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Introduction

= Assessing nucleation and growth kinetics at small, laboratory scale can rapidly and economically enable the optimization of crystallization processes
by providing the tools to make more informed decisions early in process development.

= With a good understanding of the nucleation and growth kinetics, crystal size distribution and solid form can be controlled.
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= Solubility recorded using the Crystal 16 at different heating rates. There is a clear seeded and unseeded experiments.

dependence of solubility on the heating rate and as a result extrapolation to 0°C/min

enables determination of true equilibrium solubility.

Equilibrium solubility was then compared with metastable limit at 0.1 and 0.5°C/min to

determine the metastable zone width.

= S (=C/C*)at 25°C calculated using o-glycine solubility concentration C* = 249.5 mg/g - best
estimate from literature (Rowland, J. Phys. Chem. Ref. Data 2018, 47, 023104) (black line).

Induction Time and Primary Nucleation
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Supersaturation [S]

Seeding Procedure

Single seeds were grown, characterised (optical microscopy and Raman spectroscopy) and
washed before addition to a supersaturated solution (3 mL) mixed using a magnetic stirrer (700

RPM). ! T
T=30 min 4 T=32 min :

1.5 mm (£0.5 mm)

Secondary nucleation rates from unseeded
experiments compared well with those
from seeded experiments. Their similarity

B [103 #/ ml/ min]
5

1 provides support for the single nucleus
mechanism.
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Classification of Crystallization Behaviour
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Conclusions

= A rapid small-scale workflow enabling the assessment of secondary nucleation and
crystal growth kinetics has been developed.

= Absence of crystal growth dead zone and secondary nucleation threshold.

Classification system has been developed for nucleation and growth kinetics.

= Glycine classified with primary nucleation slow and secondary nucleation fast with
moderate growth rates up to S = 1.2.
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