer to a simple
supervision and instrument-control role.

4.1.  Working principle and experimental setup

The PNN implemented in [15] can be broken up into three functional sections, c.f. Figure 4(a).
First, the input layer is realised via a digital micromirror device (DMD,) and a multimode fibre
(mmf). Spatial patterns (Boolean images) displayed on DMD,, constitute the input information,
u in Fig. 4(a), and the mmf passively implements the PNN’s input weights via its complex
transmission matrix.

The second part is the reservoir itself. The output field of the mmf is optically injected via
imaging onto the LA-VCSEL top-facet, which implements all the components of the reservoir
through its spatio-temporal nonlinear dynamics. Nodes are spatially multiplexed positions on the
LA-VCSEL’s surface, and coupling is taken care of by carrier diffusion and optical diffraction
inside the LA-VCSEL’s cavity. The reservoir state is then the perturbed mode-profile of the
LA-VCSEL under optical injection, denoted in Fig. 4(a) as x. In Fig. 4(b), the VCSEL’s response
is shown for several 3-bit headers. Responses to each input pattern are complex and different.
This explains, in an intuitive sense, how finding a configuration of output weights that solve a
certain computational task like header recognition, XOR, and digital-analog conversion [15] is
possible. Ultimately, the reservoir is used at speeds orders of magnitudes below its inherent
timescales, and the LA-VCSEL was operated in its steady state, hence no recurrent properties
such as fading memory of the device were exploited. In order to use the concept presented
here for memory dependant tasks such as time series prediction, one would have to encode the
input information on the timescale of the VCSEL’s intrinsic dynamics by using for instance, a
gigahertz-rate modulator.

The last part of this PNN is its output layer with weights WO, which are realized by imaging
the LA-VCSEL’s near field onto a second DMD (DMDy,). The reflection off DMDy, in one
direction is imaged onto a large area detector, and the mirrors of DMDy, sample the different
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Fig. 4. (a) Working Principle of the LA-VCSEL spatially multiplexed reservoir. (b) Input
information u and the LA-VCSEL response for 3-bit binary headers. The graph shows the
target output Y€t and different reservoir outputs y°"' of decreasing mean square error
(MSE) (red, blue and green). (c) Schematic illustration of the error landscape, showing
the MSE as a function of the output weights configuration. The outlined (red, blue and
green) Boolean matrices correspond to the output weights giving the output from b). (d)
Representative performance of the PNN on a 6bit header recognition (HR) task. Reproduced
with permission from [37].

positions, i.e. neurons on the LA-VCSEL’s surface. This applies a Boolean weight matrix to the
reservoir state, and the authors implemented ~90 trainable Boolean readout weights. The output
of the network y°* was recorded at the detector for a set of input patterns called the training batch.
For each image ¢ in the training batch, the desired target output y**€°'(¢) is known. Thus, after
each training epoch (a run of one batch), y°"* is recorded and a normalized mean square error is
calculated € = ||y§"'(r) — y**'&(¢)||. Training is realised via a simple, yet effective evolutionary
algorithm presented in [38,39]. Boolean weights (mirrors) at random positions are flipped at
the transition from k to k + 1. If the change is beneficial, i.e. €.1<e, it is kept, otherwise the
output weights are reset to the configuration at epoch k as shown in Fig. 4(b,c). This operation
is repeated until the desired performance threshold is met. Figure 4(d) shows a representative
learning curve for a 6bit header recognition task, for which the system reaches around a 1.5%
symbol error rate (SER).

4.2. LA-VCSEL PNN metrics

The performance of the LA-VCSEL reservoir is extensively studied in [37], mapping the impact
of several parameters on the overall performance. Figure 5(a) shows how the LA-VCSEL’s free
running modes react to external optical injection. At dj,; = 918.9 nm, a resonance condition is
met where the LA-VCSEL’s free running modes are suppressed (by ~ 10 dB) and the device
locks to the injection laser, that is to say, the VCSEL’s emission wavelength is shifted to that of
the external drive laser. Injection locking has been extensively studied in [40,41]. In Fig. 5(b),
we see a clear dependence of the performance on the injection wavelength as well as the injection
power ratio (PR = Pjpj/PvcsgL), and the best performance is obtained under locking, consistent
with [27] for a semiconductor laser delay reservoir.



Vol. 12, No. 6/1 Jun 2022/ Optical Materials Express 2402
4

NalSSEXPRESS

PSDIABM] 1) ,

(a)919.5
= s —¢ PR=0.04 - PR=0.15-o PR=0.80
s
- -0 | JUOL J
£ 919 -62 LA el
B 1.5 1 ! .
S -64 ¥ * .
2 w . ‘e 0.
S 918 N %! y . e
g 18.5 -66 % il e E s \‘ \. l': .
X
L ] 1 L] !
g -68 \ .\ *\ . I "
= 018 . » i |
3 ™ o5 h .‘o Po o
= s .\‘. .
= / 72 [N o-®
9175 1 LE
915 916 917 918 919 920 918.5 919 919.5
VCSEL wavelength /\VCSEL /\inj
cjio0 ——M— d)so
© el DEEEE =— (d) -8 VCSEL OFF - VCSEL ON
< 95 » 50 i g rim BT
i .
> z -
2 o0} S _.°
7} ' c #7
& / 5. 4”
2 85 2308 ..
g : 7] Tee--- 9
S 8ol | E 20 -
= g +
o 1
875 10
70 0
0 02 04 06 08 1 2 4 6 8 10 12

Injection power ratio (PR) N-bits

Fig. 5. (a) Injection locking of the VCSEL by an external drive laser. (b) Performance
(NMSE) vs Injection wavelength for different injection power ratios (PR), highlighting
that the best performance is reached for the injection locking conditions. (c) Total system
consistency as a function of PR = Pyyj/PycsgL. (d) Dimensionality of the system with the
VCSEL ON and OFF for different input dimensionalities (bit-numbers). The VCSEL expands
the dimensionality of the input highlighting the non-linearity of the device. Reproduced
with permission from [37].

In addition, in [37] the authors link consistency, i.e. the ability of the system to respond in
the same way when subjected to the same input, and dimensionality (numbers of degrees of
freedom of the system) to the physical parameters Aiyj, PR, and Iis. Figure 5(c) shows the clear
dependence of consistency on optical injection power, the total system consistency saturates and
reaches an excellent level above 99.5%.

In the same paper, a general way to gauge a system’s dimensionality was proposed. The same
random input sequence is injected into the LA-VCSEL, and the response of every neuron is
recorded. The method relies on principal component analysis for noisy systems [42,43], and can
generally be applied to other hardware ANNSs. In Fig. 5(d), the dimensionality is measured for
sequences of headers with the LA-VCSEL switched off as well as with the LA-VCSEL switched
on. Itis clear that the LA-VCSEL significantly increases the dimensionality of data representation.
However, one has to say that rather than viewing the obtained dimensionality as absolute values,
one should use their relative variation in direct comparisons, such as here to demonstrate the
clear benefit of the LA-VCSEL on the PNN’s capability to expand the dimensionality of data
representation. This is due to approximations made in [42,43], which leverages slightly heuristic
criteria for assigning principle components to noise.

5. Computing with spiking VCSEL neurons

A certain isomorphism between VCSELs and biological neurons has started to be explored. Here,
we introduce VCSEL-based systems that are able to directly mimic (at ultrafast rates) the spiking
action potentials of biological neurons and use the resulting photonic spiking signals to process

information.
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Biological neurons are known to communicate using electrical action potentials which take
the form of temporal spiking signals. These are created when a neuron is subject to a stimulation
from an external source or by neighbouring neurons. Remarkably, the generation of optical
excitable spiking signals has also been observed in VCSELs, at ultrafast sub-nanosecond rates,
multiple orders of magnitude faster than the time-scales of biological neurons [17,18]. However,
while the different nonlinear dynamical responses occurring in VCSELSs, including excitability,
have been widely reported in the literature, it is only in recent years that the link between the
nonlinear effects in VCSELSs and neuronal behaviour has been proposed [44—54] towards novel
paradigms in neuromorphic spike-based photonic processing systems.

5.1. Reports of excitability and neuronal responses in VCSELs

A first experimental report outlining the use of VCSELSs as artificial photonic neurons appeared
as early as 2010 [44]. That work described the use of optically-induced polarisation switching
in a 1550 nm VCSEL to trigger different types of nonlinear activation functions, reproducing
the response of neurons to excitatory and inhibitory stimuli. In a subsequent report in 2012
[45], the link between the spiking dynamical responses triggered in VCSELs and those used to
process information by neurons, was proposed. In that work, optical injection into the subsidiary
(orthogonally-polarised) mode of a 1550 nm VCSEL induced polarisation switching. The authors
investigated the polarization resolved dynamics of the stimulated VCSEL and showed responses
reproducing different neuronal dynamics, such as phasic spiking (the activation of a single spike
at the onset of a stimulation) and tonic spiking (the continuous firing of excitable spikes in
response to an extended stimulation). This was the first implementation of a dynamically excited
VCSEL-neuron yielding neural-like responses at sub-ns time-scales, a method that was further
theorised in [46] to explore the possibility of triggering excitable spiking responses in a VCSEL
operating at the key telecom wavelength of 1550 nm. It was found that around the injection locking
boundary (for both parallel and orthogonally-polarised optical injection), different excitable
responses could be activated. Like in biological neurons excitable spikes had an activation
threshold requirement, therefore revealing an experimental method of implementing controllable
artificial VCSEL-based spiking neurons. The system was subsequently realised experimentally
[18], demonstrating that excitable neuron-like spiking dynamics could indeed be triggered in a
1550 nm-VCSEL with precise control. As theorized, short 0.5 ns input stimulations successfully
triggered 100 ps-long spikes using both orthogonal and parallel polarized optical injection,
revealing also a high reproducibility of the spiking outputs. The precise control of neuron-like
excitability was also demonstrated through the manipulation of the injection modulation. It was
shown that increasing the duration of the stimulation triggered the continuous firing of tonic
spikes. In subsequent experimental reports, the authors reported also the achievement of spike
inhibitory behaviour [47], communication of excitable spikes between coupled VCSEL-neurons
[48,49] and their potentials for photonic spike memory operation and for the emulation of retinal
neuronal circuits [50].

Excitable pulses have also been observed in short-wavelength VCSELSs under phase-modulated
optical injection. M. Turconi et al. [51] reported excitable pulses in a 980 nm VCSEL around
the injection locking boundary when adding 100 ps-long phase jumps of different amplitudes in
the optically injected signals. Fig. 6 (a) shows the shape and efficiency of the phase-triggered
excitable responses. Again, the excitable pulses required inputs to exceed an activation threshold
for successful and consistent firing. The authors also showed that strong pulses in bias current
could also trigger excitable responses from the VCSEL. The electrically-triggered spiking
responses, however, were found to be less reliable and longer (typically 1 ns in duration) than
those produced by optical injection with phase modulation. The activation of excitable spikes
using the modulation of VCSEL bias current was again later demonstrated experimentally using
VCSELs subject to intensity modulated optical injection [52]. Using phase-modulation, Garbin
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et al. [53] also reported the regeneration of excitable optical spikes in a short-wavelength
VCSEL under delayed optical feedback towards photonic spike memory operation. More recently,
experimental and theoretical results successfully demonstrated resonator and integrator behaviour
in phase modulated VCSEL systems producing multipulse excitability [54].
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Fig. 6. Excitable spiking responses activated by (a) phase jump modulations in an injection
locked VCSEL [51] and (b) optical pump modulations in a near threshold VCSEL-SA [17].
(a) The efficiency curve for excitable responses is plotted with respect to injection phase
jump amplitude. The insets show individual excitable responses for phase jumps of 66°(top),
55°, and 52°for successful (third) and unsuccessful (bottom) cases. (b) Time series show the
consistency of 100 excitable responses (red) to input pulses (black) of 0.4 (i,ii), 1.0 (iii,iv)
and 1.78 (v,vi) input strength (scaled to the excitable threshold). The inset shows a 730 ps
excitable response from the VCSEL-SA in series vi. (a) Reprinted with permission from
[51] © 2022 The American Physical Society. (b) Reprinted with permission from [17] ©
The Optical Society.

In parallel, excitable spiking signals have also been investigated in VCSELs containing
intracavity saturable absorbers (SA). We refer to these devices from now onwards as VCSEL-SAs.
Work led by Barbay et al. [17] has focused experimentally on spiking micro-pillar VCSEL-SA
systems, demonstrating that optically-pumped micropillar VCSEL-SAs (with emission at 980 nm
when optically pumped at 800 nm) exhibited self-pulsating (spiking) regimes immediately after
their lasing threshold. Barbay et al. also demonstrated the activation of 730 ps-long excitable
spikes under optical pump modulation (Fig. 6 b), and the existence of a spike activation threshold.
In addition, this team also reported neuronal processing features in spiking micropillar VCSEL-SA
structures, including spike firing latency, refractoriness and integration of multiple inputs prior to
spike firing [55-57]. These spiking behaviours were further confirmed by numerical simulations
using the Yamada model for a semiconductor laser with a SA region. Numerical work by these
authors also outlined the potentials of networks of evanescently coupled micropillar VCSEL-SAs
to perform temporal spike logic operations (e.g. OR, AND) [58].

The activation of neuronal dynamics in VCSELs have also seen significant theoretical
investigation via the SFM and Yamada models [59,26]. In addition to numerical work carried
out by the teams at Strathclyde [18,47], Nice [54] and Paris [17,57,58], other groups also started
to investigate numerically the spiking properties of VCSEL-neurons. In 2016, S. Xiang et al.
[60] reported numerical results based on the SFM, validating the early 2012 experimental results
of [45], and later expanded on that experimental work to widely report theoretically on the
potentials of dynamical polarisation switching responses in VCSELSs for high-speed neuronal-like
functionalities [61]. In addition, a great body of theoretical work has recently appeared in literature
focusing on optical spiking neurons based upon VCSEL-SAs [62—73]. An early theoretical



m Vol. 12, No. 6/1 Jun 2022/ Optical Materials Express 2405

= B
{ g

work [62] used a two-section rate-equation model to describe a VCSEL-SA and demonstrate
numerically that excitable pulses could be activated in these devices under the injection of
short optical pulses. This work also revealed that VCSEL-SAs could theoretically operate as a
leaky integrate-and-fire (LIF) neurons, and operate in different interconnected architectures with
brain-inspired connectivity. Multiple other theoretical works further investigated the spiking
responses in VCSEL-SAs and their potential for a wide diversity of tasks and procedures, ranging
from spiking convolutional neural networks for image processing [63], to spiking information
encoding and storage [64—67], Sudoku solvers [74], unsupervised learning procedures based on
Spike-Timing Dependent Plasticity (STDP) [68—70], spike pattern recognition [71,72], spiking
XOR gate implementations [73], amongst others.

5.2. Spike-based processing systems with VCSELs

It is only very recently that the first experimental demonstrators of spike processing systems, with
VCSEL neurons for ultrafast neuromorphic photonic computing, have started to emerge [75-80].
Using VCSEL spiking neurons, several processing tasks, typical of artificial intelligence (AI)
implementations, have been reported (e.g. image processing, and temporal pattern recognition)
with the desired advantages of ultrafast processing times and low energy usage. In 2020,
Robertson et al. [75] demonstrated experimentally a method of classifying 4-bit digital patterns
using a single VCSEL-neuron. In that work, as shown in Fig. 7 a, 4-bit patterns (with a bit rate
of ~150 ps) were injected optically into a VCSEL-neuron which fired fast 100 ps spikes only in
response to target patterns, remaining quiescent otherwise. In the same work [75], the authors
used the leaky integrate-and-fire nature of a VCSEL-neuron to demonstrate experimentally a
coincidence detection task, permitting the system to recognise the arrival of two different inputs
within a very short temporal window (<420 ps). Similarly, all-optical XOR classification has
been demonstrated on binary patterns, emulating pyramidal neurons, using an optical injection
system subject to dual modulation [76].

More recently, spiking VCSEL-neurons have also been applied for image processing. Ex-
perimental demonstrations of image edge-feature detection [77] and binary convolution (that
calculates the intensity gradients in images) [78] with spiking VCSEL neurons have been reported.
Notably, these different functionalities were achieved at high processing rates (with GHz’s
input data signals) and low input power levels (tens of uWs), using hardware friendly systems
and commercially available VCSELs. The latter reacted by triggering spikes (100 ps long) for
image-pixels where specific features were detected, as shown in Fig. 7b for the logo of the
University of Strathclyde’s Institute of Photonics. Recent work by Robertson et al. [79] has
also shown that a single VCSEL-neuron can implement a full neuronal layer, performing image
edge detection with reduced pre-processing requirements. Here, the Hadamard products of the
target kernel with the image pixels is encoded into bursts of input pulses, which are subsequently
integrated by the VCSEL-neuron, realising optical spiking convolution and edge detection.
Additionally, this report demonstrated that the experimental photonic VCSEL layer could be
combined with a software-implemented Spiking Neural Network (SNN). This hybrid VCSEL
and software-implemented SNN demonstrated the accurate classification (>97% precision) of
complex images from the MNIST hand-written digit image database. These works showed spike
processing rate of 1.5 ns/pixel using a single commercially-sourced VCSEL without any specific
device design optimisation. Higher processing speeds and more complex functionalities are
expected for bespoke device designs and systems using multiple VCSEL neurons simultaneously.

Additionally, recent work by Hejda et al. [80] demonstrated experimentally the capability
of spiking VCSEL-neurons to act as spike information encoders, using different spike coding
mechanism, such as precise spike timing and spike rate encoding. Hejda et al. demonstrated
experimentally that VCSEL-neurons, like their biological counterparts, show a spike latency and
inter-spike refractory period that is dependent on input stimulation amplitude. This was used to
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recognition). The confusion matrix reveals the recognition efficiency of various target
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[81]. (b) Reprinted with permission from [77] © The Optical Society. (a) & (c) Reprinted
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implement precise spike-timing encoding of digital signals (digital to spiking format conversion)
at rates over 1 Gbps, and spike rate encoding, where the amplitude of an strong (weak) input
stimulus yielded faster (slower) spike firing frequencies. In a subsequent work, Hejda et al. [81]
capitalised on the biologically-inspired rated coding ability of VCSEL-neurons, to demonstrate
fast (nanosecond rate) encoding of image colour information for image processing functionalities
(Fig. 7 c).

Artificial VCSEL-based optical neurons therefore provide exciting platforms towards fast
(GHz rates) and low-energy neuromorphic photonic spike-processing systems. With access
to threshold-and-fire and integrate-and-fire functionality, spiking VCSEL-neurons could be
integrated into large interconnected photonic SNNs architectures for the implementation of
complex light-enabled spike-based processing functionalities (e.g. image processing, computer
vision, pattern recognition, etc.). VCSELs thus provide a consistent, all-optical, low power,
and hardware friendly solution towards future ultrafast neuromorphic computing systems for Al
technologies.

6. VCSEL and microlaser fabrication

The novel computing concepts discussed in this review rely crucially on vertically emitting lasers.
VCSELSs emit normal to the chip surface, can be controlled electrically, show high-speed dynamics
and are energy efficient [82] and are much more compact than edge emitting lasers. In this regard,
micropillar lasers are of high interest [83]. These nanophotonic structures with diameters in the
few-um range allow for the realization of photonic reservoirs consisting of hundreds or even
thousands of small-scale lasers which can be coupled via external optical elements or integrated
photonic structures. In addition to the small size footprint, microlasers offer the additional
advantage that they operate in the regime of cavity quantum electrodynamics (cQED) which can
reduce the threshold pump powers by orders of magnitude compared to conventional VCSELs
to significantly improve the energy efficiency [84,85]. Beyond that, quantum dot - micropillars
can also act as bright electrically driven single-photon emitters [86,87] which provides exciting
opportunities towards quantum neural networks. In the following technological aspects and
the fabrication of VCSELs, microlasers and single photon emitters for applications in photonic
neuromorphic computing are discussed.

6.1. VCSEL fabrication

The fabrication of VCSELSs requires multiple nanoprocessing steps. It starts with the epitaxial
growth of a planar microresonator structure by means of molecular beam epitaxy (MBE) or
metal-organic chemical vapour deposition (MOCVD). As schematically shown in Fig. 2 the
microresonator is usually composed of a lower n-doped distributed Bragg reflector (DBR), the
central cavity layer which is at least a 1/2 thick and includes the active area, and the upper
p-doped DBR [7]. In the often used GaAs material system, the DBRs consists of typically more
than 20 1/4-thick AlGaAs/GaAs layers and the active medium in the central GaAs cavity is
usually based on multiple InGaAs quantum wells located at the antinode of the confined light field
[82]. In addition, the central cavity includes at least one thin AlGaAs layer with high Al-content
(>90%), which is later oxidized and acts as current window and leads to lateral light confinement
governing the emission beam profile. The lateral nanoprocessing of VCSEL devices starts with
the patterning of circular mesa structures with diameters in the range of 20 - 30 ym by means
of UV lithography and plasma etching. Next, the current aperture with a well-defined inner
diameter is formed by wet thermal oxidation of the cavity-integrated AlGaAs layer. Finally, the
lower n-contact and the upper ring-shaped p-contact are realized by additional UV lithography
steps and metal deposition, leading to a VCSEL device as depicted in Fig. 2. It is noteworthy that
especially in the case of long wavelength VCSELSs, intracavity contacts are preferred to avoid
optical losses due to free-carrier absorption in the doped DBRs [88].
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Beyond individual VCSELs, which have are today standard components for optical data
communication, VCSEL arrays have become more and more important in recent years, finding
applications for example in face recognition in modern cell phones [89]. Moreover, they are
highly attractive to implement photonic reservoir computing and schemes relying on fast optical
matrix multiplication using 1D VCSEL arrays [90]. While VCSEL arrays are in principle
commercially available, neuromorphic applications have specific requirements which demand
the development of customized VCSEL arrays with special geometry and optical properties.

One example is a 5 x 5 VCSEL array optimized for photonic reservoir computing based on
the diffractive coupling of VCSELSs [14]. Generally, neuromorphic computing concepts require
dense and spectrally homogenous VCSEL arrays, which in turn requires specific design and
fabrication. One example of such an array is shown in Fig. 8(a). The 5 x 5 array includes 25
VCSELs with a pitch of only 80 um, which is significantly smaller compared to commercial
arrays. Dense packing facilitates efficient diffractive coupling within an available optical field of
view [91]. Additionally, the wafer material was chosen to guarantee a high spectral homogeneity,
which is essential to allow for locking all VCSELS to an external injection laser. As can be seen
in Fig. 8(b), the emission wavelengths of the 25 VCSELSs can be fine-tuned by the injection
current of each individual emitter [9]. This enables a spectral homogeneity matching the injection
locking range of 10-20 GHz. Moreover, due to a slight ellipticity of the emitters’ cross-section,
excellent polarization control of the 25 VCSELs is obtained with a standard deviation of only
1.5°.
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Fig. 8. (a) Optical microscope image of a compact 5 x 5 VCSEL array with a pitch of 80
pum. Each VCSEL is electrically contacted to allow for individual current injection and
current-induced wavelength tuning. Inset: Zoom-in view of a subarray of 6 VCSELs. (b)
Plot of the required injection currents to achieve a common target wavelength within the 5 x
5 VCSEL array. The dashed vertical line indicates that a common emission wavelength of
978.3 nm can be achieved by setting the injection currents of the individual emitters in a
range of 2.6 - 3.0 uA. Reproduced with permission from Ref. [9]

6.2. High-B microlaser and dense microlaser arrays

Even VCSELs still pose limitations, not only in terms of the size-footprint, but also regarding the
energy efficiency and modulation speed. To overcome such limitations, it is interesting to consider
micro- and nanolasers which operate in the regime of cQED [92]. Here, small mode volumes
and high cavity quality factors lead to enhanced light matter interaction which is quantified by
the Purcell factor. The Purcell effect leads to a high fraction of spontaneous emission coupled
into the lasing mode, which is described in terms of the S-factor and which leads to an order
of magnitude reduction of the threshold pump power when comparing cavity-enhanced high-
micro- and nano-lasers with conventional semiconductor lasers [84]. Additionally, the tight mode
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confinement in microlasers gives the opportunity to efficiently control the emission features such
as the emission wavelength by the geometry of the laser cavity.

Micropillar lasers with quantum dot (QD) gain medium are a popular type of microlasers
[83]. Alike to VCSEL devices, they emit vertically, and they can be driven electrically in a
straightforward way [93]. In fact, large-scale micropillar arrays with small size footprint and high
spectral homogeneity are ideally suited to realize the PRC proposed in Ref. [14]. To meet the
requirements of this neuromorphic computing scheme the QD-micropillar array has to feature a
small pitch below 10 ym and high spectral homogeneity on a scale of the injecting locking range
of a few tens of GHz, i.e. the spectral homogeneity of the array must be better than about 200 wV.

In order to fulfill the said requirements, the microlaser-arrays have to be fabricated by state-of-
the-art nanotechnology platforms. Similar to VCSEL devices QD-micropillar lasers are typically
based on an epitaxial planar AlGaAs/GaAs microcavity structure with a lower and an upper DBR
with up to 30 mirror pairs in an asymmetric design (3-4 more mirror pairs in the lower DBR
to ensure directional emission via the upper DBR) and a central GaAs cavity, usually with a
thickness of A and a single layer of self-assembled InGaAs QDs at the field antinode for optical
gain. Figure 9(a) shows a scanning electron microscopy (SEM) image of a QD-micropillar with
a lower (upper) DBR composed of 27 and (23) A/4-thick Alp9Gag 1 As/GaAs mirror pairs [94].
The lower DBR is only partially (12 mirror pairs) etched, which is, however, sufficient to obtain
the desired tight mode confinement, while maintaining a high Q-factor. Using electron beam
lithography and plasma etching, dense arrays of such micropillar cavities can be realized with high
accuracy. Figure 9(b) shows an excerpt of such an array consisting of 30 x 30 QD-micropillars
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Fig. 9. Dense QD-micropillar arrays for photonic reservoir computing. (a) SEM image
of a QD-micropillar with a diameter of 5 um. (b) SEM image of a dense arrays of QD
micropillars with a pitch of 8.3 um. (c) uPL emission spectrum (inset) and input-output
characteristics of a 5 yum diameter micropillar with a B-factor of 2%. Reproduced with
permission from Ref. [94].
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An exemplary emission spectrum of an optically pumped QD-micropillar laser is depicted in
the inset of Fig. 9(c). It is dominated by emission of the fundamental pillar mode HE; at about
1.269 eV. The input-output dependence of the fundamental emission mode is plotted in Fig. 9(b)
in double-logarithmic scale. The observed s-shaped behavior with a small non-linearity above
the threshold pump power of about 1.8 mW is typical for cavity-enhanced microlasers. Fitting
the experimental data with a rate-equations laser model allows us to extract a S-factor of 2%.
Higher S-factors close to unity can be obtained for QD-micropillars with smaller diameter and
adiabatic microcavity design.

Unfortunately, epitaxially grown micro-cavity wafers usually suffer from, both, a radial spectral
dependence and local spectral inhomogeneities on a scale greater than what is acceptable for
PRC. To address this issue and to reduce the spectral inhomogeneities of micropillar arrays
advanced nanotechnology steps have to be applied for their fabrication. An interesting approach is
“diameter tuning* which takes advantage of the tight mode confinement in micropillar cavities to
precisely adjust the emission energy of each pillar in the array via its diameter during fabrication
to compensate wafer inhomogeneities [94,95]. There, the emission energy of the respective
microcavity area is first recorded with ym accuracy by micro-photoluminesence (uPL) mapping
relative to alignment markers (see lower right corner in Fig. 9(b) for such a marker structure).
With the knowledge of the local emission energy, the diameter of each micropillar is calculated
where small (large) pillar diameters blue (red) shift its emission energy towards the target emission
energy to compensate the spectral inhomogeneity of the underlying microcavity. As a result,
after electron beam lithography and plasma etching, the spectral spread of emission energy of the
micropillars in the fabricated arrays can be reduced from 1 meV to values as low as 120 ueV [94].
These results is very promising and further enhancement of the spectral homogeneity of large
scale QD-micropillar arrays is expected by improved growth and nanoprocessing capabilities.

7. Outlook

The application of standard and more advanced VCSELSs in various neuromorphic computing
concepts and schemes is by now an established approach, with clearly identified merits and
future possibilities. Similar to other areas in neuromorphic photonics, the crucial future steps are
now an increasingly seamless interfacing and integration with other techniques in order to form
complete computing systems. Crucial aspects here are (i) photonic integration, and (ii) more
or less autonomous operation demonstrating a clear benefit in a relevant performance metrics
compared to other, and most importantly, to electronic neurmorphic computing concepts.
Electronic implementations of artificial neural networks will, in the foreseeable future, remain
out of reach for their photonic counterparts, thus, further research is needed to overcome the
fundamental challenges faced by photonic implementations in terms of feature size, scalability,
programmability and efficient nonlinearities. However, it is equally clear that photonic communi-
cation has an immense advantage in bandwidth and latency due to parallelism and speed, which
are fundamentally linked to the bosonic, charge and mass-less nature of photons. Photonics,
therefore, provides a promising strategy to implement the linear operation associated with the
propagation of information across a PNN. Indeed, the state (weight setting) of the PNN could be
represented in the physical state of a system for instance in the crystallinity of a PCM synaptic cell
[96], or in the diffractive properties of materials [97]. Neuromorphic photonic implementations
may therefore benefit from improved energy efficiency via direct utilization of light-matter
interaction for some parts of the computation process (such as signal weighting). Combined with
autonomous components for the accumulation of input signals and their nonlinear transformation,
neuromorphic architectures leveraging photonics have the potential to substantially improve
today’s NN hardware. Here, fast, efficient, compact, and reliable VCSELSs can play a key role. In
combination with scalable photonic interconnects [13], VCSELs have therefore the potential to
induce a shift in technology that facilitates multiple performance breakthroughs, but particularly
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with regards to energy consumption per neural network operation (e.g. multiply, accumulate and
nonlinear transformation operations). Similar arguments are considered in the general pursuit
of next-generation circuit integration [5] with the goal of unlocking attojoule energy levels for
information processing operations. As the communication part of a NN scales of order O(N?),
the same arguments in favor for attojoule optoelectronics bear even more weight for the future of
PNNE.
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