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Abstract 11 

The Shear Lag Effect (SLE) is one of the vital mechanical characteristics of structures with thin-12 

walled box section. While most of the existing studies on SLE focus on the static response of 13 

footbridges, the pedestrian-induced vibration deserves more attention since it represents the actual 14 

response of footbridges during their practical service process. The theoretical framework is 15 

proposed to consider the corresponding SLE. Firstly, the SLE on the natural frequencies of the 16 

structure can be considered with a reduction ratio to the corresponding case without considering 17 

SLE (the classic solutions of natural frequencies). Results show that, the footbridges with smaller 18 

span-width ratios, smaller section thickness-width ratios, and lower height-width ratios are more 19 

necessary to consider the SLE. Furthermore, although the Poisson’s ratio effects are relatively lower 20 

than other aspects, the steel bridges still need to be paid to attention for the SLE. Due to the SLE, it 21 

may result in significant reductions in the natural frequencies of the structures. These reductions in 22 

the predicted natural frequencies due to the SLE may further result in inaccuracy in the prediction 23 

of pedestrian-induced vibrations of the footbridges. Furthermore, the most often applied mitigation 24 

measures may not be reliably designed. It may result in very significant reduction in the 25 

effectiveness of the vibration mitigation measures. To consider the SLE on pedestrian-induced 26 

vibration and TMD-based vibration control of typical footbridges with thin-walled box section, a 27 

simplified strategy is proposed.  28 
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1. Introduction 32 

Pedestrian-induced vibration of footbridges 33 

A reliable prediction of pedestrian-induced structural responses is extremely crucial when 34 

designing slender footbridges [1-4] and other civil engineering structures with low natural 35 

frequencies and damping capacity [5-6]. According to current guidelines such as Sétra [7] and 36 

HiVoSS [8], vibration serviceability assessments of footbridges are based on comparisons between 37 

relevant comfort criteria and predicted vibration levels to the human excitation [9-14]. For existing 38 

studies of evaluating the pedestrian-induced footbridge vibration [15-17], it often considers the 39 

structure as an equivalent single degree of freedom (SDOF), of which its natural frequency falls into 40 

the frequency range of human excitations. This methodology works in most cases because 41 

pedestrian-induced structural responses of slender footbridges are often dominated by a single mode; 42 

whereas sometimes it needs to consider multi-mode contributions, e.g., when closely-spaced natural 43 

frequencies are found in real-world footbridges [18-20]. More importantly, to obtain reliable 44 

response predictions, it should be identified or pre-know as accurate as possible the natural 45 

frequencies of the structure [14], which are very important parameters in the governing equations 46 

of motion of the structure.  47 

Vibration control of footbridges 48 

To attenuate vibration levels of footbridges, various structural control methods are adopted. 49 

Among them, the passive tuned mass damper (TMD) is most widely applied due to its simplicity, 50 

low cost and effectiveness. For instance, Caetano et al. [21] experimentally studied the damping 51 

effect of the TMD on the Pedro e Inês footbridge in Portugal. To improve the performance of TMDs 52 

in controlling the pedestrian-induced vibrations on footbridges considering the uncertainties of their 53 

modal properties, Jiménez-Alonso and Sáez [22] conducted a robust optimum design by using multi-54 

objective genetic algorithms. Qin et al. [23] installed a self-made TMD using lead, spring and oil 55 

buffer on a scaled single pylon cable-stayed footbridge model and investigated the effectiveness of 56 

the TMD by conducting laboratory forced vibration tests. To address the detuning issue of the 57 

passive TMD, some advanced structural control techniques were recently adopted by the researchers. 58 

Li et al. [24] used the multiple tuned mass dampers (MTMD) in suppressing the crowd-induced 59 

vibration and proposed a design method of MTMD via a random optimization procedure. Wang et 60 
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al. [25] also compared the control effectiveness of the MTMD with the single TMD on long-span 61 

steel footbridges by performing site measurement and numerical simulation. They concluded that 62 

the MTMD has superior vibration adsorption robustness and stable capacity in reducing structural 63 

vibrations under crowd loads. Casado et al. [26] adopted an active mass damper (AMD) system in 64 

controlling crowd-induced vibrations of footbridges. They found that although the AMD is very 65 

effective and robust, there are still some disadvantages such as cost should be resolved. Moutinho 66 

et al. [27] applied a semiactive TMD including a magneto-rheological (MR) damper to reduce 67 

vibrations of a slender footbridge. The semiactive TMD is capable to perform multimodal control. 68 

Similarly, Contreras-Lopez et al. [28] proposed a nonlinear optimal semiactive control strategy for 69 

attenuating footbridge vibration using MR dampers. It is worthwhile to point out that, to determine 70 

the design parameters of the TMD, resonant conditions are assumed, i.e., resonance with the targeted 71 

mode where the TMD is tuned. Thus, except for the excitation frequency, effectiveness of TMD-72 

based vibration control relies mainly on the accuracy of the natural frequency of the considered 73 

mode of the structure. 74 

Studies on the Shear Lag Effect (SLE) and research gaps 75 

The thin-walled box section, also known as hollow cross section, is widely used in footbridges 76 

because of its light weight and good mechanical properties. As for thin-walled box section, the Shear 77 

Lag Effect (SLE) is one of the vital mechanical characteristics and has been widely investigated, 78 

however, most of the studies on the SLE focus on static responses [29-32]. It should be noted that 79 

the dynamic responses of such footbridges are much more complicated and important than the static 80 

ones, especially when the static behaviour is pre-known. Luo et al. [33] proposed a hybrid finite 81 

element method to study the dynamic characteristics of the thin-walled box girder by considering 82 

the SLE. It was found that the natural frequencies considering the SLE have a general descending 83 

trend. Zhou et al. [34] theoretically investigated the dynamic characteristics of steel-concrete 84 

composite box beams considering the SLE and slip by introducing self-balancing of axial forces in 85 

a longitudinal warping function of beam section. Jiang et al. [35] studied the influence of high-order 86 

shear deformations and SLE on the dynamic characteristics of thin-walled box beams by using high-87 

order beam theory. They concluded that the SLE increase with the increasing of mode order or the 88 

decreasing of span-width ratio. Cai et al. [36] derived the approximate solution of the first order 89 
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vertical bending frequency for the simply supported curved thin-walled box girder considering the 90 

SLE. It has been reported that the SLE significantly affect the stiffness of the structures [35-36]. 91 

Zhang and Huang [37] proposed the analytical fundamental frequency of simply supported thin-92 

walled box girder by using the energy variation principle method. Similarly, based on the energy 93 

variation principle method, Zhou et al. [38] analysed the influences of the SLE and shear 94 

deformation on the natural vibration characteristics of thin-walled box girder. Recently, Zhang et al. 95 

[39] investigated the SLE and accordion effect on dynamic characteristics of composite box girder 96 

bridge with corrugated steel web by proposing an analytical method. The aforementioned studies 97 

[35-39] indicate that the natural frequencies of the structures might be reasonably altered due to the 98 

SLE. However, the existing studies [33-39] on the dynamic responses of thin-walled box girder 99 

considering the SLE were mainly focused on the natural vibration characteristics or free vibration 100 

responses. To the best knowledge of the authors, however, there are very few studies related to SLE 101 

focusing on the forced vibrations of thin-walled box girder, not to mention the corresponding 102 

vibration control measures. In real world, human excitations are most relevant for footbridges. Thus, 103 

the pedestrian-induced vibration, as one of the most representative forced vibrations, is adopted to 104 

illustrate the influence of the SLE on the dynamic responses of the thin-walled box girder structure. 105 

Also, key parameters influencing the SLE are required to be identified. Furthermore, the 106 

effectiveness of the most often applied mitigation measures (TMD) should be investigated by 107 

considering the SLE. More importantly, to benefit footbridge designers, strategies are requested to 108 

consider the SLE on pedestrian-induced vibration and TMD-based vibration control of typical 109 

footbridges with thin-walled box section.  110 

The remaining part of the paper is organized as follows. Section 2 briefly summarizes the 111 

theoretical framework of considering the SLE. Based on parametric study, the governing parameters 112 

are determined. Section 3 presents the simplified strategy of considering the SLE in the prediction 113 

of pedestrian-induced vibrations. The governing equations of motion are presented in the Section 4. 114 

Section 5 presents how the SLE affects the pedestrian-induced vibration levels of the structure. 115 

Section 6 discusses the influence of SLE on TMD-based vibration control of the structure. 116 

Conclusions are summarized in Section 7.  117 

 118 
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2. Shear lag effect 119 

2.1 Basic assumptions 120 

To illustrate the theoretical formulation of the SLE, a footbridge with typical thin-walled box section 121 

is firstly introduced (Fig. 1). According to a comprehensive review of more than 130 footbridges 122 

built after 1991 by [40], and the French guide Sétra [7] and the European guideline HiVoSS [8], it 123 

often applies simply supported beam model with sinusoidal mode shapes as the analytical model in 124 

calculating human-induced vibrations of footbridges. Therefore, the footbridge considered in this 125 

study is also idealized as a representative simply supported beam. In Fig. 1, 𝐿  and W  are the 126 

length and width of the bridge deck, respectively. 𝐻 is the outer height of the box section. 𝑇𝑡, 𝑇𝑏, 127 

𝑇𝑤 are the thicknesses of top, bottom, and two vertical walls of the box section, respectively. 128 

 129 

Fig. 1. The dimensions, cross section and coordinate system of the footbridge. The three directions are named as 130 

the longitudinal (X), the horizontal (Y), and the vertical (Z) directions. 131 

The fundamental assumptions of the SLE include [35, 37-39]: 132 

(1) The cross-sectional stiffness of the thin-walled section is not infinite and thus the cross 133 

section can deform both in and out of the plane. In the deformation process, the two vertical walls 134 

can basically remain in the plane and thus they are assumed to deform only in the plane. 135 

(2) However, when the structure is deformed, the top and bottom walls have main movements 136 

in the X direction. The top and bottom walls’ movements in the X direction can be expressed as 137 

parabolas along the Y direction.  138 

(3) Considering the fact that the movements mainly exist in the X direction for the top and 139 

bottom walls, it assumes that the normal strain only exists in the X direction, i.e., 𝜀𝑥 ≠ 0 and 𝜀𝑦 =140 

𝜀𝑧 = 0. Correspondingly, the shear strains are 𝛾𝑦𝑧 = 𝛾𝑥𝑧 = 0 and 𝛾𝑦𝑥 ≠ 0. 141 

(4) To describe deformations of the cross section, displacement functions are introduced as: for 142 

the two vertical walls, the displacement in the Z direction is 𝑤 = 𝑤(𝑥, 𝑡) (independent on 𝑦); for 143 
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the top and bottom walls, the displacements in the X direction are 𝑢 = 𝑢(𝑥, 𝑦, 𝑡). The later can also 144 

be expressed as 145 

𝑢 = 𝑢(𝑥, 𝑦, 𝑡) = ℎ[
∂𝑤

∂𝑥
+ (1 −

𝑦3

𝑏3)𝜃(𝑥, 𝑡)]                    (1) 146 

with ℎ the distance from the centroid of the cross section to the top wall ℎ𝑡 or to the bottom wall 147 

ℎ𝑏. 𝑏 = (𝑊 − 2𝑇𝑤)/2 is half of the inner width of the cross section box. 𝜃(𝑥, 𝑡) is the rotational 148 

angle of the cross section. Based on its sinusoidal function-like shape, the rotational angle can be 149 

further expressed as 150 

𝜃(𝑥, 𝑡) = 𝜃0 cos (
𝜋𝑥

𝐿
) sin(𝜔𝑡 + 𝜑)                       (2) 151 

The displacement in the Z direction with considering the SLE is similar to the case without 152 

considering the SLE, and thus it inherits the displacement function as 153 

𝑤 = 𝑤(𝑥, 𝑡) = 𝑤0 sin (
𝜋𝑥

𝐿
) sin(𝜔𝑡 + 𝜑)                   (3) 154 

 155 

2.2 Free vibration of footbridge with thin-walled box section considering SLE 156 

The structure is assumed to be elastic when it is under free vibration. In addition, there is no 157 

additional energy input from the outside of the system. Thus, based on the Hamilton principle, it 158 

has:  159 

δ𝐻 = δ ∫ (𝑈 − 𝑇)𝑑𝑡
𝑡1

𝑡0
= 0                    (4) 160 

where 𝑈 and 𝑇 are the strain energy and kinetic energy of the system, respectively. The strain 161 

energy can be obtained by  162 

𝑈 =
1

2
∫ [𝐸(𝜀𝑥)2 + 𝐺(𝛾𝑦𝑥)

2
] d𝑉                 (5) 163 

where 𝐸 and 𝐺 are elastic modulus and shear modulus, respectively; 𝜀𝑥 =
∂𝑢

∂𝑥
 and 𝛾𝑦𝑥 =

∂𝑢

∂𝑦
. 164 

The kinetic energy can be expresses as 165 

𝑇 =
1

2
∫ ∫ 𝜌(

∂𝑤

∂𝐿
)2𝐿

0
d𝑥d𝐴 =

1

4
 𝜌𝐴𝑤0

2𝜔2𝐿[cos(𝜔𝑡 + 𝜑)]2        (6) 166 

Thus, for a duration of a full vibration period ([0, 2𝜋 𝜔⁄ ]), substituting Eq. (5) and (6) into Eq. 167 

(4) yields 168 

δ𝐻 =
∂𝐻

∂𝑤0
δ𝑤0 +

∂𝐻

∂𝑢0
δ𝑢0 = 0                 (7) 169 

Eq. (5) requires the following equation must be satisfied: 170 
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{

∂𝐻

∂𝑤0
= 0

∂𝐻

∂𝑢0
= 0

                          (8) 171 

and thus, it leads to the binary linear equations for 𝑤0 and 𝑢0. 172 

By evaluating the corresponding determinant and obtaining non-zero roots, the fundamental 173 

natural circular frequency 𝜔 of the structure with considering the SLE can be derived, and the 174 

corresponding fundamental natural frequency is 175 

𝑓1,SLE =
𝜔

2𝜋
= (1 − 𝑅) [

𝜋

2
√

𝐸𝐼

�̅�𝐿4] = (1 − 𝑅)𝑓1            (9) 176 

where 𝑓1 =
𝜋

2
√

𝐸𝐼

�̅�𝐿4 is the fundamental natural frequency of the structure without considering the 177 

SLE (the classic solution); �̅� = 𝜌𝐴 = 𝜌[𝑊𝐻 − (𝑊 − 2𝑇𝑤)(𝐻 − 𝑇𝑡 − 𝑇𝑏)]  is the mass per unit 178 

length, with 𝜌 the density of material; E is elastic modulus of material; 𝐼 is moment of inertia of 179 

the cross section. Therefore, it theoretically obtains that the fundamental natural frequency for the 180 

case with considering the SLE has a reduction ratio 𝑅, and it is expressed as  181 

𝑅 =
35𝑐1

40+28𝑐2𝑐3
2/𝜋2                         (10) 182 

where the first coefficient 𝑐1 reflects the contribution of moment of inertia from the top and bottom 183 

walls 𝐼𝑡 and 𝐼𝑏, as  184 

𝑐1 =
𝐼𝑡+𝐼𝑏

𝐼
=

1

12
𝑊(𝑇𝑡)3+𝑊𝑇𝑡(ℎ𝑡)2+

1

12
𝑊(𝑇𝑏)3+𝑊𝑇𝑏(ℎ𝑏)2

1

12
𝑊𝐻3−

1

12
(𝑊−2𝑇𝑤)(𝐻−𝑇𝑡−𝑇𝑏)3

             (11) 185 

The second coefficient 𝑐2  is the ratio of the shear modulus to the Young’s modulus and it is 186 

dependent on the Poisson’s ratio 𝜈, i.e.,  187 

𝑐2 =
𝐺

𝐸
=

1

2(1+𝜈)
                        (12) 188 

The last coefficient 𝑐3 is related to the span-width ratio 189 

𝑐3 =
𝐿

2𝑏
=

𝐿

𝑊−2𝑇𝑤
                       (13) 190 

with 2𝑏 the inner width of the cross section box. 191 

Similarly, the natural frequency of the nth mode for the structure with considering the SLE can 192 

also be obtained by introducing the reduction ratio: 193 

𝑓𝑛,SLE = (1 − 𝑅)[
𝜋𝑛2

2
√

𝐸𝐼

�̅�𝐿4]                  (14) 194 
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2.3 Parametric study  195 

Based on the theoretical solutions, the main governing parameters can be determined. In this 196 

subsection, the influences of four dimensionless parameters, i.e., span-width ratio, section thickness-197 

width ratio, height-width ratio and Poisson’s ratio, on the fundamental natural frequency and the 198 

corresponding reduction ratio R of the footbridge are presented. The footbridge with typical thin-199 

walled box section shown in Fig. 1 is adopted as the benchmark structure for the parametric analysis. 200 

The dimensions of the benchmark footbridge are tabulated in Table 1. The Poisson’s ratio of the 201 

benchmark structure is 0.30.  202 

Table 1 The dimensions of the benchmark footbridge (unit: m) 203 

𝐿 W 𝐻 𝑇𝑡 𝑇𝑏 𝑇𝑤 

50 3 3 0.1 0.1 0.1 

2.3.1 Influence of span-width ratio 204 

Different span-width ratios are presented by varying the typical spans from 25 m to 100 m while the 205 

width remains 3 m. Fig. 2 shows the fundamental natural frequencies and reduction ratios for 206 

different span-width ratios. In Fig. 2(a), the cases of ‘with SLE’, ‘w/o SLE’ and ‘FEM solution’ 207 

represent the scenarios of the theoretical solutions with and without considering the SLE and the 208 

Finite Element Method (FEM)-based numerical solution using the finite element software ANSYS 209 

V15.0, respectively. More specifically, for the FEM-based solutions, the BEAM188 element is 210 

adopted in ANSYS, then the cross section of the structure can be assumed to be infinite in the cross-211 

sectional stiffness, which is similar to the case without considering the SLE. In the comparisons, the 212 

FEM-based solutions adopt four typical spans 25 m, 50 m, 75 m and 100 m. As shown in Fig. 2(a), 213 

with the increasing of the span-width ratio, the fundamental natural frequency decreases. The 214 

reduction of the natural frequencies due to the SLE becomes less and less significant with the 215 

increase of the span-width ratio, i.e. the reduction ratio is gradually approaching 0, as shown in Fig. 216 

2(b). It implies that the SLE is more significant for footbridges with smaller span-width ratio. The 217 

comparison between ‘w/o SLE’ and ‘FEM solution’ in Fig. 2(a) also validates the theoretical 218 

solution for the case without considering the SLE. In reality, the cross-sectional stiffness is not 219 

infinite, and the cross section has the ability to deform both in and out of the plane. In other words, 220 

when the SLE is considered, the cross section is less stiff than the case of the beam model. It explains 221 
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the decrease in natural frequency when the SLE is considered. 222 

   

(a) (b) 

Fig. 2. Variation of fundamental natural frequency and reduction ratio with respect to span-width ratio: (a) 223 

fundamental natural frequency; (b) reduction ratio. 224 

2.3.2 Influence of section thickness-width ratio 225 

Different section thickness-width ratios are illustrated by varying the typical section thickness from 226 

0.05 m to 0.40 m while the width remains 3 m. Fig. 3 presents the fundamental natural frequencies 227 

and reduction ratios for different section thickness-width ratios. Fig. 3(a) clearly illustrates that the 228 

fundamental natural frequency linearly decreases with the increase of the section thickness-width 229 

ratio. When the SLE is considered, the fundamental natural frequencies are reduced. Fig. 3(b) further 230 

indicates that the reduction ratio decreases with the increase of the section thickness-width ratio. 231 

Therefore, the SLE is more significant for the footbridge with smaller section thickness-width ratio.  232 

  

(a) (b) 

Fig. 3. Variation of fundamental natural frequency and reduction ratio with respect to section thickness-width ratio: 233 

(a) fundamental natural frequency; (b) reduction ratio. 234 

2.3.3 Influence of height-width ratio 235 
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Different height-width ratios are shown by varying the heights from 1.5 m to 6.0 m while the width 236 

remains 3 m. Fig. 4 depicts the fundamental natural frequencies and reduction ratios for different 237 

height-width ratios. It can be drawn from Fig. 4(a) that with the increasing of the height-width ratio, 238 

the fundamental natural frequency increases. The fundamental natural frequencies for the case with 239 

considering the SLE are lower than the case without considering the SLE. Fig. 4(b) shows that the 240 

reduction ratio decreases with the increase of the height-width ratio. Therefore, the SLE is more 241 

significant for the footbridge with lower height-width ratio.  242 

  

(a) (b) 

Fig. 4. Variation of fundamental natural frequency and reduction ratio with respect to height-width ratio: (a) 243 

fundamental natural frequency; (b) reduction ratio. 244 

2.3.4 Influence of Poisson’s ratio 245 

Different Poisson’s ratios for typical footbridge materials, e.g., concrete and steel, are considered 246 

with the range of [0.20, 0.35]. Fig. 5 provides the fundamental natural frequencies and reduction 247 

ratios for different Poisson’s ratios. Fig. 5(a) indicates that for the case without considering the SLE, 248 

the Poisson’s ratio has negligible effect on the fundamental natural frequency; while for the case 249 

with considering the SLE, the fundamental natural frequency slightly decreases with the increase of 250 

the Poisson’s ratio. Fig. 5(b) shows that the reduction ratio increases with the increase of the 251 

Poisson’s ratio. It demonstrates that the SLE is more significant for the steel footbridge with larger 252 

Poisson’s ratio than the concrete footbridge with smaller Poisson’s ratio.  253 
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(a)   (b) 

Fig. 5. Variation of fundamental natural frequency and reduction ratio with respect to Poisson’s ratio: (a) 254 

fundamental natural frequency; (b) reduction ratio. 255 

2.3.5 Conclusions of parametric study 256 

The above parametric analysis demonstrates that the natural frequencies of the footbridge can be 257 

significantly altered by considering the SLE. When being modelled in FEM software (e.g., ANSYS), 258 

the natural frequencies for the case ‘with SLE’ will be closer to the predicted values by the FEM 259 

model with shell element, which allows the cross section to deform both in and out of the plane. On 260 

the contrary, the results for the case ‘w/o SLE’ are nearer to the predicted results by the FEM model 261 

with beam element, i.e., the cross section only can deform in the plane due to assumed infinite cross-262 

sectional stiffness. In other words, when the SLE is considered, the cross section is less stiff than 263 

the case of the beam model. It explains the decrease in natural frequency when the SLE is considered. 264 

Comparisons between the calculated results using Eqs. (9-14) and the predicted results of FEM 265 

models can also be applied to validate the theoretical solutions for the case with SLE. To sum up, 266 

the footbridges with smaller span-width ratios, smaller section thickness-width ratios, smaller 267 

height-width ratios and larger Poisson’s ratios are more necessary to take the SLE into consideration. 268 

These uncertainties in the predicted natural frequencies due to the SLE may further result in 269 

inaccuracy in the prediction of pedestrian-induced vibrations of the footbridges. 270 

3. Simplified strategy of considering SLE 271 

As demonstrated in Section 2, the key task of considering the SLE is to determine the reduction 272 

ratio R. To consider the SLE on pedestrian-induced vibration and TMD-based vibration control of 273 

footbridges with thin-walled box section, for typical footbridges with different span-width ratios, 274 

section thickness-width ratios, height-width ratios and Poisson’s ratios, the reduction ratio can be 275 
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determined by referring the contour lines of the reduction ratios over different combinations of the 276 

governing parameters as determined in Section 2. The main procedures of the simplified strategy of 277 

considering the SLE are as follows. 278 

(1) Pre-formulate the contour lines of the reduction ratios over different combinations of the 279 

governing parameters of the SLE in terms of natural frequency, as shown in Fig. 6. It can 280 

be conducted based on detailed parametric analysis using the analytical solutions of the 281 

SLE in Section 2. The corresponding simulations are only required to be done once for 282 

further applications. Thus, it is efficient and effective. 283 

(2) Collect the governing parameters for the considered footbridge, i.e., span-width ratio, 284 

section thickness-width ratio, height-width ratio, and Poisson’s ratio. These parameters 285 

can be conveniently obtained, e.g., from the plan of the footbridge.  286 

(3) Determine the reduction ratio R for the considered footbridge from the pre-formulated 287 

contour lines by using the governing parameters. 288 

(4) Obtain the natural frequencies of the structure without considering the SLE 𝑓𝑛 based on 289 

the FEM using the beam element, or directly use the solutions based on the classical beam 290 

theory for typical beam-like footbridges, i.e. 𝑓𝑛 =
𝜋𝑛2

2
√

𝐸𝐼

�̅�𝐿4, where 𝑛 is the dominating 291 

mode. It is notable that FEM analysis based on beam element is much more 292 

computationally efficient than shell modelling. Thus, the proposed simplified strategy 293 

provides an efficient way to consider SLE by the reduction ratio R.  294 

(5) Determine the natural frequencies of the structure with considering the SLE 𝑓𝑛,SLE by 295 

using Eq. (14). 296 

 297 
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(a) 298 

 299 

(b) 300 

 301 

(c) 302 

 303 

(d) 304 
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 305 

(e) 306 

 307 

(f) 308 

Fig. 6. Pre-formulated contour lines of the reduction ratios over different combinations of the governing 309 

parameters of the SLE in terms of natural frequency: An illustrative example for (a) height-width ratio = 1.0 and 310 

Poisson’s ratio = 0.30; (b) section thickness-width ratio = 10/300 and Poisson’s ratio = 0.30; (c) height-width ratio 311 

= 1.0 and section thickness-width ratio = 10/300; (d) span-width ratio = 50/3 and Poisson’s ratio = 0.30; (e) span-312 

width ratio = 50/3 and height-width ratio = 1.0; (f) span-width ratio = 50/3 and section thickness-width ratio = 313 

10/300. 314 

4. Calculation of pedestrian-induced vibration of footbridges 315 

4.1 Pedestrian-Structure system 316 

According to the design guidelines such as Sétra [7] and HiVoSS [8], the structural responses of 317 

footbridges are often dominated by one mode of the structure, of which the natural frequency is 318 

close to the pedestrian-induced excitations. For a pedestrian-structure system, the governing 319 

equation of motion can be expressed as: 320 

𝑚Bridge�̈�Bridge + 𝑐Bridge�̇�Bridge + 𝑘Bridge𝑧Bridge = 𝐹ped(𝑡)𝜙(𝑥)           (15) 321 
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where 𝑚Bridge , 𝑐Bridge = 2𝑚Bridge𝜁Bridge(2𝜋𝑓Bridge)  and 𝑘Bridge = 𝑚Bridge(2𝜋𝑓Bridge)
2

 are 322 

the corresponding modal mass, damping and stiffness coefficients of the bridge, respectively, in 323 

which 𝑓Bridge and 𝜁Bridge are the natural frequency and damping ratio of the bridge, respectively; 324 

�̈�Bridge, �̇�Bridge and 𝑧Bridge are the modal acceleration, velocity and displacement of the bridge, 325 

respectively; 𝐹ped(𝑡) is the pedestrian-induced force; 𝜙(𝑥) is the corresponding vibration mode. 326 

The pedestrian-induced forces induced by single person are considered by taking the 327 

dominating harmonic of the largest component of the walking force as follows: 328 

 𝐹walk,𝑧(𝑡)/𝐺ped = 1 + 𝐷𝐿𝐹𝑧 sin(2𝜋𝑓ped𝑡 + 𝜑𝑧) (16) 

where 𝐹walk,𝑧(𝑡) is the pedestrian induced walking force in the vertical (Z) direction of the bridge 329 

deck (Fig. 1), respectively; 𝐺ped is the pedestrian’s weight; 𝐷𝐿𝐹𝑧 is the corresponding dynamic 330 

load factor (DLF) in the vertical (Z) direction; 𝑓ped is the walking step frequency; 𝜑𝑧 is the phase 331 

angle in the vertical (Z) direction. All these parameters are diverse for different individuals because 332 

of the inter-subject variability and they are not even always the same for the same person due to the 333 

intra-subject variability. 334 

In this study, to illustrate the effects of SLE on pedestrian-induced vibrations, the walking force 335 

model is considered in two different ways as follows.  336 

(1) A deterministic model: to keep the model as realistic and simple as possible in investigating 337 

the SLE, a deterministic set of values is firstly applied, e.g. as proposed/applied in [41-42]: 𝐺ped =338 

800 N, 𝐷𝐿𝐹𝑧 = 0.4, 𝑓ped = 2 Hz, and 𝜑𝑧 = 0. When necessary, to calculate the maximum peak 339 

acceleration response, the step frequency 𝑓ped can be set to the resonant frequency. 340 

(2) A probabilistic model: to consider the inter- and intra-subject variability of walking forces, 341 

the pedestrian weight 𝐺ped is considered as a normal distribution, e.g. with a mean of 800 N and a 342 

variation coefficient of 10%. Step frequency 𝑓ped follows a normal distribution, e.g. with a mean 343 

of 2 Hz and a standard deviation of 0.173 Hz, according to Matsumoto et al. [43]. When the 344 

maximum peak acceleration response is interested, the mean step frequency can be set to the resonant 345 

frequency as it does in the deterministic model. According to Young [44-45], the dynamic load factors 346 

in the vertical depends on step frequency as: 𝐷𝐿𝐹𝑧 = 0.41(𝑓
ped

− 0.95), in which 𝑓ped in [1, 2.8] 347 

Hz. Due to the lack of reliable experimental data and explicit physical meaning, the phase angles 348 
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are kept as 𝜑𝑧 = 0. For a continuous pedestrian flow, the arrival times of different persons in the 349 

crowd are normally considered as a Poisson process, e.g. as applied in [2].  350 

Fig. 7 presents the vertical component of the normalized walking force, which is defined as the 351 

ratio of the walking force to the pedestrian’s weight, in accordance with the applied deterministic 352 

set of parametric values. Fig. 7 further indicates that the vertical component of the walking force 353 

fluctuates near the body weight, with the maximum amplitude of (1 + 𝐷𝐿𝐹𝑧) ∙  𝐺ped . 354 

Correspondingly, the modal loads for the deterministic model are obtained by multiplying the 355 

walking forces with the mode shapes. For a sinusoidal mode shape, the modal loads are maximum 356 

when the pedestrian is walking at the midspan of the structure; while they become zero before the 357 

person’s arrival on and after the person’s left off the bridge. 358 

 359 

Fig. 7. The considered normalized walking forces of the deterministic model. 360 

 361 

4.2 Reduction of pedestrian-induced vibration using TMD 362 

To reduce the pedestrian-induced vibration of civil structures, installation of the TMD is a widely-363 

applied and effective approach [46-47]. In the pedestrian-structure system with a TMD shown in 364 

Fig. 8, 𝑚TMD , 𝑐TMD = 2𝑚TMD𝜁TMD(2𝜋𝑓TMD)  and 𝑘TMD = 𝑚TMD(2𝜋𝑓TMD)2  are the mass, 365 

damping and stiffness coefficients of the TMD; in which 𝑓TMD  and 𝜁TMD  are the natural 366 

frequency and damping ratio of the TMD, respectively.  367 

 368 
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Fig. 8. A pedestrian-structure system with a TMD.  369 

The governing equations of motion for the pedestrian-structure system with a TMD are: 370 

𝑚Bridge�̈�Bridge + 𝑐Bridge�̇�Bridge + 𝑘Bridge𝑧Bridge − 𝑐TMD(�̇�TMD − �̇�Bridge) −371 

𝑘TMD(𝑧TMD − 𝑧Bridge) = 𝐹ped(𝑡)𝜙(𝑥)         (17) 372 

𝑚TMD�̈�TMD + 𝑐TMD(�̇�TMD − �̇�Bridge) + 𝑘TMD(𝑧TMD − 𝑧Bridge) = 0       (18) 373 

where �̈�TMD , �̇�TMD  and 𝑧TMD  are the acceleration, velocity and displacement of the TMD, 374 

respectively. 375 

To determine the design parameters of the TMD, resonant conditions are assumed, i.e., 376 

resonance with the targeted mode where the TMD is tuned is assumed. Furthermore, mass ratio 𝛾𝑀 377 

and frequency ratio 𝛾𝐹 are introduced. Mass ratio 𝛾𝑀 is defined as the ratio of the TMD mass 378 

𝑚TMD to the bridge mass 𝑚Bridge. Similarly, frequency ratio 𝛾𝐹 is defined as the ratio of the TMD 379 

frequency 𝑓TMD  to the bridge frequency 𝑓Bridge . For a given mass ratio 𝛾𝑀 , Den Hartog [48] 380 

provided the classical solution for determining the optimal TMD parameters by minimising the 381 

maximum displacement response of the structure, i.e., 382 

𝛾𝐹 =
𝑓TMD

𝑓Bridge
=

1

1+𝛾𝑀
                       (19) 383 

𝜁TMD = √
3𝛾𝑀

8(1+𝛾𝑀)
                        (20) 384 

Then, the optimal TMD parameters are summarized as follows: 385 

𝑚TMD = 𝛾𝑀𝑚Bridge                       (21) 386 

𝑐TMD = 2𝑚TMD𝜁TMD(2𝜋𝑓TMD) =
4𝜋𝛾𝑀

1+𝛾𝑀
√

3𝛾𝑀

8(1+𝛾𝑀)
𝑚Bridge𝑓Bridge   (22) 387 

𝑘TMD = 𝑚TMD(2𝜋𝑓TMD)2 =
4𝜋2𝛾𝑀

(1+𝛾𝑀)2 𝑚Bridge(𝑓Bridge)
2
     (23) 388 

It can be seen from the above equations that all the three parameters of the TMD are dependent 389 

on the mass ratio 𝛾𝑀, which is determined by the designer. 390 

4.3 Flowchart of calculating pedestrian-induced vibration of footbridges 391 

For a footbridge subjected to pedestrian-induced excitations, i.e., a pedestrian-structure system, the 392 

structural responses can be obtained by solving the governing equation of motion (Eq. 15) and the 393 

walking force model in the subsection 4.1. The footbridge can be simulated by FEM using the beam 394 
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element or the simplified mathematic model, i.e., structural equation of motion. Then, the 395 

fundamental natural frequency of the footbridge 𝑓1 (𝑓Bridge) without considering the SLE can be 396 

obtained. Next, the fundamental natural frequency of the footbridge 𝑓1,SLE  ( 𝑓Bridge ) with 397 

considering the SLE can be calculated by using Eq. (9) or the simplified strategy indicated in Section 398 

3. Based on 𝑓1 or 𝑓1,SLE, the parameters of the TMD can be respectively determined by using the 399 

design method presented in the subsection 4.2. As a result, the installation of the TMD into the 400 

pedestrian-structure system forms a new coupled system, i.e., the pedestrian-TMD-structure system, 401 

which has two different sets of parameter values, corresponding to the two cases without and with 402 

considering the SLE. The structural responses of them can be obtained by solving the governing 403 

equation of motion (Eq. 17) and the walking force model in the subsection 4.1. Fig. 9 illustrates the 404 

flowchart of calculating the pedestrian-induced vibration of footbridges. 405 

406 

Fig. 9. Flowchart of calculating pedestrian-induced vibration of footbridges. 407 

5. Influence of SLE on pedestrian-induced vibration  408 

5.1 Structural parameters 409 

The footbridge with typical thin-walled box section shown in Fig. 1 is adopted as the example 410 

structure. The length 𝐿  of the considered structure is 70 m, while other dimensions of the 411 

footbridges are inherited from Table 1. The material properties are also the same as those of the 412 

benchmark structure in the subsection 2.3. The corresponding damping ratio is assumed to be 0.5%. 413 

The modal mass is considered as 50 tons for the example structure. According to the simplified 414 
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strategy (Section 3), considering the span-width ratio (70/3), section thickness-width ratio (10/300), 415 

height-width ratio (3/3), and Poisson’s ratio (0.3), the reduction ratio R of the fundamental frequency 416 

can be obtained from the pre-formulated contour lines as 3.76%. The fundamental frequency 417 

without considering SLE can be calculated based on the beam theory, i.e. 𝑓1 = 1.9168 Hz. Then, 418 

the value for the case with SLE is determined as 𝑓1,SLE = 1.8448  Hz. These parameters are applied 419 

for further analysis.  420 

5.2 Structural responses 421 

5.2.1 Results based on the deterministic force model 422 

Fig. 10 shows the time history of the induced structural responses during the pedestrian passing the 423 

bridge with a walking speed of 1.5 m/s for the example structure with the length of 70 m. As shown 424 

in Fig. 10, large discrepancies are observed in the prediction of the pedestrian-induced vibrations of 425 

the footbridges with and without considering the SLE. For the special case in Fig. 10, the peak 426 

acceleration without considering the SLE is approximately twice that of the case with considering 427 

the SLE. For broad applications in the vibration serviceability, the inaccuracy/unreliable predictions 428 

of pedestrian-induced vibrations may be caused when the actual natural frequency should be 𝑓1,SLE, 429 

which is however considered as 𝑓1 due to without considering the SLE.  430 

 431 

Fig. 10. Time history of the induced structural responses during the pedestrian passing the bridge. 432 

Fig. 11 further illustrates the peak acceleration ratios of the case without considering the SLE 433 

to the case with considering the SLE for the induced structural responses during the pedestrian 434 

passing the bridge for different span-width ratios, section thickness-width ratios, height-width ratios 435 

and Poisson’s ratios, respectively. It can be drawn from Fig. 11 that: 436 
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(1) Fig. 11(a): When the span-width ratio is lower than 23, without considering the SLE results 437 

in lower vibration responses; while when the span-width ratio is higher than 23, without considering 438 

the SLE results in higher vibration responses. For large span-width ratios, with the increase of the 439 

span-width ratio, the peak acceleration ratio approaches to 1. This can be explained by the variation 440 

of fundamental natural frequencies for different span-width ratios (Fig. 2). For instance, when the 441 

span-width ratio is close to 23, the natural frequency (e.g. for the example structure, the span-width 442 

ratio is 23.33, with corresponding 𝑓1,SLE = 1.8448 Hz and 𝑓1 = 1.9618  Hz) is approaching the 443 

excitation frequency 2 Hz, it may result in very sensitive changes in structural responses even if 444 

there are relatively small changes in natural frequency. 445 

(2) Fig. 11(b): With the increase of the section thickness-width ratio, the peak acceleration ratio 446 

increases but not more than 1. It means that the predicted structural responses are lower for the case 447 

without considering the SLE than the case with considering the SLE, of which the natural frequency 448 

is closer to the excitation frequency (Fig. 3). 449 

(3) Fig. 11(c): With the increase of the height-width ratio, the peak acceleration ratio 450 

approaches to 1, which means the SLE becomes insignificant. It also should be noted that when the 451 

height-width ratio is 0.5, the predicted structural responses for the case without considering the SLE 452 

are much higher than the case with considering the SLE due to the near-resonance for the case 453 

without considering the SLE (Fig. 4). 454 

(4) Fig. 11(d): The effect of Poisson’s ratio on the peak acceleration ratio is relatively 455 

insignificant, which results from that the fundamental natural frequency does not vary much with 456 

the Poisson’s ratio (Fig. 5). 457 

 458 

(a)                                   (b) 459 
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 460 

(c)                                   (d) 461 

Fig. 11. Peak acceleration ratio (the case without SLE to the case with SLE) of the induced structural responses 462 

during the pedestrian passing the bridge for different (a) span-width ratios, (b) section thicknesses, (c) height-width 463 

ratios, and (d) Poisson’s ratios. 464 

 465 

5.2.2 Results based on the probabilistic force model 466 

To consider the inter- and intra-subject variability of walking forces, large number of persons with 467 

different parametric values in accordance with the probabilistic model are adopted in the study (as 468 

discussed in the subsection 4.1). Fig. 12 compares the induced structural responses by different 469 

persons, in terms of non-exceedance probability of the peak acceleration ratio. Several conclusions 470 

can be drawn from Fig. 12 and as follows:  471 

(1) For different span-width ratios (Fig. 12(a)), the majority of peak acceleration ratios are near 472 

or lower than 1, i.e., without considering the SLE, the predicted structural responses are probably 473 

lower than the actual case with considering the SLE. It should be noted that the peak acceleration 474 

ratio can even reach to 6. It means that considering the SLE also might result in much higher 475 

structural responses in predictions. In addition, the SLE becomes insignificant for the cumulative 476 

probability range of [0.5, 0.9] as the peak acceleration ratios are close to 1.  477 

(2) For different height-width ratios (Fig. 12(c)), over 80% of the peak acceleration ratios are 478 

near the value of 1. In other words, the SLE is insignificant for most cases. However, the remaining 479 

less than 20% cases can be very significant because the peak acceleration ratios can reach either 0 480 

or over 10.  481 
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(3) The effects of section thickness-width ratio and Poisson’s ratio are not very significant, 482 

resulting in very narrow ranges for the peak acceleration ratios with values slightly lower than 1 483 

(Fig. 12(b) and (d)). 484 

(4) The SLE on the prediction of pedestrian-induced vibrations are mainly dependent on the 485 

ratio of the excitation frequency to the structural natural frequency. When the excitation frequency 486 

and the structural natural frequency are close, the SLE becomes significant. This results from that 487 

the induced acceleration amplitudes mainly depend on the excitation frequency and the structural 488 

natural frequency. In addition, the changes in structural responses may be very sensitive to even 489 

relatively small changes in the structural natural frequency due to the SLE. 490 

All these results also confirm the necessity of considering the SLE in predicting the pedestrian-491 

induced vibrations of the footbridges. 492 

 493 

 494 

(a)                                   (b) 495 

 496 

(c)                                   (d) 497 

Fig. 12. Comparison of induced structural responses by different persons in terms of peak acceleration ratios for 498 

different (a) span-width ratios, (b) section thickness-width ratios, (c) height-width ratios, and (d) Poisson’s ratios. 499 

6. Influence of SLE on TMD-based vibration control  500 
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6.1 TMD parameters  501 

The TMD parameters are required to be tuned based on the actual modal parameters, i.e., the case 502 

with SLE (𝑓1,SLE). Thus, design parameters of the TMD are different if the SLE is not considered 503 

(𝑓1). For the example structure, the mass ratio is considered as 𝛾𝑀 = 0.01. The TMD parameters 504 

can be determined by using Eqs. (19-23). As a result, when the TMD is designed based on the case 505 

without considering the SLE, the damping ratio and natural frequency of the TMD are 𝜁TMD =506 

0.0609 and 𝑓TMD = 1.8978 Hz, respectively. For the actual case with considering the SLE, the 507 

damping ratio and natural frequency of the TMD are 𝜁TMD,SLE = 0.0609 and 𝑓TMD,SLE = 1.8265 508 

Hz, respectively. Other design parameters of the TMD are listed in Table 2. 509 

 510 

Table 2 Design parameters of TMD 511 

Case Damping ratio Frequency (Hz) Mass (ton) Damping (N∙s/m) Stiffness (N/m) 

w/o SLE 0.0609 1.8978 0.5 726.6 7.11 × 104 

with SLE 0.0609 1.8265 0.5 699.3 6.59× 104 

6.2 Structural responses  512 

To quantify the damping effect of the TMD on the structural responses, reduction factor of the TMD 513 

𝑅TMD can be defined based on the reduction in the structural responses, as: 514 

𝑅TMD = 1 −
max|𝑢with TMD|

max|𝑢without TMD|
                   (24) 515 

where 𝑢with TMD  and 𝑢without TMD  are the structural responses (acceleration or displacement) 516 

with and without the TMD, respectively. 517 

Fig. 13 shows the comparison of normalized acceleration and displacement time history curves 518 

of structural systems with and without the TMD for the example structure. It can be seen from Fig. 519 

13 that the instalment of the TMD has excellent performance in mitigating structural responses.  520 
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 521 

(a) 522 

 523 

(b) 524 

Fig. 13. Comparison of normalized acceleration and displacement time history curves of structural systems 525 

with TMD and without TMD for the example structure: (a) acceleration; (b) displacement. 526 

Fig. 14 further compares structural responses of pedestrian-TMD-structure systems with and 527 

without considering the SLE for the example structure. As shown in Fig. 14, although there is merely 528 

3.76% reduction in the structural natural frequency (1.9168 Hz vs. 1.8448 Hz) by considering the 529 

SLE, the damping effect of the TMD designed without considering the SLE is less superior as the 530 

TMD designed with considering the SLE. To be specific, the reduction factors 𝑅TMD  of 531 

acceleration responses for the cases without and with considering the SLE are 83.79% and 84.53%, 532 

respectively, while the reduction factors 𝑅TMD of displacement responses for the cases without and 533 

with considering the SLE are 80.8% and 81.55%, respectively. When without SLE considering in 534 

the TMD design, the acceleration amplitude can only be reduced to 16.21% of the acceleration 535 

amplitude of the case without TMD installed, which is higher than 15.47% the case with SLE. The 536 

remained displacement amplitudes are about 19.20% and 18.45% of the displacement amplitude of 537 

the case without TMD installed for the case without and with SLE considered in the TMD design, 538 

respectively. Correspondingly, the effective damping ratio of the structure with TMD is reduced 539 
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around 3.87%. It is notable that, although the reduction in the effective damping ratio is not 540 

incredibly significant for the considered structure, it already shows the negative effects of the SLE 541 

in the vibration mitigation. More significant effects will be illustrated in following paragraphs with 542 

other investigations.  543 

 544 

(a) 545 

 546 

(b) 547 

Fig. 14. Comparison of normalized acceleration and displacement time history curves of the pedestrian-548 

TMD-structure system with and without considering the SLE for the example structure: (a) acceleration; (b) 549 

displacement. 550 

For other cases, the difference between the reduction effects of the TMDs designed with and 551 

without considering the SLE might be more significant. To be quantified, the reduction factors 552 

𝑅TMD  of acceleration and displacement responses for different span-width ratios, section 553 

thicknesses, height-width ratios, and Poisson’s ratios are provided in Figs. 15 and 16, respectively. 554 

It can be found that the reduction factors 𝑅TMD of acceleration and displacement responses have 555 

very similar trends. When the TMD is designed with considering the SLE, the reduction factors are 556 

constants. On the contrary, the reduction factors become variables when the TMD is designed 557 

without considering the SLE. The reduction factors of the TMD designed with considering the SLE 558 
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are always larger than the corresponding TMD without considering the SLE. With the increasing of 559 

the span-width ratio, thickness-width ratio, height-width ratio, or the decreasing of the Poisson’s 560 

ratio, the gap becomes smaller due to less significant SLE. In addition, the span-width ratio has the 561 

most significant influence on the differences of the reduction factors for two different TMDs. The 562 

thickness-width ratio and thickness-width ratio are less significant, and the influence of the 563 

Poisson’s ratio is relatively insignificant. This is also validated by the plot of effective damping ratio 564 

of the system (Fig. 17). For instance, when the span-width ratio is smaller than 10, the reduction in 565 

the effective damping ratio can be over 50%. For different thickness-width ratios, height-width 566 

ratios, and Poisson’s ratios, the largest reductions can only be around 20%. On the other hand, the 567 

reduction in effective damping capacity due to without considering SLE in the TMD-design result 568 

in less effective in the vibration mitigation. 569 

 570 

 571 

(a)                                   (b) 572 

 573 

(c)                                   (d) 574 

Fig. 15. Reduction factors of acceleration responses without and with considering the SLE for different (a) span-575 

width ratios, (b) section thickness-width ratio, (c) height-width ratios, and (d) Poisson’s ratios.  576 
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  577 

(a)                                   (b) 578 

 579 

(c)                                   (d) 580 

Fig. 16. Reduction factors of displacement responses without and with considering the SLE for different (a) span-581 

width ratios, (b) section thickness-width ratio, (c) height-width ratios, and (d) Poisson’s ratios.  582 

 583 

(a)                                   (b) 584 
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 585 

(c)                                   (d) 586 

Fig. 17. Reductions in the effective damping ratio due to the designed TMD without considering the SLE for 587 

different (a) span-width ratios, (b) section thickness-width ratio, (c) height-width ratios, and (d) Poisson’s ratios.  588 

7. Conclusions 589 

This paper investigates the SLE on the pedestrian-induced vibration and TMD-based vibration 590 

control of typical footbridges with thin-walled box section, by providing the theoretical framework 591 

to consider the SLE on the natural frequencies of the structure. Furthermore, an efficient way to 592 

consider the SLE is proposed. The main conclusions are drawn as follows: 593 

(1) The SLE on the natural frequencies of the structure can be considered with a reduction 594 

ratio to the corresponding case without considering SLE (the classic solutions of natural 595 

frequencies). 596 

(2) The footbridges with smaller span-width ratios, smaller section thickness-width ratios, and 597 

lower height-width ratios are more necessary to consider the SLE. Furthermore, although 598 

the Poisson’s ratio effects are relatively lower than other aspects, the steel bridges still need 599 

to be paid to attention for the SLE. Due to the SLE, it may result in significant reductions 600 

in the natural frequencies of the structures.  601 

(3) These reductions in the predicted natural frequencies due to ignore the SLE may further 602 

result in significantly inaccuracy in the prediction of pedestrian-induced vibrations of the 603 

footbridges.  604 

(4) Furthermore, the most often applied mitigation measures may not be reliably designed. 605 

Due to the fact that TMD is only effective in a narrow frequency range near the damped 606 

mode, TMD design needs to reliable modal parameters and thus requires considering the 607 

SLE in the TMD-based vibration control of footbridges with thin-walled box section. 608 
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Otherwise, it may result in very significant reduction in the effectiveness of the vibration 609 

mitigation measures.  610 

The study is illustrated mainly based on typical footbridges with thin-walled box sections; 611 

however, the proposed methodology can be applied to the vibration serviceability analysis for all 612 

other footbridges.  613 
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