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Abstract 

Peridynamics has been introduced to overcome limitations of classical continuum mechanics. Peridynamic 
equations of motion are in the form of integro-differential equations and analytical solutions of these equations 
are limited in the literature. In this study, a new analytical solution methodology for 1-Dimensional 
peridynamic equation of motion is presented by utilising inverse Fourier Transform. Analytical solutions for 
both static and dynamic conditions are obtained. Moreover, different boundary conditions including fixed-
fixed and fixed-free are considered. Several numerical cases are demonstrated to show the capability of the 
presented methodology and peridynamic results are compared against results obtained from classical 
continuum mechanics. A very good agreement between these two different approaches is observed which 
shows the capability of the current approach. 
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1. Introduction

Peridynamics (PD) [1, 2] is a new continuum mechanics formulation which was developed to overcome the 
limitations of classical continuum mechanics (CCM). PD equations have the form of integro-differential 
equations as opposed to CCM which is based on partial differential equations. This allows natural treatment 
of discontinuities in the displacement field due to existence or occurrence of cracks. In addition, interactions 
between material points in PD are not limited to nearest neighbours as in CCM and material points inside an 
influence domain, named as horizon, can interact with each other. The size of horizon can be considered as 
length scale parameter which extends the application scope of PD.  

There has been a significant progress in PD especially during recent years. PD has been used for prediction of 
damage in different material systems such as metals [3], composites [4,5], concrete [6,7], functionally graded 
materials [8,9], graphene [10,11], ice [12,13], etc. In addition to elastic material behaviour, it is possible to 
consider plasticity [14], viscoelasticity [15] and viscoplasticity [16] in PD framework. Moreover, PD 
formulations are also available for simplified structures such as beams [17,18], plates [19-21] and shells [22]. 
PD has also been utilised for the investigation of fatigue damage [23,24], buckling [25], topology optimisation 
[26], dynamic crack arrest [27], macro crack and micro crack interactions [28]. PD has also been used for the 
analysis of moisture diffusion [29] and corrosion damage [30,31]. A comprehensive review on peridynamics 
can be found in [32].  

Analytical solution of PD equations is limited in the literature. Mikata [33] developed analytical solutions of 
peristatic and peridynamic problems for a 1-Dimensional rod. In another study, Mikata [34] derived analytical 
solution for peridynamic equation for acoustics. Silling et. al. [35] investigated the deformation of an infinite 
bar subjected to a self-equilibrated load distribution by utilising peridynamic formulation and obtaining 
solution via Fourier transform methods. Weckner and Abeyaratne [36] examined the one-dimensional 
dynamic response of an infinite bar by considering the effects of long-range forces and utilising peridynamics. 
In a separate study, Weckner et. al. [37] used Laplace and Fourier transforms and obtained three-dimensional 

Analytical solution of 1-dimensional peridynamic equation of motion



2 

peridynamic equations by utilising Green’s functions. Aksoylu and Gazonas [38] provided a comprehensive 
treatment on how to enforce inhomogeneous local boundary conditions in 1-Dimensional nonlocal problems 
and presented exact solutions.  

In this study, a new way of obtaining analytical solution to 1-Dimensional peridynamic equation of motion is 
presented by utilising inverse Fourier transform.  Analytical solutions are obtained both for static and dynamic 
conditions. Two different boundary conditions are considered as fixed-fixed and fixed-free. Peridynamic 
solutions are validated by comparing against classical continuum mechanics solutions.  

2. Analytical Solution of 1-Dimensional Peridynamic Equation of Motion

PD governing equation for a 1-Dimensional rod under static conditions can be expressed as 

( ) ( )
( ) ( )0 0

xH

u x u x
c d f x x L






+ −
+ =   (1)    

in which 𝑐 = 2𝐸

𝛿2
 represents the PD material constant, E is elastic modulus, xH and  represent the horizon 

and horizon size,   is the local coordinate, and ( )f x is the body load.

Assuming the solution to Eq. (1), 𝑢(𝑥) ∈ 𝐶2([0, 𝐿]) exists in the Hilbert space spanned by basis of
trigonometric functions, i.e. 

( )
( ) ( ) ( )

( ) ( ) ( )

1 , cos , cos 2 , cos 3 , ...
2

sin , sin 2 , sin 3 , ...

sx sx sx
u x Span

sx sx sx

 
 

  
 
 

(2)  

where 𝑠 ∈ ℝ is the indeterminate coefficient and decomposing the displacement function, 𝑢(𝑥) , into 
components by using the basis functions given in Eq. (2) yields: 

( ) ( ) ( )0

1
cos sin

2 n n
n

au x a nsx b nsx


=

= + + (3)

where 𝑎𝑛 and 𝑏𝑛 (𝑛 = 0, 1, 2, …) are the projection of 𝑢(𝑥) onto the basis cos(𝑛𝑠𝑥) and sin(𝑛𝑠𝑥),
respectively, such that 

( ) ( ), cosna u x nsx=     (4a)  

and 

( ) ( ),sinnb u x nsx=    (4b) 

Substituting Eq. (3) into Eq. (1) yields 

( ) ( ) ( ) ( )
( )

1

cos sin cos sin
0

x

n n n n

H
n

a ns x b ns x a nsx b nsx
c d f x

 
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
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=

+ + + − −       + = (5)     

which can be using the trigonometric identities as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1

1

cos cos 1 sin sin

sin cos 1 cos sin
0

x

x

n H
n

n H
n
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c b d f x

 
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 






=
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+ + =

 

 

(6)
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Note that if there is no bond damage associated with the material point 𝑥, in other words the horizon 𝐻𝑥 =
(−𝛿, 𝛿) is intact, Eq. (6) can be further reduced to 

( )
( )

( )
( )

( )
1 1

cos 1 cos 1
cos sin 0n n

n n

ns ns
c a nsx d c b nsx d f x

 
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 
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 

 

− −
= =

− −
+ + =                                       (7)       

where the coefficients 𝑎𝑛 and 𝑏𝑛 can be determined as 

( ) ( )

( )
0
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1 cos
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f x nsx dxsa
nsc d
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                                                                                                                        (8a)                         

and 
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0
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−
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                                                                                                                         (8b)                        

Coupling Eqs. (8a) and (8b) with Eq. (3) yields 
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 

                                     (9)       

Eq. (9) is called the general solution to PD 1D static formulation, where the parameter 𝑎0 and 𝑠 depend upon 
rigid body motion and boundary conditions, respectively. 

3. Peridynamic Boundary Conditions 

From PD point of view, except damage situation, each material point must be completely embedded in its 
PD influence domain. Moreover, for those material points adjacent to the boundary, whose domain is 
incomplete, it is necessary to introduce fictitious region outside the boundary such that the validation of PD 
Equation of Motion (EoM) is ensured. The width of fictitious region can be chosen as equal to the horizon 
size 𝛿, as shown in Fig. 1. Two types of BCs and their implementation in PD framework are explained 
below. 

 

Figure 1. Real and fictitious domains 

3.1 Fixed Boundary Conditions 

Recall the EoM in classical elasticity: 
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( )
( )

( )
2
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,
, , 0

u x t
u x t E b x t x L

x



= +  


                                                                                                  (10)                        

Suppose the body is constrained at 𝑥 = 0 such that 𝑢(0, 𝑡) ≡ 0, the representation of Eq. (10) at this point 
is: 

( )2

2
0

,
0

x

u x t
E

x
=


=


                                                                                                                                         (11)                                   

One can obtain by performing central difference for Eq. (11) that 

( ) ( ) ( )

( )
2

, 2 0, ,
0

u x t u t u x t
E

x
− − + 

=


                                                                                                             (12)                        

where  ∆𝑥 is incremental distance. Simplifying Eq. (12) and swapping the difference notation ∆𝑥 by 𝜉 leads 
to 

( ) ( ), , 0u t u t   − = −                                                                                                                         (13)                        

Here, the material point 𝑥 = −𝜉 lies in the fictitious region and Eq. (13) holds for 𝜉 = 0 which ensures the 
fixed BC, 𝑢(0) = 0, is satisfied for PD EoM. 

3.2 Neumann Boundary Conditions 

Suppose the body is subjected to a concentrated load of 𝑝(𝑡) at 𝑥 = 𝐿 . In classical elasticity theory, the 
boundary condition can be represented as 

( )
( )

( )
,

,
x L

u x t
L t E p t

x


=


= =


                                                                                                                      (14)                       

Again, performing central difference with respect to 𝑢 gives 

( ) ( )
( )

, ,
2

u L x t u L x t
E p t

x
+ − −

=


                                                                                                              (15)                       

After performing some algebra and rearranging the central difference notation according to PD convention, 
one can obtain that 

( )
( )

( ), 2 , 0
p t

u L t u L t
E

    + = + −                                                                                                (16)                   

Note that Eq. (16) holds for 𝜉 = 0 to ensure the continuity of displacement field at the boundary, and 𝑝(𝑡) 
can be eliminated from Eq. (16) and absorbed in Eq. (10) if it is considered as the body force operated by 
Dirac delta. According to this point of view, Eq. (16) reduces to 

( ) ( ), , 0u L t u L t   + = −                                                                                                                 (17)                       

and Eq. (17) is called the free boundary condition relationship in PD framework. 

 

 

4. Static Peridynamic Solution 
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4.1 Dirichlet Boundary Condition (Fixed – Fixed) 

 

Figure 2. A rod under fixed-fixed boundary conditions and subjected to an arbitrary force field. 

Suppose a rod with a length of 𝐿 is subjected to an arbitrary body force field and constrained at two ends, as 
shown in Fig. 2. As explained above, two fictitious regions can be introduced outside the two boundary 
ends. The governing equation and BCs can be expressed as  

( ) ( )
( ) ( )0 0

u x u x
c d f x x L








−

+ −
+ =                                                                                            (18)                       

BCs: 
( ) ( )  
( ) ( )  

0,
,

u x u x x
u L x u L x x L L





 = − −  


− = − +   +
                                                                                         (19a,b)                     

Periodically extending the BC given in Eq. (19a) over the entire real line, as shown in Fig. 3,  

 

Figure 3. Periodically extended BC over the entire real line. 

indicates that the displacement function, Eq. (3) is odd with respect to 𝑥 = 0 and 𝑥 = 𝐿, which implies 

( )
0

1

0 1,2,3,...
sin

n

n
n

a a n
nu x b x
Ls

L






=

= = =
  

 =  
=  



                                                                              (20) 

Analytical solution of 1-dimensional peridynamic equation of motion



6 
 

Coupling Eq. (20), with (8b) and (9) results in the PD analytic solution as 

( )
( )

0

1
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2 sin

1 1 cos

L

n

n xf x dx
n xLu x

cL Ln d
L
















=

−

 
 

  
=  

    
−   

  





                                                                                       (21)                 

4.2 Fixed-Free Boundary Condition 

Suppose a fixed-free rod subjected to an arbitrary body force field over the body, as shown in Fig. 4. 

 

Figure 4. A rod under fixed-free boundary conditions and subjected to an arbitrary force field. 

Without loss of generality, let the origin located at the fixed end. As explained above, the PD governing 
equation and BCs can be expressed as 

( ) ( )
( ) ( )0 0

u x u x
c d f x x L








−

+ −
+ =                                                                                           (22)                 

BCs: 
( ) ( )  
( ) ( )  

0,
0,

u x u x x
u L x u L x x





 = − −  


− = +  
                                                                                                  (23a,b)  

By obeying the relation given in Eq. (23), we can periodically extend the displacement field over the entire 
real line as shown in Fig. 5                   

 

Figure 5. Periodically extended BC over the entire real line. 

which reduces Eq. (3) as 
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( )
0

1

0 1,2,3,...
2 1sin2 1 2

2

n

n
n

a a n
nu x b xn Ls

n L






=

= = =
−  

 = −  
=  



                                                                      (24) 

Plugging Eq. (24) back into Eq. (3) and (8b) yields the PD analytical solution for fixed-free rod as: 

( )

( )
( )

( )

( )0

1

2 1
sin

2 2 12 sin
22 11 1 cos

2

L

n

n x
f x dx

L n x
u x

cL Ln
d

L














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−
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−  =  
 −   
−  

  






                                                                   (25)               

5. Dynamic Peridynamic Solution 

So far only static condition has been considered. The dynamic PD EoM can be written as: 

( )
( ) ( ), ,

,
u x t u x t

u x t c d





 

−

+ −
=                                                                                                             (26)                     

According to the theory of structural vibrations, solution to Eq. (33) can be reasonably constructed as 
superposition of each vibrational mode. By performing the separation of variable method and considering 
linear superposition principle, solution to Eq. (26) can be assumed as  

( ) ( ) ( ) ( )
1

( , ) n n
n

u x t X x T t X x T t


=

= =                                                                                                           (27)                     

By plugging Eq. (27) back into (26) yields 

( ) ( )
( ) ( ) ( ) ( )X x T t X x T t

X x T t c d





 

−

+ −
=                                                                                         (28)                   

and rearranging the terms yields 

( )

( ) ( )

( ) ( )1T t X x X x
d

c T t X x





 

−

+ −
= = −                                                                                              (29)                       

which can be separately written as:  

( )

( )

T t
c T t


= −                                                                                                                                                 (30a)                            

and 

( ) ( )
( )

X x X x
d X x






 

−

+ −
= −                                                                                                             (30b)                        

in which 𝜆 can be called a ‘’pseudo eigenvalue’’ and is a constant with respect to variables 𝑥 and 𝑡. Based 
on the linearity of the system, each vibration mode of the body should also satisfy the characteristic 
functions given in Eqs. (30a) and (30b) such that 

( )

( )
n

n
n

T t
c T t


= −                                                                                                                                              (31a)                                

and 
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( ) ( )
( )n n

n n

X x X x
d X x






 

−

+ −
= −                                                                                                        (31b)                       

where the suffix 𝑛 denotes the 𝑛𝑡ℎ vibration mode. With the help of the completeness of trigonometric 
system, one can assume that ∀𝑡 = 𝑡′, 𝑡′ ≥ 0, the displacement field 𝑢(𝑥, 𝑡′) lies in the function space 
spanning the basis of trigonometric functions such that 

( )
( ) ( ) ( )

( ) ( ) ( )

1 , cos , cos 2 , cos 3 , ...
, ' 2

sin , sin 2 , sin 3 , ...

sx sx sx
u x t Span

sx sx sx

 
 

  
 
 

                                                                    (32)              

Therefore, irrespective of rigid body motion the modal shape function can be expressed as 

( ) ( ) ( )cos sinn n nX x a nsx b nsx= +                                                                                                                 (33)                         

Substituting Eq. (33) into (31b) results in the 𝑛𝑡ℎ ‘’pseudo eigenvalue’’ as 

( )1 cos
n

ns
d






 

−

−
=                                                                                                                                  (34)                            

Apparently from Eq. (34) we know that 𝜆𝑛 is always positive. The general solution to Eq. (31b) thus can be 
written as  

( ) sin cosn n n n n
c cT t A t B t 
 

   
= +      

   
                                                                                                   (35)                     

Coupling Eq. (33) and (35) with (27) induces the PD general solution as 

( ) ( )
1

( , ) cos sin cos sinn n n n n n
n

c cu x t a nsx b nsx A t B t 
 



=

    
= + +           

     
                                            (36)        

where 𝑠, 𝑎𝑛, 𝑏𝑛, 𝐴𝑛 and 𝐵𝑛 are undetermined parameters depending upon boundary conditions and initial 
conditions.  

5.1 Fixed-Fixed Boundary Condition 

PD EoM, Initial Conditions (ICs) & Boundary Conditions (BCs) can be written for fixed-fixed condition as: 

( )
( ) ( ), ,

, 0
u x t u x t

u x t c d x L





 

−

+ −
=                                                                                            (37)                     

BCs: 
( ) ( )

( ) ( )

, , 0
, , 0

u x t u x t x
u L x t u L x t x





− = −  


+ = − −  
                                                                                             (38a,b)                    

ICs: 
( ) ( )

( ) ( )

0

00

,0

,
t

u x u x

u x t v x
=

=


=

                                                                                                                            (39a,b)                            

Periodically extending Eq. (38a, b) by imitating Section 4.1 and substituting into (36), one can obtain that 

0na =                                                                                                                                                           (40a)                                   

and 

Analytical solution of 1-dimensional peridynamic equation of motion



9 
 

s
L


=                                                                                                                                                           (40b)                                   

Thus Eq. (36) reduces to 

1
( , ) cos sin sinn n n n

n

c c n xu x t A t B t
L


 
 



=

      
= +                
                                                                      (41a)               

and its derivative with respect to 𝑡 is 

( )
1

, cos sin sinn n n n n
n

c c c n xu x t B t A t
L


  
  



=

      
= −                
                                                           (42b)           

Applying ICs Eq. (39a, b) to (42a, b) gives: 

0
1

( ) sinn
n

n xu x A
L


=

 
=  

 
                                                                                                                              (43a)                           

and 

( )0
1

sinn n
n

c n xv x B
L







=

 
=  

 
                                                                                                                    (43b)                        

The coefficients 𝐴𝑛 and 𝐵𝑛 in Eq. (43a, b) can be determined by performing inverse Fourier transform as 

( )00

2 sin
L

n
n xA u x dx

L L
 

=  
 

                                                                                                                      (44a)                        

and 

( )00

1 2 sin
L

n

n

n xB v x dx
L Lc






 
=  

 
                                                                                                            (44b)                        

Overall, the PD explicit solution is: 

1
( , ) cos sin sinn n n n

n

c c n xu x t A t B t
L


 
 



=

      
= +                
  

with 

( )00

2 sin
L

n
n xA u x dx

L L
 

=  
 

 , 

( )00

1 2 sin
L

n

n

n xB v x dx
L Lc






 
=  

 
  ,                                                                                                        (45)                           

1 1 cosn
n d
L






  

−

  
= −   

  
 , 

and 
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2

2Ec


=  

5.2 Fixed-Free Boundary Condition 

PD EoM, ICs & BCs can be written for fixed-free condition as: 

( )
( ) ( ), ,

, 0
u x t u x t

u x t c d x L





 

−

+ −
=                                                                                            (46)                          

BCs: 
( ) ( )

( ) ( )

, , 0
, , 0

u x t u x t x
u L x t u L x t x





− = −  


+ = −  
                                                                                               (47a,b)                     

ICs: 
( ) ( )

( ) ( )

0

00

,0

,
t

u x u x

u x t v x
=

=


=

                                                                                                                            (47a,b)                            

Periodically extending Eq. (47a, b) by imitating Section 4.2 and coupling with (36), one can obtain that 

0na =                                                                                                                                                            (48a)                                

and 

2 1
2
ns

n L
−

=                                                                                                                                                  (48b)                             

Thus, Eq. (36) reduces to 

( )

1

2 1
( , ) cos sin sin

2n n n n
n

nc cu x t A t B t x
L


 

 



=

     − 
= +         

       
                                                          (49a)           

and its derivative with respect to 𝑡 is 

( )

1

2 1
( , ) cos sin sin

2n n n n n
n

nc c cu x t B t A t x
L


  

  



=

     − 
= −         

       
                                               (49b)         

Substituting ICs Eq. (47a, b) into (49a, b) results in 

( )
0

1

2 1
( ) sin

2n
n

n
u x A x

L


=

− 
=  

 
                                                                                                                   (50a)                      

and  

( )
0

1

2 1
( ) sin

2n n
n

ncv x B x
L








=

− 
=  

 
                                                                                                         (50b)                      

Performing inverse Fourier transform to Eq. (50a,b) determines the coefficients as 

( )
( )

00

2 12 sin
2

L

n

n x
A u x dx

L L
− 

=  
 

                                                                                                            (51a)                      

and  
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( )
( )

00

2 11 2 sin
2

L

n

n

n x
B v x dx

L Lc





− 
=  

 
                                                                                                  (51b)                      

Overall, the PD explicit solution for fixed-free problem can be written as: 

( )

1

2 1
( , ) cos sin sin

2n n n n
n

nc cu x t A t B t x
L


 

 



=

     − 
= +         

       
  

with 

( )
( )

00

2 12 sin
2

L

n

n x
A u x dx

L L
− 

=  
 

 , 

( )
( )

00

2 11 2 sin
2

L

n

n

n x
B v x dx

L Lc





− 
=  

 
 ,                                                                                                  (52)                            

( )2 11 1 cos
2n

n
d

L





 

−

− 
= − 

 
 , 

and 

2

2Ec


=  

6. Numerical Results 

In this section various numerical cases are presented for both static and dynamic conditions. Different 
boundary conditions are considered in each case including fixed-fixed boundary condition and fixed-free 
boundary condition. 

6.1. Static Problems 

6.1.1 Fixed-Fixed Boundary Condition 

In the first case, a bar with a length of L=1m is considered under static conditions. Elastic modulus of the 
bar is specified as E=200 GPa. The horizon size is chosen as delta=0.01m. The axial loading is applied in 
the form of f(x)= ( )1000 1x x− .  
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Figure 6. Variation of the axial displacement along the longitudinal bar under fixed-fixed boundary 
conditions. 

The variation of axial displacement along the longitudinal bar from PD is calculated and compared against 
classical continuum mechanics (CCM) solution. As shown in Fig. 6, a very good agreement is observed 
between PD and CCM solutions.    

6.1.2 Fixed-Free Boundary Conditions 

In the second case, the same properties are considered as in the previous case except the boundary condition 
is chosen as fixed-free boundary condition. The axial displacements obtained from analytical PD solution 
along the longitudinal bar is compared against CCM solution and a very good match between the two 
solutions is obtained as shown in Fig. 7. 

 

Figure 7. Variation of the axial displacement along the longitudinal bar under fixed-free boundary 
conditions. 

 

6.2. Dynamic Problems 

6.2.1 Fixed-Fixed Boundary Conditions 

In this case, a one-dimensional bar with a length of L=1m is utilised. Elastic modulus and density are 
specified as E=200 GPa and 𝜌=7850 kg/m3. The horizon size is chosen as 𝛿=0.01m.  Fixed-fixed boundary 
conditions are considered. Initial conditions are specified as: 

ICs: ( ) ( )
2

0 0.01 1u x x x= − , ( ) ( )
2

0 100 1v x x x= − −  

 

 

                                                              (a)                                                                                (b) 
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(c) 

Figure 8. Variation of the axial displacement with time in the longitudinal bar under fixed-fixed boundary 
conditions at locations (a) x = 0.25 m, (b) x = 0.5 m and (c) x = 0.75 m. 

The variation of axial displacement from analytical PD solution is obtained at three different locations x = 
0.25 m, 0.5 m and 0.75 m. As shown in Fig. 8, PD solutions agree very well with CCM results for all three 
locations. 

6.2.2 Fixed-Free Boundary Conditions 

In this case, same geometrical and material properties are utilised as in the previous case except boundary 
conditions are being fixed-free and initial conditions are specified as: 

ICs: ( )0 0.001u x x= , ( )0 0v x =  

 

                                                               (a)                                                                                (b)  

 

                                                              (c)                                                                                 (d) 
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Figure 9. Variation of the axial displacement with time in the longitudinal bar under fixed-free boundary 
conditions at locations (a) x = 0.25 m, (b) x = 0.5 m, (c) x = 0.75 m and (d) x = 1 m. 

 

PD analytical solution for axial displacements at four different locations at x = 0.25 m, 0.5 m, 0.75 m and 1 
m are evaluated. By comparing against CCM solutions, it can be concluded that PD solutions match very 
well with PD solutions as shown in Fig. 9. 

6.2.3 Fixed-Free Boundary Conditions 

In this case, same geometrical and material properties are utilised as in the previous case except initial 
conditions are specified as: 

ICs:  

( ) 2
0 0.001u x x= , ( ) 2

0 5v x x=  

 

                                                              (a)                                                                                 (b)            

      

                                                                 (c)                                                                                 (d) 

Figure 10. Variation of the axial displacement with time in the longitudinal bar under fixed-free boundary 
conditions at locations (a) x = 0.25 m, (b) x = 0.5 m, (c) x = 0.75 m and (d) x = 1 m. 

As demonstrated in Fig. 10, a very good agreement is also observed for this last case between PD and CCM 
solutions at four different locations x = 0.25 m, 0.5 m, 0.75 m and 1 m. 
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6.3. Horizon Size Effect 

In the third case, the effect of horizon size is investigated by considering a Fixed-Fixed rod with a length of 
L=1m. Elastic modulus and density are specified as E=200 GPa and 𝜌=7850 kg/m3. Different horizon size 
values are considered as 𝛿=0.005m, 0.05m, 0.07m, 0.1m. The initial conditions are given as: 

IC: 
( ) ( )

( ) ( )

55

55

,0 0.01 1

,0 10 1

u x x x

u x x x

 = −


= −

 

 

                                                              (a)                                                                                 (b)            

 

                                                                 (c)                                                                                 (d) 

Figure 11. Variation of the axial displacement with time in the longitudinal bar under fixed-fixed boundary 
conditions at locations (a) x = 0.5 m, (b) x = 0.5 m (zoomed view), (c) x = 0.75 m and (d) x = 0.75 m 

(zoomed view) for different horizon size (HS) values. 

Variation of the axial displacement with time in the longitudinal bar at two different locations, x = 0.5 and x 
= 0.75, are shown in Fig. 11 for different horizon sizes. As can be seen in these figures, as the horizon size is 
becoming smaller, PD solution is converging to CCM solution which is an expected behaviour. 
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7. Conclusions 

In this study, a new analytical solution methodology is presented by using inverse Fourier Transform for 
both static and dynamic conditions. Both fixed-fixed and fixed-free boundary conditions are considered. 
Based on the numerical results generated for both static and dynamic analyses and different boundary and 
initial conditions, a very good agreement is observed between peridynamic and classical continuum 
mechanics results. These comparisons verified that the developed new PD analytical model can generate 
accurate results for different conditions. The current formulation can be extended for the solution of 2-
Dimensional peridynamic wave equation. 

Data Availability 

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. 
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