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Introduction
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Aqueous Glycine Solution ~ Primary nucleation of crystals from solution typically proceeds heterogeneously at interfaces present in
ol X A >

crystallisation processes. Comprehensive understanding of the underlying mechanisms and their control has not
yet been achieved.

« Internal collaborators identified that glycine nucleation is rapidly accelerated at a hydrophobic oil-solution

interface, which is most likely due to the formation of a concentrated interfacial layer of solution.’
Figure 2: Image depicting current
« Through use of widely available surface measurement techniques, such as surface plasmon resonance experimental setup (above) and a schematic
of the SPR spectrometer setup adapted from
(SPR) spectroscopy and optical waveguide spectroscopy (OWG), expected changes in reflectivity, 8 ., and literature? (below).
B.0uping OF aqueous glycine solutions can be determined on a variety of different surface substrates. o
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X . concentration enhancements are within the sensitivity range of SPR and OWG.
Figure 1: Molecular dynamics screenshot

of oil-glycine (307 g/kg) system? with
accompanying concentration profile inset.

- Teflon tubing fitted to
quartz pi

« Experiments “close the loop” and facilitate understanding of the underlying drivers of heterogeneous

nucleation from solutions by quantifying changes between bulk and interfacial system properties.

Methods

«  Critical angles of aqueous glycine solutions on the surface of a bare prism were compared against simulations, using input parameters obtained from literature.4
« Compared experimental SPR scans against simulations of glycine systems with a uniform, bulk concentration profile and glycine systems displaying interfacial concentration enhancement.

«  Simulations performed using the “Winspall” program?, which implements a standard transfer-matrix calculation of light propagating through the glass/prism-metal-(waveguide)-glycine-solution

“multi-layer”.
What Influences the Position of the Critical Angle? Measuring Interfacial Concentration Enhancement
09 " . . - memmmm—— «  Concentration profiles from internal collaborators’
0s « Critical angle is observed at the point =5
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Fos where the most light is reflected from the IR
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properties and is directly related to solution
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Figure 3: Experimental response when concentration profiles » Simulations carried out on two sample substrate surfaces: Al-
aqueous glycine solution is placed in 525 generated from lierature.’* Si0, and Cr-Au-OWG.

contact with a prism in the Kretschmann
configuration and excited by a 633 nm
He/Ne monochromatic light source.
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«  Wavelength of the incident light source,
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. . 71721 Exparimental Data, 23.5% 150 92751 50 Figure 6: Comparison between Al-SiO, and Cr-Au-OWG surfaces and the magnitude of change in
+  Small changes in these properties can lead PR g spalsspelabopt s " 2 - ) .
20/11721 Expermental Data, 23.9°C. (49.71750.0457/51.99") reflectivity (Left) and position of angle minima (Right) observed for each respective case.
) » " 0110222 Expermenta Data, 22.8C. (£9.77°50 96°52.14°)
to changes in the position of the critical 08102722 Experimental Data, 23.3°C. (49.69", 508", 51.99°)

« Reflectivity change observed in Cr-Au-OWG sample at higher concentrations is considerably

angle, so corrections for temperature and Figure 4: Relationship between

experimentally observed critical angles for larger than that of Al-SiO, (0.25% versus 0.11%).
incident light wavelength need to be aqueous glycine solutions (0, 100 & 200 g/kg)
d the btained fr literature.*
implemented. and those obtained from Herature. « Change being observed in both angle position and reflectivity is comparable.
Conclusions Future Work

” ” . X . . . « Computational optimisation study to assess which waveguide materials and properties lead
« The position of the critical angle is dependent on the bulk solution properties and is sensitive

o _ to most sensitive detection of concentration enhancement at a solution/surface interface.
to temperature and incident light wavelength.

« Experimental measurements across range of various solutions and interfaces.

«  The optical waveguide reflectivity minimum is sensitive to the interfacial concentration

enhancement, and relative changes with respect to overall solution concentration are most
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