
Size measures and alphabetic equivalence in the µ-calculus
Clemens Kupke

clemens.kupke@strath.ac.uk

University of Strathclyde

Glasgow, Scotland

Johannes Marti

johannes.marti@gmail.com

ILLC, University of Amsterdam

Amsterdam, The Netherlands

Yde Venema

y.venema@uva.nl

ILLC, University of Amsterdam

Amsterdam, The Netherlands

ABSTRACT
Algorithms for solving computational problems related to themodal

µ-calculus generally do not take the formulas themselves as input,

but operate on some kind of representation of formulas. This rep-

resentation is usually based on a graph structure that one may

associate with a µ-calculus formula. Recent work by Kupke, Marti

& Venema showed that the operation of renaming bound variables

may incur an exponential blow-up of the size of such a graph rep-

resentation. Their example revealed the undesirable situation that

standard constructions, on which algorithms for model checking

and satisfiability depend, are sensitive to the specific choice of

bound variables used in a formula.

Our work discusses how the notion of alphabetic equivalence in-

teracts with the construction of graph representations of µ-calculus
formulas, and with the induced size measures of formulas. We

introduce the condition of α-invariance on such constructions, re-

quiring that alphabetically equivalent formulas are given the same

(or isomorphic) graph representations.

Our main results are the following. First we show that if two

µ-calculus formulas are α-equivalent, then their respective Fischer-

Ladner closures have the same cardinality, up to α-equivalence. We

then continue with the definition of an α-invariant construction
which represents an arbitrary µ-calculus formula by a graph that has

exactly the size of the quotient of the closure of the formula, up to

α-equivalence. This definition, which is itself based on a renaming

of variables, solves the above-mentioned problem discovered by

Kupke et al.

CCS CONCEPTS
• Theory of computation→Modal and temporal logics; Logic
and verification.

KEYWORDS
modal mu-calculus, complexity, alphabetic equivalence, model

checking

ACM Reference Format:
Clemens Kupke, Johannes Marti, and Yde Venema. 2022. Size measures

and alphabetic equivalence in the µ-calculus. In 37th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS) (LICS ’22), August 2–5, 2022,

Haifa, Israel. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3531130.3533339

1 INTRODUCTION
1.1 The modal µ-calculus
The modal µ-calculus [2, 3, 8, 11] is an extension of propositional

modal logic by means of least- and greatest fixpoint operators,

which enable the expression of recursive statements. Introduced by

Kozen [14] in its current form, it has emerged in theoretical com-

puter science as one of the key logical formalism used for specifying

properties of ongoing processes [21]. Seen from a logical perspec-

tive, the formalism inherits many pleasant metalogical properties

from basic modal logic, including uniform interpolation and other

interestingmodel-theoretic properties [6, 10, 13], a natural complete

axiomatisation [14, 22] and a complete cut-free proof system [1].

In line with the importance of the µ-calculus as a specification
language, various computational aspects of the formalism have been

investigated. The two problems at the center of these investigations

concern satisfiability (given a µ-calculus formula ξ , is it satisfiable
in some transition system?) and model checking (given a transition

system S, a state s in S and a µ-calculus formula ξ , is ξ true at s
in S?) The satisfiability problem was rather quickly shown to be

decidable [15], while some years later Emerson & Jutla [9] gave an

exponential time algorithm for satisfiability checking. Determining

the complexity of the model checking problem, however, has turned

out to be challenging. There is an obvious algorithm that runs in

time (k · n)d , where k,n and d are respectively the size of the

transition system, the size of the formula, and the alternation depth

of the formula, i.e., the maximum number of alternating least and

greatest fixpoint operators in the formula. While fairly recently a

quasi-polynomial algorithm was found by Calude et alii [5], it is

a long standing open question whether an algorithm exists that is

entirely polynomial in the size of the formula.

1.2 Graph representations of µ-calculus
formulas

Generally, the algorithms that are used to solve problems related

to the modal µ-calculus do not take the formulas themselves as

input, but operate on some kind of representation of formulas. As

we will briefly discuss now in various contexts, this representation

is usually based on a graph structure that one may associate with a

µ-calculus formula, or can be viewed as such.

Parity Games The model checking problem for the µ-calculus
directly corresponds to the problem of determining the winner of

an (initialised) parity game. In fact, most work on the complexity of

the model checking problem is done in this setting — this applies for

instance to the just mentioned quasi-polynomial complexity results.

Parity games are infinite two player games that are played over a

This is a peer-reviwed, author's accepted manuscript of the following conference proceedings book chapter:
Kupke, C., Marti, J., & Venema, Y. (2022). Size measures and alphabetic equivalence in the μ-calculus.

In LICS '22: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science [18] (LICS). ACM.
https://doi.org/10.1145/3531130.3533339

https://doi.org/10.1145/3531130.3533339
https://doi.org/10.1145/3531130.3533339

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

graph, where the vertices are the game positions and the edges are

the admissible moves relating these positions. When considering

the model checking problem of a formula ξ in a transition system

S as a parity game, the underlying graph of the game is defined as

some kind of product of a graph representation of ξ with the graph

of the transition system S. When studying the model checking

problem via its translation to parity games one naturally thinks of

formulas as graphs.

Automata Many of the key theoretical results about the µ-
calculus are proved by automata-theoretic methods. This includes

for example the aforementioned exponential time satisfiability

checking algorithm [9] by Emerson & Jutla, but also the expressive

completeness theorem by Janin & Walukiewicz showing that the µ-
calculus is the bisimulation invariant fragment of monadic second

order logic [13], or the uniform interpolation result by D’Agostino

& Hollenberg [6]. Concretely, the automata that one mostly asso-

ciates with the modal µ-calculus are the µ-automata of Janin &

Walukiewicz [12] and the alternating tree automata of Wilke [23].

Underlying the automata-theoretical approach is a construction

that turns a µ-calculus formula ξ into an automaton Aξ which

accepts precisely those pointed transition systems where ξ is true.

As argued in [17], it is in fact quite natural to view the transition

structure of an automaton as a graph, and so one may indeed think

of Aξ as a graph-based representation of the formula ξ .
Equation Systems Formulas of the modal µ-calculus can also

be represented by systems of equations [2, 8, 20]. In fact, as an al-

ternative to the approach using parity games, the model checking

problem can be represented as a so-called boolean equation sys-
tem [18], which arises as some kind of interweaving of an equation

system representing the formula with the model it is evaluated on.

As with alternating tree automata, it is not too difficult to see the

equation systems as being graph-based — here one may simply con-

sider the union of the subformula graphs of the formulas appearing

in one of the equations of the system.

Summarising, graph representations of formulas are of central

importance in the theory of the modal µ-calculus. For concreteness,
in this paper we will work with the parity formulas of [17] as uni-
form, generic graph-based representations of µ-calculus formulas.

We will recall the definition of parity formulas in section 2.

Before we continue our discussion, let us note here that there are

at least three natural ways to associate a graph with a µ-calculus
formula ξ : its syntax tree, its subformula dag, which is based on the

collection Sfor(ξ) of subformulas of ξ , and its closure graph, which
takes as its carrier its (Fischer-Ladner) closure, the set Clos(ξ). Of
these three, the subformula dag and the closure graph feature most

prominently in algorithms and constructions.

1.3 The size of formula representations
Given the importance of graph representations of formulas in the

theory of the µ-calculus, it is somewhat surprising that, while the

literature is crystal clear on the algorithms that operate on these

representations, the relation between a formula and its concrete

representation is far less understood.

Bruse, Friedmann & Lange [4], who studied the complexity of a

certain operation on µ-calculus formulas called guarded transfor-

mation, displayed a sequence of formulas of which the number of

subformulas grows exponentially, whereas the size of the closure

of the formulas grows only quadratically. While the closure size of

a formula was known to never exceed the number of its subformu-

las [14], these size measures were generally assumed to be roughly

the same. The observation in [4] revealed that in fact, the closure

graph of a formula can be exponentially more succinct than its

subformula dag. Consequently, for optimal complexity results on

the µ-calculus it is generally advisable to work with closure graphs,

and accordingly we will focus on this approach here.

Kupke, Marti & Venema [17] discussed the commonly made

assumption that µ-calculus formulas may assumed to be clean.
1

This assumption is generally considered to be harmless, because

formulas can be “cleaned up” by simply renaming bound variables.

The authors, however, provided an example where such a renaming

incurs an exponential blow-up of the size of its closure graph. This

revealed that standard constructions for the µ-calculus, on which

algorithms for model checking and satisfiability depend, are sen-

sitive to the specific choice of bound variables that are used in a

formula.

The gaps in our knowledge that were pointed out in these pub-

lications, cause problems in formulating and proving optimal (or

even correct) complexity results for the modal µ-calculus. As a
continuation of the work in [4] and [17], to remedy these short-

comings, our aim here is to further clarify the impact of variable
binding, and more specifically, alphabetic equivalence on the graph

representations of formulas.

1.4 Variable binding and alphabetic
equivalence

A key feature of the syntax of the modal µ-calculus is that it involves
variable binding. Every fixpoint operator binds the recursion vari-

able in the subformula it governs. As a consequence, when working

with formulas of the µ-calculus directly, one has to keep track of

bound and free variables, which involves some nontrivial bookkeep-

ing. Perhaps the appeal of game and automata theoretic approaches

to the theory of the µ-calculus can be partially explained by the

fact that graph representations provide an elegant variable-free

alternative to standard formulas.

Here we will focus on the role of alphabetic equivalence, or

briefly: α-equivalence, in the construction of graph representations

of formulas. Roughly, two formulas are α-equivalent if they can

be obtained from one another by suitable renamings of bound

variables – a precise definition will be given further on. Generally,

logicians tend to identify α-equivalent formulas, or at the very

least, they consider the differences between α-equivalent formulas

to be irrelevant. We certainly do not want to argue against this

principle; on the contrary, our point is that it should be adhered to

more consistently. In fact, to the best of our knowledge, there is no

construction of a graph representation of a µ-calculus formula in

which the principle has been taken into full account.

In particular, none of the currently available constructions that

represent a formula ξ on the basis of its closure graph identify

α-equivalent formulas in the set Clos(ξ), and the same observation

1
A µ-calculus formula is clean (or well-named), if the sets of its free and bound

variables are disjoint, and with every bound variable one may associate a unique

subformula where this variable is bound.

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

applies to the algorithms that work with the subformula dag. This is

particularly odd since, as discussed above, such constructions gen-

erally feature a (usually implicit) preprocessing step that replaces

the input formula with a clean alphabetic variant. In other words:

these constructions do follow the principle of α-invariance on the

side of the input, but fail to take it into account on the output side.

As discussed already, Kupke, Marti & Venema [17] were the first

to point out the effects of renaming bound variables on the size

of graph representations. Their main contribution is a construc-

tion that associates with an arbitrary (i.e., not necessarily clean)

µ-calculus formula ξ a graph representation that is succinct in being
based on the closure graph of ξ , while at the same time preserving

the alternation depth of ξ . This construction, however, has the dis-
advantage that two distinct but α-equivalent formulas may receive

different representations, possibly of exponentially differing sizes.

1.5 A succinct α-invariant representation
Our concrete goal here is to come up with a graph representa-

tion of µ-calculus formulas that is α-invariant in the sense that

α-equivalent formulas obtain the same representation, and α-
invariant formulas are identified throughout the construction. In

contrast to the construction via clean alphabetic variants, which

may result in an unnecessary exponential size blow-up, our con-

struction will be much more succinct.

To formulate this more precisely we need some technical detail.

Assume that, on the basis of the observations of Bruse et alii [4],

in order to find an optimally succinct graph representation of a

µ-calculus formula ξ , we take its Fischer-Ladner closure Clos(ξ) as
a starting point. Our aim will be to use the principle of α-invariance
to improve on the construction by Kupke et alii [17], which would

suggest to consider the α-equivalence classes of Clos(ξ). Our first
and promising observation is that while the respective closure

sets of α-equivalent formulas need not have the same number of

elements they do have the same number of α-cells:

ξ0 =α ξ1 implies |Clos(ξ0)/=α | = |Clos(ξ1)/=α |. (1)

Here and in the sequel we will write =α to denote α-equivalence,
and refer to the equivalence classes of this relation as α-cells. This
raises the question whether perhaps we can base a graph repre-

sentation of a formula ξ on the set Clos(ξ)/=α consisting of the

=α -cells in its closure, or perhaps on a related set of the same size.

The second and main contribution of this work is that we answer

this question affirmatively.

Theorem 1.1. There is a construction transforming an arbitrary
µ-calculus formula ξ into an equivalent parity formula Pξ such that

1) |Pξ | = |Clos(ξ)/=α |;
2) the index of Pξ is bounded by the alternation depth of ξ ;
3) ξ0 =α ξ1 implies Pξ0 = Pξ1 .

Consequently, this approach induces the following size measure
for µ-calculus formulas:

|ξ | := |Clos(ξ)/=α |.

This size measure is fully α-invariant in the sense that α-equivalent
formulas obtain the same size, and in computing this size, α-
equivalent formulas are only counted once. It is also optimal in the

sense that it is the sharpest size measure (among the ones known

from the literature) which can be used to correctly formulate the

aforementioned complexity results for model checking and satisfia-

bility.

The key idea underlying our proof of Theorem 1.1 is to use

the observation (1) to our advantage.
2
That is, we will define an

operation ·̂ : µML → µML that is a renaming in the sense that

ξ =α ξ̂ (2)

for all ξ , and ·̂ picks a fixed member of the α-cell of its input
formula:

ξ0 =α ξ1 implies ξ̂0 = ξ̂1. (3)

The key feature of this renaming operation is that

α-equivalence is the identity relation on Clos(ξ̂), (4)

from which we immediately conclude that |Clos(ξ̂)/=α | = |Clos(ξ̂)|.
Observe then that it follows from (1), (2) and (4) that

|Clos(ξ)/=α | = |Clos(ξ̂)|.

In other words, ·̂ is a renaming operation that picks, for any µ-
calculus formula ξ , a formula of minimal closure size among the

alphabetic variants of ξ . Furthermore, we may think of the formulas

in the closure of ξ̂ as representing the =α -cells in Clos(ξ).
Given the semantic equivalence of the formulas ξ and ξ̂ , this

indicates that we may obtain a truly succinct graph representation

of µ-calculus formulas as follows. We already mentioned that the

main contribution of Kupke et alii [17] is a construction that asso-

ciates with every µ-calculus formula ψ a succinct parity formula

Gψ that is based on the set Clos(ψ) and has an index bounded by the
alternation depth ofψ . We may now improve on this by taking, as

an even more succinct graph representation of a µ-calculus formula

ξ , the parity formula we obtain from applying the construction

of [17] to the renaming ξ̂ of ξ :

Pξ := Gξ̂ .

It is then easy to see that this definition meets the requirements of

Theorem 1.1.

Related version. Some of the more technical proofs can be found

in the technical report [16].

2 PRELIMINARIES
In this section we recall the syntax and semantics of the modal

µ-calculus; for more information we refer to [2, 3, 8, 11]. We also

briefly discuss the graph representation of its formulas as parity
formulas.

2.1 Syntax of the µ-calculus
We will assume that µ-calculus formulas are in negation normal

form; that is, the language µML of (modal) µ-calculus formulas is

given by the following grammar:

µML ∋ φ ::= p | p | ⊥ | ⊤ | (φ ∨ φ) | (φ ∧ φ)

| ✸φ | ✷φ | µx φ | νx φ,

2
An alternative approach would be to use a different way to represent α -cells, for
instance using de Bruijn indices. We will say more on this in Section 5.

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

where p,x are variables, and the formation of the formulas µx φ and

νx φ is subject to the constraint that φ is positive in x , i.e., there are
no occurrences of x in φ. Elements of µML will be called µ-calculus
formulas or standard formulas. We define Lit(Q) := {p,p | p ∈ Q}

as the set of literals over Q , and At(Q) := {⊥,⊤} ∪ Lit(Q) as the

set of atomic formulas over Q . Formulas of the form µx .φ or νx .φ
will be called fixpoint formulas. We will associate µ and ν with the

odd and even numbers, respectively, and use η, λ as metavariables

for these two fixpoint binders. For η ∈ {µ,ν } define η by putting

µ := ν and ν := µ. The notion of subformula is defined as usual; we

write φ P ψ if φ is a subformula ofψ , and define Sfor(ψ) as the set
of subformulas ofψ .

We use standard terminology related to the binding of variables.

We write BV (ξ) and FV (ξ) for, respectively, the set of bound and

free variables of a formula ξ . We fix a set Q of proposition letters

and let µML(Q) denote the set of formulas ξ with FV (ξ) ⊆ Q .

We let φ[ψ/x] denote the formula φ, with every free occurrence

of x replaced by the formulaψ ; for the time being
3
we only apply

this substitution operation ifψ is free for x in φ, meaning that no

free variable of ψ gets bound after substituting. Formally we say

that ψ is free for x in ξ if ξ is positive in x and for every variable

y ∈ FV (ψ), every occurrence of x in a subformula ηy.χ of ξ is in

the scope of a fixpoint operator λx in ξ , i.e., bound in ξ by some

occurrence of λx . With this constraint, we inductively define the

substitution [ψ/z] as the following partial operation on µML:

x[ψ/z] :=

{
ψ if x = z
x if x , z

(♥φ)[ψ/z] := ♥φ[ψ/z]

(φ0 ⊙ φ1)[ψ/z] := φ0[ψ/z] ⊙ φ1[ψ/z]

(ηx .φ)[ψ/z] :=

{
ηx .φ if x = z
ηx .φ[ψ/z] otherwise,

where ♥ ∈ {✸,✷}, ⊙ ∈ {∨,∧} and η ∈ {µ,ν }.
The unfolding of a formula ηx .χ is the formula unf(ηx χ) :=

χ [ηx .χ/x]. Given our constraint on the substitution operation, the

unfolding of a formula ξ is only properly defined if ξ is tidy,4 that
is, if FV (ξ) ∩ BV (ξ) = ∅. The (Fischer-Ladner) closure of a tidy

formula ξ ∈ µML is the smallest set containing ξ which is closed

under taking boolean and modal subformulas, and under taking

unfoldings of fixpoint formulas. We will need some detail.

For every tidy formula ξ ∈ µML define the set Clos0(ξ) with the

following case distinction:

Clos0(φ) := ∅ (φ ∈ At(Q))

Clos0(φ0 ⊙ φ1) := {φ0,φ1} (⊙ ∈ {∧,∨})

Clos0(♥φ) := {φ} (♥ ∈ {✸,✷})

Clos0(ηx .φ) := {φ[ηx .φ/x]} (η ∈ {µ,ν }).

We write ξ →C φ if φ ∈ Clos0(ξ) and refer to →C as the trace
relation on µML. We define the relation ↠C as the reflexive and

transitive closure of →C , and define Clos(ξ) := {φ | ξ ↠C φ};

3
This constraint saves us from involving alphabetic variants when substituting. After

we have introduced α -equivalence, we can lift this constraint, extending substitution

to a total operation in Definition 3.9.

4
In the literature, some authors make a distinction between proposition letters (which

can only occur freely in a formula), and propositional variables, which can be bound.

Our tidy formulas correspond to sentences in this approach, that is, formulas without

free variables.

formulas in this set are said to be derived from ξ . Given a set of

tidy formulas Ψ, we put Clos(Ψ) :=
⋃
ψ ∈Ψ Clos(ψ). We call the set

Clos(ξ) the closure of ξ . The closure graph of ξ is the directed graph

(Clos(ξ),ECξ), where E
C
ξ is the trace relation→C , restricted to the

set Clos(ξ). Finally, we call a →C -path ψ0 →C ψ1 →C · · · →C
ψn a (finite) trace . We can use induction on the length of traces

originating at ξ to prove statements about formulas in Clos(ξ). It is
easy to show that all formulas in Clos(ξ) are tidy.

The size of a formula can be measured in at least three different

ways: First, there is the length |ξ |ℓ of the formula ξ ∈ µML which
is defined in the obvious way as the length of the string (or tree)

representation of ξ . Alternatively, the subformula size of a (clean)
formula ξ is defined as the number of its subformulas: |ξ |s :=

|Sfor(ξ)|; and the closure size of a (tidy) formula ξ is simply given

as the size of its closure:

|ξ |c := |Clos(ξ)|.

Next to its size, the most important complexity measure of a µ-
calculus formula is its alternation depth. There are various ways to
make this notion precise; here we shall work with the most widely

used definition from Niwiński [19]. By natural induction we define

classes Θ
µ
n ,Θ

ν
n of µ-calculus formulas. With η, λ ∈ {µ,ν } arbitrary,

we set:

(1) all atomic formulas belong to Θ
η
0
;

(2) if φ0,φ1 ∈ Θ
η
n , then φ0 ∨ φ1,φ0 ∧ φ1,✸φ0,✷φ0 ∈ Θ

η
n ;

(3) if φ ∈ Θ
η
n then ηx .φ ∈ Θ

η
n ;

(4) if φ(x),ψ ∈ Θ
η
n , then φ[ψ/x] ∈ Θ

η
n , provided that ψ is free

for x in φ;

(5) all formulas in Θλn belong to Θ
η
n+1.

The alternation depth ad(ξ) of a formula ξ is defined as the least n
such that ξ ∈ Θ

µ
n ∩ Θνn .

Intuitively, the class Θ
η
n consists of those µ-calculus formulas

where n bounds the length of any alternating nesting of fixpoint

operators of which the most significant formula is an η-formula.

The alternation depth is then the maximal length of an alternating

nesting of fixpoint operators.

As an example, consider the formula

ξ = µx .νy.(✷y ∧ µz.(✸x ∨ z)),

which looks like a µ/ν/µ-formula in the sense that it contains a

nested fixpoint chain µx/νy/µz. However, the variable y does not

occur in the subformula µz.(✸x∨z), and so we may in fact consider

ξ as a µ/ν -formula. Formally, we observe that µz.✸x∨z ∈ Θν
0
⊆ Θν

1

and νy.✷y ∧ p ∈ Θ
µ
0
⊆ Θν

1
; from this it follows by the substitution

rule that the formula νy.(✷y ∧ µz.(✸x ∨ z)) belongs to the set Θν
1

as well; from this we easily conclude that ξ ∈ Θν
1
. It is not hard to

show that ξ < Θ
µ
1
, but since ξ ∈ Θ

µ
2
∩ Θν

2
we find ad(ξ) = 2.

2.2 Compositional semantics of the µ-calculus
Themodal µ-calculus is interpreted over Kripke structures. AKripke
structure or transition system over a set Q of proposition letters is a

triple S = (S,R,V) where S is a set of states, R ⊆ S × S is a binary

relation, and V : Q → P(S) is called a Q-valuation on S . A pointed
Kripke structure is a pair (S, s) where s ∈ S is a designated state.

Given a Kripke structure S = (S,R,V), a variable x and a set A ⊆ S ,

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

we define V [x 7→ A] as the Q ∪ {x}-valuation given by

V [x 7→ A](p) :=

{
A if p = x ,
V (p) if p , x

and we let S[x 7→ A] denote the structure (S,R,V [x 7→ A]).
The semantics of the µ-calculus is defined as follows. By induc-

tion on the complexity of µ-calculus formulas, we define a meaning

function [[·]], which assigns to a formula φ ∈ µML(Q) its meaning
[[φ]]S ⊆ S in any Kripke model S = (S,R,V) over Q .

[[p]]S := V (p) [[p]]S := S \V (p) [[⊥]]S := ∅ [[⊤]]S := S

[[φ ∨ψ]]S := [[φ]]S ∪ [[ψ]]S [[φ ∧ψ]]S := [[φ]]S ∩ [[ψ]]S

[[✸φ]]S := {s ∈ S | R[s] ∩ [[φ]]S , ∅}

[[✷φ]]S := {s ∈ S | R[s] ⊆ [[φ]]S}

[[µx .φ]]S :=
⋂

{A ∈ P(S) | [[φ]]S[x 7→A] ⊆ A}

[[νx .φ]]S :=
⋃

{A ∈ P(S) | [[φ]]S[x 7→A] ⊇ A}.

If a state s ∈ S belongs to the set [[φ]]S, we write S, s ⊩ φ, and say

that s satisfies φ. Two formulas φ and ψ are equivalent, notation:
φ ≡ ψ , if [[φ]]S = [[ψ]]S for any structure S.

2.3 Parity formulas
In this paper we take the parity formulas of [17] as a uniform, graph-

based representation of µ-calculus formulas. Generalising the usual

tree-based representation of formulas, parity formulas are defined

as arbitrary graphs where the vertices are labeled with logical

connectives. Additionally, parity formulas come with a priority

map to ensure that despite their cyclic nature they have a well-

defined semantics in terms of parity games.

Definition 2.1. A parity formula over Q is a quintuple G =
(V ,E,L,Ω,vI), where

• (V ,E) is a finite, directed graph;
• L : V → At(Q) ∪ {∧,∨,✸,✷, ϵ} is a labelling function;
• Ω : V

◦
→ ω is a partial map, the priority map of G; and

• vI is a vertex in V , referred to as the initial node of G;

such that (with E[v] := {u ∈ V | Evu}):

(1) |E[v]| ≤ 2 for every vertex v ; |E[v]| = 0 if L(v) ∈ At(Q), and
|E[v]| = 1 if L(v) ∈ {✸,✷} ∪ {ϵ};

(2) every cycle of (V ,E) contains at least one node in Dom(Ω).

The elements of Dom(Ω) are called states.

The semantics of parity formulas is defined in terms of the fol-

lowing parity game.

Definition 2.2. Let S = (S,R,U) be a model, and let G =
(V ,E,L,Ω,vI) be a parity formula. We define the model checking

game E(G,S) as the parity game of which the board (or arena) con-
sists of the set V × S , the priority map Ω′

: V × S → ω is given by
putting Ω′(v, s) := Ω(v) if v ∈ Dom(Ω) and Ω′(v, s) := 0 otherwise,
and the game graph is given in Table 1. G holds at or is satisfied
by the pointed model (S, s), notation: S, s ⊩ G, if the pair (vI , s) is a
winning position for ∃ in E(G,S).

Position Player Moves

(v, s) with L(v) = p and s ∈ U (p) ∀ ∅
(v, s) with L(v) = p and s < U (p) ∃ ∅
(v, s) with L(v) = p and s ∈ U (p) ∃ ∅
(v, s) with L(v) = p and s < U (p) ∀ ∅
(v, s) with L(v) = ϵ - E[v] × {s}
(v, s) with L(v) = ∨ ∃ E[v] × {s}
(v, s) with L(v) = ∧ ∀ E[v] × {s}
(v, s) with L(v) = ✸ ∃ E[v] × R[s]
(v, s) with L(v) = ✷ ∀ E[v] × R[s]

Table 1: The model checking game E(G,S) of Definition 2.2.

Parity formulas can be seen as variations of Wilke’s alternating

tree automata [11, 23], but they are also closely related to hierar-

chical equation systems [2, 8, 20], and µ-calculus in vectorial form

[2]. For a detailed discussion of these connections we refer to [17].

The main reason to prefer parity formulas
5
over these other

representations is that, given the straightforward definition of their

semantics in terms of parity games, they allow for a clear and

completely perspicuous definition of their most relevant complexity

measures: size and index. The size of a parity formula is simply the

number of its vertices and its index corresponds to the maximal

length of a suitably defined alternating chain in the range of its

priority map.

For this reason, parity formulas serve as an ideal yardstick for

comparing various complexity measures of standard formulas. In

particular, we can use parity formulas to define the notion of a

size measure for µ-calculus formulas. Say that a parity formula G
represents6 a formula ξ ∈ µML if G and ξ are equivalent (in the

obvious way of being satisfied by the same pointed models). Then

we call an attribute s : µML → ω a size measure of µ-calculus
formulas if (†) it is induced by some representation ξ 7→ Gξ in the

sense that s(ξ) = |Gξ |. For instance, the following fact from [17]

indicates that closure size is a size measure indeed.

Fact 2.3. [17] There is an effective way to represent any tidy
formula ξ by a parity formula Gξ = (Clos(ξ),ECξ ,Ωξ , ξ), of which
the index is bounded by the alternation depth of ξ .

3 ALPHABETIC EQUIVALENCE
In formalisms that feature some kind of variable binding, the mean-

ing of a syntactic expression usually does not depend on the exact

choice of its bound variables. In such a setting α-equivalent for-
mulas, i.e., formulas that can be obtained from one another by a

suitable renaming of bound variables, are often taken to be identical.

In this section we formally introduce the notion of alphabetical

equivalence, and we prove some of its basic properties. We discuss

its impact of α-equivalence on the notion of closure, and quickly

use it to extend the operation of substitution to a total operation.

5
Nothing in our paper hinges on this choice, all results can be formulated in terms of

alternating tree automata or hierarchical equation systems as well.

6
This notion of representation is quite weak. In practice we shall focus on constructions

that preserve quite a bit of the syntactic structure of the standard formula, but we do

not need to adapt the definition accordingly.

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

Definitions
Let us start with giving a proper definition of the notion of alpha-

betic equivalence.

Definition 3.1. An equivalence relation∼ on the set µML of formu-
las will be called a (syntactic) congruence if it satisfies the following
two conditions:

1) if φ0 ∼ ψ0 and φ1 ∼ ψ1 then φ0 ⊙φ1 ∼ ψ0 ⊙ψ1, for ⊙ ∈ {∨,∧};
2) if φ ∼ ψ then ♥φ ∼ ♥ψ , for ♥ ∈ {✸,✷}.

We define the relation =α as the smallest congruence ∼ on µML which
is closed under the rule:

3) if φ0[z/x0] ∼ φ1[z/x1], where z is fresh for φ0 and φ1, then
ηx0.φ0 ∼ ηx1.φ1, for η ∈ {µ,ν }.
The α-equivalence class or α-cell of a formula φ is denoted as LφM.
If φ =α ψ we call φ and ψ α-equivalent, or alphabetic variants of
one another. A renaming is a map assigning an alphabetic variant to
every formula.

The following definition will play a prominent role.

Definition 3.2. Call a set Φ of µ-calculus formulas lean if the
relations of α-equivalence and syntactic identity coincide on Φ.

It will be convenient to have a formal system in place by which

we can derive the α-equivalence of two formulas — this will enable

us to prove statements about =α using induction on the complexity

of such derivations.

Definition 3.3. With .
= denoting a formal identity symbol, an

equation is an expression of the form φ
.
= ψ with φ,ψ ∈ µML. We

define ⊢α as the derivation system on such equations, which consists of
the axiom φ

.
= φ and the obvious rules corresponding to the conditions

1) – 3) above. In case an equation φ .
= ψ is derivable in this system

we write ⊢α φ
.
= ψ .

Note that the absence of rules for symmetry or transitivity in ⊢α
makes the system a very useful proof tool. This absence is justified

by the following proposition.

Proposition 3.4. The derivation system ⊢α for =α is sound and
complete for α -equivalence, that is, for any pair of µML-formulas φ,ψ
we have

φ =α ψ iff ⊢α φ
.
= ψ .

Proof. Soundness, i.e., the implication from right to left, is obvi-

ous. For the opposite implication, one shows by induction on φ that

⊢α φ
.
= ψ and ⊢α ψ

.
= ξ imply ⊢α φ

.
= ξ , which obviously implies

that the relation generated by ⊢α -deductions is transitive. Similarly,

one can show that the relation of ⊢α -derivable equivalence is sym-

metric. From this it is immediate that φ =α ψ implies ⊢α φ
.
= ψ as

required. □

In the sequel we will use the above proposition without warning;

we will also be somewhat sloppy concerning notation and termi-

nology, for instance allowing ourselves to write that ‘φ =α ψ is

derivable’ if we mean that ⊢α φ
.
= ψ .

Basic observations
We first provide some key information about α-equivalence. The
first proposition states that many basic concepts of µ-calculus for-
mulas are invariant under α-equivalence (here fd(φ) denotes the
fixpoint depth of φ).

Proposition 3.5. The following hold, for any pair φ0,φ1 of µ-
calculus formulas:

(1) if φ0 =α φ1 then φ0 ≡ φ1;
(2) if φ0 =α φ1 then |φ0 |

ℓ = |φ1 |
ℓ ;

(3) if φ0 =α φ1 then FV (φ0) = FV (φ1);
(4) if φ0 =α φ1 then fd(φ0) = fd(φ1);
(5) if φ0 =α φ1 then ad(φ0) = ad(φ1).

Below we gather some technical observations, which are used in

the proof of Proposition 3.5 and in many of the proofs in the next

section. Some of these observation are of some interest in their own

right, such as item (10 stating that =α is a congruence with respect

to the unfolding operation.

Proposition 3.6. Let φ,φ0,φ1,ψ ,ψ0,ψ1 and χ be µ-calculus for-
mulas, and let η,η0,η1 ∈ {µ,ν }. Then the following hold:

(1) if φ =α ψ then φ[z/x] =α ψ [z/x] for any z that is fresh for φ
andψ ;

(2) if η0x0.φ0 =α ψ1 then ψ1 is of the form ψ1 = η1y.φ1, where
η0 = η1;

(3) if ηx0.φ0 =α ηx1.φ1 thenφ0[z/x0] =α φ1[z/x1], for any fresh
variable z;

(4) if ηx .φ0 =α ηx .φ1 then φ0 =α φ1;
(5) ifηx .φ0⊙φ1 =α ηy.ψ0⊙ψ1 thenηx .φi =α ηy.ψi , for i ∈ {0, 1}

and ⊙ ∈ {∧,∨};
(6) if ηx .♥φ =α ηy.♥ψ then ηx .φ =α ηy.ψ for ♥ ∈ {✸,✷};
(7) if ηx .λz.φ =α ηy.λz.ψ then ηx .φ =α ηy.ψ for λ ∈ {µ,ν };
(8) if φ =α ψ , y < FV (φ) and y is free for x in ψ , then ηx .φ =α

ηy.ψ [y/x];
(9) if φ0 =α φ1, ψ0 =α ψ1 and ψi is free for x in φi , then

φ0[ψ0/x] =α φ1[ψ1/x];
(10) if ηx0.φ0 =α ηx1.φ1 for tidy formulas ηxi .φi

then φ0[ηx0.φ0/x0] =α φ1[ηx1φ1/x1];
(11) if φ0 =α φ1 then ηx .φ0 =α ηx .φ1.
(12) if φ =α ψ [χ/x], then φ = ψ ′[χ ′/x ′] for some formulasψ ′, χ ′

and a fresh variable x ′ such thatψ =α ψ ′[x/x ′] and χ =α χ ′.

The proof of these propositions can be found in the technical

report [16].

Alphabetic equivalence and size measures
Although α-equivalent formulas have the same length, their (clo-
sure or subformula) sizes may differ exponentially. The following

observation by Kupke, Marti & Venema [17], which was mentioned

in the introduction, states that the commonly made assumption

that in the µ-calculus one may without loss of generality work with

clean formulas, is not as innocent as it may seem when it comes to

size considerations.

Proposition 3.7. There is a family (ξn)n∈ω of tidy formulas such
that |ξn |c ≤ 2 · n, while for any sequence of clean formulas χn such
that ξn =α χn for all n, we have |χn |c ≥ 2

n .

Proposition 3.7 also indicates that closure size is not such an

appealing size measure since it is not α-invariant: α-equivalent but
distinct formulas may have distinct sizes. In fact, closure size fails to

be α-invariant for another reason as well: the closure of a formula

may contain α-equivalent but distinct formulas.

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

In case one wants to define a succinct α-invariant size measure,

the following proposition (which was discussed as statement (1) in

the introduction) is a promising first step.

Proposition 3.8. Let ξ0 and ξ1 be tidy µ-calculus formulas such
that ξ0 =α ξ1. Then

1) for every φ0 ∈ Clos(ξ0) there is a φ1 ∈ Clos(ξ1) such that
φ0 =α φ1, and vice versa;

2) as a corollary, |Clos(ξ0)/=α | = |Clos(ξ1)/=α |.

Proof. We prove part 1) of this proposition by induction on the

length of the shortest trace from ξ0 to φ0. In the base case we have

φ0 = ξ0, so that we may take φ1 := ξ1.
In the inductive case we assume some formula ψ0 ∈ Clos(ξ0)

which can be reached by a shorter trace from ξ0 and is such that

φ0 is either (1/2) a direct modal or boolean subformula of ψ0 or

else (3)ψ0 is a fixpoint formula ηx0.χ0 of which φ0 is the unfolding.
An instance of the first case is where ψ0 is of the form ✸φ0. By
the induction hypothesis this formula has an alphabetic variant

ψ1 in the closure set of ξ1; it is then easy to see thatψ1 must be of

the form ✸φ1 for some formula φ1. But then it is immediate that

φ1 ∈ Clos(ξ1) and that φ1 =α φ0, as required. The case where φ0 is
a boolean subformula of ψ0 is dealt with in a similar way, and in

the third case we use Proposition 3.6(10).

For part 2) of the proposition, observe that as an immediate

consequence of part 1), we find a bijection between the sets of

Clos(ξ0)/=α and Clos(ξ1)/=α . □

Part 2) of the Proposition states that up to α-equivalence, the
closure sets of α-equivalent formulas have the same size, as an-

nounced in the introduction. A natural suggestion would then be

to take the number of α-cells of its closure as the size of a formula;

this would certainly provide a fully α-invariant notion of size. Note

however, that Proposition 3.8 on its own is not enough to consider

the proposed definition as a proper size measure. The problem is

that it is not a priori clear that the definition meets our requirement

(†) that any reasonable size measure should be based on some trans-

formation of a µ-calculus formula into an equivalent parity formula.

As we will see in the next section, this is where Theorem 1.1 comes

in.

Substitution revisited
As promised in section 2, we will now provide a proper definition

of the substitution operation [ψ/x], i.e., one that is also applicable

to formulas φ in which ψ is not free for x , in a way that avoids

variable capture. Our approach here is completely standard.

Definition 3.9. Given two µ-calculus formulasφ andψ , we define

φ[ψ/x] :=

{
φ[ψ/x] ifψ is free for x in φ
renψ (φ)[ψ/x] otherwise.

where we let renψ (φ) be a canonically chosen alphabetic variant of φ
such thatψ is free for x in renψ (φ).

4 α-INVARIANCE VIA SKELETAL RENAMING
The aim of this section is to provide a renaming function which

maps an arbitrary µ-calculus formula ξ to an alphabetic variant ξ̂
satisfying the conditions (3) stating that the map ·̂ picks a fixed

element of every α-cell, and (4) requiring that for every formula

ξ ∈ µML, the closure of its renaming ξ̂ is lean (i.e., α-equivalence

is the identity relation on Clos(ξ̂)). As we saw in the introduction,

this suffices to prove the main theorem of the paper.

The key concept involved in the definition of ξ̂ will be that of a

skeletal (set of) formula(s), to be introduced in Definition 4.3 below,

and the key property that we shall need of skeletal formulas is

that they have a lean closure, as stated in Proposition 4.11. We

then proceed to defining the skeletal renaming ·̂ , of which we

subsequently prove that it is, indeed, a renaming, and satisfies

the conditions (3) and (4). We finish the section by providing, in

Definition 4.20, a new and fully α-invariant size measure, and we

show that it has some desirable properties, for instance in relation

to the substitution operation.

Skeletal formulas
Throughout this section we fix a placeholder variable s , which
we assume to be ‘fresh’ in the sense that it does not occur in any

formula in µML.7

Definition 4.1. Given a setU of variables, we define the skeleton
skU (φ) of a formula φ relative to a set of variablesU by induction on
the structure of φ. Throughout this induction we will define

skU (φ) := s ifU ∩ FV (φ) = ∅,
so that in the inductive definition itself we may focus on the case
whereU ∩ FV (φ) , ∅:

skU (x) := x for x ∈ U
skU (φ0 ⊙ φ1) := skU (φ0) ⊙ skU (φ1) (⊙ ∈ {∨,∧})

skU (♥φ) := ♥skU (φ) (♥ ∈ {✸,✷})

skU (ηz.φ) := ηz.skU∪{z }(φ) (η ∈ {µ,ν })

For a single variable x we write skx as abbreviation for sk{x } .

The intuition behind this map is that we replace ‘U -free’ sub-

formulas, that is, subformulas not taking any free variable from

the set U , with the place holder s , and that this set U of critical

variables grows by collecting bound variables as we move down

(i.e., away from the root) in the syntax tree of the formula. A couple

of examples are in order.

Example 4.2. 1) Let φ = p ∨✸x , then skx (φ) = s ∨✸x .
2) Let φ = ((p ∨ µz.(q ∧✷z)) ∧ µy.((q ∨✸y) ∨✷x)), then skx (φ) =
s ∧ µy.((s ∨✸y) ∨✷x).

Definition 4.3. We call a set of formulas Φ skeletal if for any
pair of formulas φ0 = η0x0.ψ0 and φ1 = η1x1.ψ1 in

⋃
φ ∈Φ Sfor(φ)

we have

x0 = x1 iff η0x0.skx0 (ψ0) =α η1x1.skx1 (ψ1). (5)

We will call a single formula ξ skeletal if the singleton {ξ } is skeletal.

Intuitively, the formula ηx .skx (φ) is obtained by leaving every

part ofηx .φ that has some bearing on choosing a suitable alternative

name for the bound variable x unchanged, but replacing every other

part with the placeholder s . In more technical terms, the function

sk ensures that all elements of Clos(ηx .skx (φ)) are either equal to s
or contain ηx .skx (φ) as a subformula.

7
To do this in a precise way we could introduce the set µMLs of formulas that are

allowed to contain the placeholder s as a special variable.

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

Example 4.4. Consider the formulas α = µx .νy.✸x ∧ ✷y, and
β = νy′.✸α∧✷y′. Clearly β is an alphabetic variant of the unfolding
unf(α) = νy.✸α ∧✷y of α .

The formula α is obviously skeletal. It is not hard to see that unf(α)
is skeletal as well, since the skeletons of both the outer and the inner
ν-formula are equal to νy.s ∧✷y. We leave it as an exercise for the
reader to verify that the set Clos(α) is lean.

Now consider the formula β ∨ α . Its subformulas β and α bear
witness to the fact that β ∨ α is not skeletal. In line with this, the
closure of β∨α contains both the formula β and its alphabetic variant
unf(α), and thus it will not be lean.

Our skeletal renaming of β ∨α , on the other hand, will ensure that
the variables y and y′ are renamed into a single variable z, as both
relevant ν -subformulas of β ∨α have a skeleton of the form νy.s∧✷y.

Basic observations
We will now see in detail that skeletal formulas have indeed the

desired properties. We start with some basic observations about

the skeletal function. The proof of the first Proposition is straight-

forward — we omit the details.

Proposition 4.5. Let φ be a formula and let x < FV (φ). Then

skU∪{x }(φ) = skU (φ).

Proposition 4.6. Letψ be a formula, let U be a set of variables
and let x be a variable with x < U . Furthermore let β be a formula
which is free for x inψ , and such thatU ∩ FV (β) = ∅. Then

skU (ψ) = skU (ψ [β/x]). (6)

In particular, if x and y are variables such that x ,y < U and y is free
for x inψ , then skU (ψ) = skU (ψ [y/x])

Proof. Consider first the case where U ∩ FV (ψ) = ∅. We have

FV (ψ [β/x]) ⊆ FV (ψ)∪FV (β), which, together with our assumption

on FV (β), implies U ∩ (FV (ψ [β/x])) = ∅. Therefore we obtain

skU (ψ) = s = skU (ψ [β/x]) as required.
In the case thatU ∩ FV (ψ) , ∅ the claim is proved by induction

onψ . In the base step of the induction, we make a case distinction.

If ψ , x then ψ = ψ [β/x] so that (6) follows immediately. If, on

the other hand, we have ψ = x , then skU (x) = s = skU (β) =
skU (x[β/x]), where the second equality holds as U ∩ FV (β) = ∅.

The boolean and modal cases are easy. For instance, in the case of

a Boolean operator, we haveψ = ψ0 ⊙ψ1, with ⊙ ∈ {∧,∨}. By our

assumption thatU ∩ FV (ψ) , ∅, there is an i withU ∩ FV (ψi) , ∅.

Now for j ∈ {0, 1} we may use the induction hypothesis in the case

thatU ∩ FV (ψj) , ∅, and the fact that the lemma is already proved

for the case that U ∩ FV (φi) = ∅. Using these facts, we find

skU (ψ0 ⊙ψ1)

= skU (ψ0) ⊙ skU (ψ1) (U ∩ FV (ψ) , ∅)

= skU (ψ0[β/x]) ⊙ skU (ψ1[β/x]) (explained above)

= skU (ψ0[β/x] ⊙ψ1[β/x]) (U ∩ FV (ψ [β/x]) , ∅)

= skU
(
(ψ0 ⊙ψ1)[β/x]) (definition substitution)

Finally, in the case thatψ = ηz.φ, we recall thatU∩FV (ηz.φ) , ∅,

and calculate

skU (ηz.φ) = ηz.skU∪{z }(φ)

= ηz.skU∪{z }(φ[β/x]) (IH)

= skU (ηz.φ[β/x]) (*)

Observe that the induction hypothesis is applicable, since by as-

sumption β is free for x in ψ , which implies that z < FV (β).
The final equality (*) uses the fact that ∅ , U ∩ FV (ηz.φ) ⊆

U ∩ FV (ηz.φ[β/x]), which holds since by assumption x < U . □

Proposition 4.7. Let φ be a formula, let U be a set of variables,
and let x and z be variables such that x ∈ U , z < U ∪ FV (φ) and z is
free for x in φ. Then

skU (φ)[z/x] = skU [z/x](φ[z/x])

whereU [z/x] := (U \ {x}) ∪ {z}.

Proof. In the case that x < FV (φ) we also have x < FV (skU (φ))
and thus (skU (φ))[z/x] = skU (φ). In addition,

skU [z/x](φ[z/x]) = skU [z/x](φ) = skU (φ)

where the last equality follows from Proposition 4.5 as z and x do

not occur freely in φ.
If, on the other hand, we have that x ∈ FV (φ) we prove the

claim by induction on φ. In the base case of this induction, where

φ = x , the claim is an easy calculation: (skU (x)[z/x] = z =
skU [z/x](x[z/x]).

If φ = φ1 ⊙ φ2 with ⊙ ∈ {∨,∧}, we have

skU (φ1 ⊙ φ2)[z/x] = skU (φ1)[z/x] ⊙ skU (φ2)[z/x]

(∗)
= skU [z/x](φ1[z/x]) ⊙ skU [z/x](φ2[z/x])

= skU [z/x]((φ1 ⊙ φ2)[z/x])

where (*) is either by the induction hypothesis, or by the previous

case if x does not occur in φ.
The case where φ = ♥ψ for ♥ ∈ {✷,✸} is similar to the previous

one.

Finally, we consider the case where φ = ηy.ψ . By our assump-

tions we have y , x since x ∈ FV (φ) and — as z is free for x in φ —

we also have z , y. We calculate:

skU (ηy.ψ)[z/x] =
(
ηy.skU∪{y }(ψ)

)
[z/x] (Def. sk)

= ηy.
(
skU∪{y }(ψ)[z/x]

)
(IH)

= ηy.
(
sk(U∪{y })[z/x](ψ [z/x])

)
(Def. sk)

= skU [z/x](ηy.ψ [z/x]).

□

Proposition 4.8. Let φ0 and φ1 be formulas such that φ0 =α φ1
and letU be a set of variables. Then skU (φ0) =α skU (φ1).

Proof. Assume that φ0 =α φ1, then clearly FV (φ0) = FV (φ1)
and so we find U ∩ FV (φ0) = ∅ iff U ∩ FV (φ1) = ∅. This means

that in case U ∩ FV (φ0) = ∅ we have skU (φ0) = skU (φ1) = s .
In case thatU ∩ FV (φ0) , ∅ we prove the claim by induction on

the length of φ0. We only treat the fixpoint case, that is, where φ0

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

is of the form φ0 = ηx0.ψ0. As φ0 =α φ1 the formula φ1 must be of

the form φ1 = ηx1.ψ1.
Fix a fresh variable z, then we have (*)ψi = ψi [z/xi][xi/z]. We

will now bring each skU (φi), for i = 0, 1, into a certain shape. Note

that by Proposition 4.5 we may without loss of generality assume

that xi < U . Then we may calculate

skU (φi) = ηxi .skU∪{xi }(ψi) (Def. of sk)

= ηxi .skU∪{xi }(ψi [z/xi][xi/z]) (*)

= ηxi .
(
skU∪{z }(ψi [z/xi])

)
[xi/z] (Prop. 4.7)

=α ηz.skU∪{z }(ψi [z/xi]) (Prop. 3.6(8))

Now observe that by Proposition 3.6(3) it follows fromηx0.ψ0 =α
ηx1.ψ1 thatψ0[z/x1] =α ψ1[z/x1]. Hence by the induction hypoth-

esis we obtain that skU∪{z }(ψ0[z/x0]) =α skU∪{z }(ψ1[z/x1]), so
that by Proposition 3.6(11), we find that

ηz.skU∪{z }(ψ0[z/x0]) =α ηz.skU∪{z }(ψ1[z/x1]).

But then from the above calculation of skU (φi) we may conclude

that skU (φ0) =α skU (φ1), as required. □

Skeletal Formulas & Their Closure
The key property of skeletal formulas is that they have lean closure

sets. To prove this, we first show that skeletal sets of formulas are

lean themselves.

Proposition 4.9. Let Φ be a skeletal set of formulas. Then Φ is
lean.

Proof. Suppose Φ is skeletal. We will show that in fact

φ0 =α φ1 implies φ0 = φ1. (7)

holds for every pair of formulas φ0,φ1 ∈
⋃
φ ∈Φ Sfor(φ). This proves

the Proposition, since obviously Φ ⊆
⋃
φ ∈Φ Sfor(φ). Our proof of

(7) proceeds by induction on the structure of φ0.
If φ0 is a literal, the claim is trivial. In case φ0 is a conjunction,

disjunction or a modal formula of the form ♥ψ1, the claim easily

follows by induction.

Now suppose that φ0 = η0x0.ψ0, Then by Proposition 3.6(2,

φ1 must be of the form φ1 = η1x1.ψ1, where η0 = η1 — so

that we may write η in the sequel. By Proposition 3.6(3 we have

ψ0[z/x0] =α ψ1[z/x1] for a fresh variable z. It follows from Propo-

sition 4.8 that skz (ψ0[z/x0]) =α skz (ψ1[z/x1]). By Proposition 4.7

we have skz (ψi [z/xi]) = skxi (ψi)[z/xi] for i = 0, 1. Therefore, as z
was fresh, we obtain ηx0.skx0 (ψ0) =α ηx1.skx1 (ψ1) by definition of

=α . As Φ is skeletal this implies x0 = x1 = x and thus by Proposi-

tion 3.6(4) thatψ0 =α ψ1. The induction hypothesis yieldsψ0 = ψ1
which obviously implies φ0 = φ1 as required. □

The next proposition states that the closure of a skeletal set is

skeletal.

Proposition 4.10. Let Ψ be a skeletal set of tidy formulas. Then
Clos(Ψ) is skeletal as well.

Proof. Clearly it suffices to show that, if Φ′
is obtained from

a skeletal set Φ of tidy formulas by applying one of the rules for

deriving the closure, then Φ′
is also skeletal.

The only case where this is non-trivial is when Φ′ = Φ ∪

{φ[ηxφ/x]} for some formula ηx .φ ∈ Φ. Consider a pair of for-

mulas φ0 = η0x0.ψ0 and φ1 = η1x1.ψ1 that are subformulas of

some formulas in Φ′
. In order to show that φ0 and φ1 satisfy (5), we

distinguish the following cases.

Case 1: Both φ0 and φ1 are subformulas of formulas in Φ. Then
(5) follows from the fact that Φ is skeletal.

Case 2: Neither φ0 nor φ1 is a subformula of a formula in Φ. In
this case, both φ0 and φ1 are subformulas of φ[ηxφ/x], and since

they cannot be subformulas of ηxφ/x ∈ Φ, this means that φ0 and
φ1 are of the formφ0 = η0x0.ψ

′
0
[ηx .φ/x] andφ1 = η1x1.ψ

′
1
[ηx .φ/x],

respectively, for subformulas η0x0.ψ
′
0
and η1x1.ψ

′
1
of φ. Then we

have skxi (ψ
′
i [ηx .φ/x]) = skxi (ψ

′
i) for i ∈ {0, 1} by Proposition 4.6.

Thus we find

x0 = x1

iff η0x0.skx0 (ψ
′
0
) =α η1x1.skx1 (ψ

′
1
)

iff η0x0.skx0 (ψ
′
0
[ηx .φ/x]) =α η1x1.skx1 (ψ

′
1
[ηx .φ/x]),

where the first equivalence is a consequence of the fact that prop-

erty (5) holds for Φ by assumption.

Case 3: Exactly one ofφ0 andφ1 is a subformula of a formula in Φ.
Say, without loss of generality, that φ0 is a subformula of a formula

inΦ, while (reasoning as in the previous case)φ1 = η1x1.ψ
′[ηx .φ/x]

with η1x1.ψ
′ P φ. As Φ is skeletal we have

x0 = x1 iff η0x0.skx0 (ψ0) = η1x1.skx1 (ψ
′).

By Proposition 4.6 we have skx1 (ψ
′) = skx1 (ψ

′[ηx .φ/x]) =
skx1 (ψ1) and thus we obtain

x0 = x1 iff η0x0.skx0 (ψ0) = η1x1.skx1 (ψ1)

as required. □

As an immediate consequence of the Propositions 4.10 and 4.9,

we establish the key property of skeletal formulas.

Proposition 4.11. Let φ be a tidy skeletal formula. Then the set
Clos(φ) is lean.

The skeletal renaming
We are now ready to define the renaming map ·̂ . It will be conve-

nient to introduce a set Z of fresh variables from which we will

draw the bound variables of the formulas ξ̂ .

Definition 4.12. Let X and Z be two (disjoint) sets of variables.
We let µMLX denote the set of µ-calculus formulas taking their vari-
ables (free or bound) from X , and we let µMLX ,Z denote the set of
formulas ξ in µMLX∪Z such that BV (ξ) ⊆ X .

In the definition below we assume that the set Z contains a dis-

tinct variable zE for every α-equivalence class E of µMLX -formulas.

Definition 4.13. We define the renamed version φ̂ ∈ µMLZ ,X of
a formula φ ∈ µMLX as follows:

φ̂ := φ (φ atomic)
♥̂φ := ♥φ̂ (♥ ∈ {✸,✷})�φ0 ⊙ φ1 := φ̂0 ⊙ φ̂1 (⊙ ∈ {∨,∧})

η̂x .φ := ηzE .φ̂[zE/x] (η ∈ {µ,ν })

where, in the last clause, E = Lηx .skx (φ)M.

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

Remark 4.14. The renamed version of φ ∈ µMLX will only contain
variables from the set Z that are bound. These bound variables can
be replaced by fresh variables from X in order to obtain a renamed
version in µMLX .

Example 4.15. 1) Compare the formulas ξ0 and ξ1, where

ξi := µxi .νyi .✸xi ∨ (p ∧✷yi),

for i ∈ {0, 1}. We will abbreviateψi := ✸xi ∨ (p ∧✷yi). Clearly we
have ξ0 =α ξ1, and so we want to obtain ξ̂0 = ξ̂1.

To see that this will indeed be the case, observe that

skxi (νyi .ψi) = νyi .✸xi ∨ (s ∧✷yi)
skyi (ψi) = s ∨ (s ∧✷yi)

Defining Ei := Lµxi .νyi .✸xi∨(s∧✷yi)M and Fi := Lνyi .s∨(s∧✷yi)M,
we observe that these definitions in fact do not depend on i , so that
we may simply denote these α -cells as E and F , respectively. We then
compute, for each i ∈ {0, 1}:

ξ̂i = µzE .�νyi .ψi [zE/xi]
= µzE .

(
νzF .ψ̂i [zF /yi]

)
[zE/xi]

= µzE .
(
νzF .ψi [zF /yi]

)
[zE/xi]

= µzE .
(
νzF .✸xi ∨ (p ∧✷zF)

)
[zE/xi]

= µzE .νzF .✸zE ∨ (p ∧✷zF)

and find that ξ̂0 = ξ̂1 as desired.
2) Now consider the formula

φ = νy.(✸(µx .(νz.✸(x ∧ z)) ∧ y)),

which is α-equivalent to the unfolding (νy.✸(x ∧ y))[ψ/x] of ψ =
µx .νy.✸(x ∧ y). Furthermore let E1 = Lνy.✸(s ∧ y)M and E2 =
Lµx .νy.✸(x ∧ y)M. Then

φ̂ = νzE1 .(✸(µzE2 .(νzE1 .✸(zE2 ∧ zE1)) ∧ zE1)),

where we point out the re-use of the variable zE1 . Note that φ is an
example where Clos(φ̂) is properly smaller than Clos(φ).

Our first goal is to show that the map ·̂ is indeed a renaming,

i.e., that the renamed version φ̂ of a formula φ is α-equivalent to φ.
To this aim we need the following rather technical lemma.

Proposition 4.16. Let x and y be variables, let U be a set of
variables with y ∈ U , and let φ and ηx .ψ be formulas such that
y ∈ FV (ηx .ψ) and ηx .ψ P φ, while there is no formula of the form
λy.χ such that ηx .ψ P λy.χ P φ. Then skx (ψ) ̸=α skU (φ).

Proof. By Proposition 3.5 it suffices to show that

|skx (ψ)|
ℓ < |skU (φ)|ℓ ,

and we will prove this by induction of the length of the shortest

direct-subformula chain ηx .ψ ◁0 · · · ◁0 φ witnessing that ηx .ψ is a

subformula of φ. Further details can be found in [16]. □

Proposition 4.17. Let ξ be a µ-calculus formula. Then ξ̂ is tidy
and ξ =α ξ̂ .

Proof. The proof that ξ̂ is tidy is easy and therefore left to the

reader. We prove the claim that ξ =α ξ̂ by a formula induction

on ξ . If ξ is atomic, then ξ and ξ̂ are identical, and so, certainly

α-equivalent.
For the induction step, distinguish cases. If ξ is of the form ξ =

ξ0 ⊙ ξ1 for ⊙ ∈ {∧,∨}, then the claim is an immediate consequence

of the induction hypothesis and the fact that
�ξ0 ⊙ ξ1 = ξ̂0 ⊙ ξ̂1.

The case where ξ is of the form ξ = ♥ξ ′ for ♥ ∈ {✸,✷} is equally

simple.

The interesting case is where ξ is of the form ξ = λy.φ. Then

ξ̂ = λzE .φ̂[zE/y], with E = Lλy.sky (φ)M. We first claim that

zE is free for y in φ̂. (8)

To see this, suppose for contradiction that y occurs freely in the

scope of a binder ηzE in ξ̂ . Then there must be a subformula ηx .ψ

of φ with
�ηx .ψ = ηzE .ψ̂ [zE/x] such that y ∈ FV (ψ). By definition

of ·̂ we have E = Lηx .skx (ψ)M and so ηx .skx (ψ) =α ηy.sky (φ) by
our assumption that E = Lηy.sky (φ)M. It follows by Proposition 4.16

that there must be a formula λy.χ such that ηx .ψ P λy.χ P φ;
without loss of generality we may take λy.χ to be the smallest

such formula (in terms of the subformula ordering). But from this

we may infer that actually, when computing the formula ξ̂ , the
variable y ∈ FV (ηx .ψ) will be replaced by the variable zE′ , where

E ′ = Lλy.sky (χ)M. In other words, the alleged free occurrence in ξ̂
of the variable y, within the scope of a binder ηzE , is not actually
possible. Clearly this implies (8).

From this we reason as follows. By the induction hypothesis we

obtain that φ̂ =α φ. Now, because of (8), we may apply Proposi-

tion 3.6(8 and obtain ξ̂ = λzE .φ̂[zE/y] =α λy.φ = ξ as required. □

We now show that the renaming operation always produces

skeletal formulas.

Proposition 4.18. Let φ be a µ-calculus formula. Then φ̂ is skele-
tal.

Proof. As a preparatory step, consider an arbitrary subformula

of φ̂ of the form ηzE .ψ . By definition of ·̂ there is a subformula ηx .ξ

of φ such that E = Lηx .skx (ξ)M andψ = ξ̂ [zE/x][z1/x1] . . . [zn/xn].
Then we have

ηzE .skzE (ψ)

= ηzE .skzE (ξ̂ [zE/x][z1/x1] . . . [zn/xn])

= ηzE .skzE (ξ̂ [zE/x]) (Prop. 4.6)

= ηzE .skx (ξ̂)[zE/x] (Prop. 4.7)

=α ηx .skx (ξ̂)
=α ηx .skx (ξ) (Prop. 4.17)

where the last statement uses the instantiation of Proposition 4.8

stating that φ0 =α φ1 implies skx (φ0) =α skx (φ1).
We now turn to the argument as to why φ̂ is skeletal. Suppose

that we have two subformulas η0zE0 .ψ0 and η1zE1 .ψ1 of φ̂. We need

to prove that

zE0 = zE1 iff η0zE0 .skzE0 (ψ0) =α η1zE1 .skzE1 (ψ1). (9)

By the earlier observation there must be formulas ηixi .ξi P φ
such that, with Ei = Lηixi .skxi (ξi)M, we have ηizEi .skzEi (ψi) =α
ηixi .skxi (ξi).

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

In order to prove (9), first assume that zE0 = zE1 . Then E0 = E1,
so that η0x0.skx0 (ξ0) =α η1x1.skx1 (ξ1). It follows that η0 = η1 and
so we find

η0zE0 .skzE0 (ψ0) =α η0x0.skx0 (ξ0)

=α η1x1.skx1 (ξ1)

=α η1zE1 .skzE1 (ψ1)

as required.

Conversely, if ηzE1 .skzE1 (ψ1) =α ηzE2 .skzE2 (ψ2), then we have

ηx1.skx1 (ξ1) =α ηx2.skx2 (ξ2) which implies E1 = E2 and thus

zE1 = zE2 . □

What is left to show is condition (3).

Proposition 4.19. Let ξ0 and ξ1 be formulas such that ξ0 =α ξ1.
Then ξ̂0 = ξ̂1.

Proof. We can use a trick here. Let ξ0 and ξ1 be formulas such

that ξ0 =α ξ1, and consider the formula ξ := ξ0 ∧ ξ1. Since we

have ξ̂ = ξ̂0 ∧ ξ̂1, both formulas ξ̂0 and ξ̂1 belong to the closure of

ξ̂ . But ξ̂ is skeletal by Proposition 4.18, so Clos(ξ̂) must be lean by

Proposition 4.11. In particular, this means that ξ̂0 = ξ̂1, as required.
□

Summarizing properties of the skeletal
renaming
We now briefly check that the map ·̂ : µMLX → µMLZ ,X has all

the properties that are required for the proof of Theorem 1.1. First

of all, we proved in Proposition 4.17 that ·̂ is indeed a renaming,

which takes care of (2). The same Proposition also states that ξ̂ is
always tidy (even if ξ itself is not). We saw in Proposition 4.19 that

·̂ maps α-equivalent formulas to the same representative element

of their =α -cell, which means that ·̂ meets condition (3). Finally, as

an immediate consequence of Proposition 4.18 and Proposition 4.11

we see that it also satisfies (4): for every µ-calculus formula ξ , the

closure of its renaming ξ̂ is lean indeed.

An α-invariant size measure
Recall that a size measure for µ-calculus formulas is an attribute

s : µML → ω that is induced by some representation ξ 7→ Gξ of

µML-formulas as parity formulas in the sense that s(ξ) = |Gξ |. In
the previous section we saw that although closure size is a suitable

size measure, it is not α-invariant. As a further contribution of this

paper, we can now provide the definitions of a size measure that is

invariant under alphabetic equivalence, and defined for arbitrary

(i.e., not necessarily tidy) formulas.

Definition 4.20. We define the size of a µ-calculus formula ξ by
putting

|ξ | := |Clos(ξ)/=α |. (10)

Theorem 4.21. The map |·| provides an α -invariant size measures
for µ-calculus formulas.

Proof. As in the proof of Theorem 1.1 (given in the introduc-

tion), we define Pξ := Gξ̂ for any µ-calculus formula ξ , where

ξ 7→ Gξ is the construction referred to in Fact 2.3. Since Pξ is

equivalent to ξ , in order to prove the Proposition it suffices to show

that

|ξ | = |Pξ |.

But this is rather straightforward:

|ξ | = |Clos(ξ)/=α | (def. |·|)

= |Clos(ξ̂)/=α | (Prop’s 4.17 & 3.8)

= |Clos(ξ̂)| (Prop’s 4.18 & 4.11)

= |Pξ | (Fact 2.3)

Finally, the α-invariance of |·| as a size measures is immediate by

its definition and Proposition 3.8. □

The following observation shows that the size measure (10) in-

teracts nicely with the notion of substitution (as defined in the

previous section for arbitrary formulas). Its proof can be found in

the technical report [16].

Proposition 4.22. Let ξ andψ be µ-calculus formulas. Then

|ξ [ψ/x]| ≤ |ξ | + |ψ |. (11)

5 CONCLUSION
5.1 Main conclusion
The algorithms that are used to solve computational problems re-

lated to the modal µ-calculus generally do not take the formulas

themselves as input, but operate on some kind of graph representa-

tion of standard formulas. In this paper we studied the impact of

alphabetic equivalence on a uniform representation of this kind:

parity formulas. Our main result, Theorem 1.1, states that with a

µ-calculus formula ξ , we may associate a parity formula of size

at most |Clos(ξ)/=α | and index at most ad(ξ). As a consequence,
complexity results that are rooted in algorithms operating on parity

formulas (or on alternating tree automata or hierarchical equa-

tion systems) can be formulated without ambiguity for standard

µ-calculus formulas, where the size measure of a formula ξ ∈ µML
is taken to be the number of formulas in the closure of ξ , up to
alphabetic equivalence.

5.2 Discussion: other ways to represent α-cells
In the introduction to this paper we already mentioned the exis-

tence of alternative proofs of our main result, Theorem 1.1. As in

the approach followed in this paper, the idea underlying these al-

ternative proofs is to construct, given a fixed but arbitrary formula

ξ , a parity formula Pξ of which the vertices somehow represent

the =α -cells of the set Clos(ξ).
To motivate alternative approaches, it can be argued that the

representation of =α -cells via the renaming map ·̂ is somewhat

arbitrary. One might prefer a more canonical representation, for

instance one that uses so-called de Bruijn indices. These originate
from the theory of the λ-calculus [7] and provide a tool for writing

down expressions (in a language that features binding) without

naming the bound variables.

Concretely, de Bruijn indices are natural numbers that represent

bound variables. More specifically, an occurrence of an index n in

an expression represents the variable that is bound at the unique

place in the construction tree that is reached from the occurrence by

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

moving up, in the syntax tree of the expression, until then-th binder
is reached. As an example, the µ-calculus formula µx (✸x∧νy✷((x∧
y) ∨νx (x ∧p))) would be written as µ (✸1∧ν ✷((2∧ 1) ∨ν (1∧p)))
using de Bruijn indices. Here, the key feature of interest of this tool

is that

ξ0 =α ξ1 iff ξ
dB
0
= ξ dB

1

where ξ dB denotes the formula ξ ∈ µML, converted into de Bruijn

format.

Based on this observation one could take, for the carrier of the

parity formula Pξ , the set [Clos(ξ)]dB := {ψ dB | ψ ∈ Clos(ξ)},
which has the same cardinality as the set Clos(ξ)/=α . Alternatively,
one might set out to construct the parity formula Pξ inside the de
Bruijn version of the modal µ-calculus, i.e., start with defining the

closure set ClosdB(ξ dB) of the de Bruijn conversion ξ dB of ξ , and
then redo the construction of [17] on the basis of this set. This would

certainly be interesting but also a rather formidable undertaking

since it would involve the development of a “de Bruijn version” of

the entire syntactic framework of the modal µ-calculus. We leave

this as an interesting direction for further research.

Next to using de Bruijn indices, there are other ways to associate

the vertices of a parity formula Pξ with the =α -cells of the clo-

sure of ξ . For instance, one might work directly with the =α -cells

themselves, or equivalently, construct Pξ on the basis of identifying

α-equivalent formulas throughout. This approach would also be

interesting and certainly closer to the principle of α-invariance as
formulated in the introduction. On the other hand, it also might

involve cumbersome technicalities since the construction would

undoubtedly involve working with concrete formulas (as opposed

to their equivalence classes). Furthermore, note that in some sense,

our approach here takes care of such technicalities by means of the

renaming function ·̂ .

Before finishing this discussion of alternative constructions sup-

porting the proof of Theorem 1.1, however, we want to stress that

the importance of the result lies in the existence of a parity formula

Pξ satisfying the conditions listed in its statement. The question as

to how exactly the =α -cells are represented in Pξ is of secondary

importance. After all, the names of the vertices of Pξ are nothing

more than mere place holders, so that a priori there is no added

benefit if these place holders are variable-free formulas. In particu-

lar, one should see the parity formula Pξ itself as a variable-free

representation of the µ-calculus formula ξ .

5.3 Suggestions for further research
Here are two other directions for further research. First, we fo-

cussed on the closure graph of a µ-calculus formula rather than

its subformula dag, since (by the results of Bruse, Friedmann &

Lange [4]) the closure graph can be exponentially more succinct.

Nevertheless, one may have reasons to work with the subformula

dag (corresponding to measuring a formula by its subformula-size),

and still be interested in a (relatively) succinct, α-invariant way
of representing formulas. In fact, similar to the skeletal renaming

·̂ , one may define a renaming ·̃ of µ-calculus formulas with the

properties that ξ0 =α ξ1 iff ξ̃0 = ξ̃1, and alphabetic equivalence

is the identity relation on the collection of subformulas of ξ̃ (i.e.,

Sfor(ξ̃) is lean). We hope to get back to this in future work.

Second, parity formulas, combining features of formulas and au-

tomata, are interesting objects in their own right. A first step in the

development of their theory would be the definition of appropriate

notions of morphisms and structural equivalence relations (“bisim-

ulations”) between parity formulas. It would then be of particular

interest to study the notion of alphabetic equivalence in this light,

as well as the skeletal renaming introduced in this paper.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful

comments and suggestions. The research of the first author was

funded by a Leverhulme Trust Research Project Grant, project nr.

RPG-2020-232. The research of the second author has been made

possible by a grant from the Dutch Research Council NWO, project

nr. 617.001.857.

REFERENCES
[1] B. Afshari and G. Leigh. 2017. Cut-free Completeness for Modal Mu-Calculus.

In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic In Computer
Science (LICS’17). IEEE Computer Society, 1–12.

[2] A. Arnold and D. Niwiński. 2001. Rudiments of µ-calculus. Studies in Logic

and the Foundations of Mathematics, Vol. 146. North-Holland Publishing Co.,

Amsterdam.

[3] J. Bradfield and C. Stirling. 2006. Modal µ-calculi. In Handbook of Modal Logic,
J. van Benthem, P. Blackburn, and F. Wolter (Eds.). Elsevier, 721–756.

[4] F. Bruse, O. Friedmann, and M. Lange. 2015. On guarded transformation in the

modal µ-calculus. Logic Journal of the IGPL 23, 2 (2015), 194–216.

[5] C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. 2017. Deciding parity

games in quasipolynomial time. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, (STOC 2017), H. Hatami, P. McKenzie, and

V. King (Eds.). 252–263.

[6] G. D’Agostino and M. Hollenberg. 2000. Logical questions concerning the µ-
calculus. Journal of Symbolic Logic 65 (2000), 310–332.

[7] N. G. de Bruijn. 1972. Lambda Calculus notation with nameless dummies: a

tool for automatic formula manipulation. Indagationes Mathematicae 34 (1972),
381–392.

[8] S. Demri, V. Goranko, and M. Lange. 2016. Temporal Logics in Computer Science:
Finite-State Systems. Cambridge University Press.

[9] E.A. Emerson and C.S. Jutla. 1991. Tree automata, mu-calculus and determinacy

(extended abstract). In Proceedings of the 32nd Symposium on the Foundations of
Computer Science. IEEE Computer Society Press, 368–377.

[10] G. Fontaine and Y. Venema. 2018. Some model theory for the modal mu-calculus:

syntactic characterizations of semantic properties. Logical Methods in Computer
Science 14, 1 (2018).

[11] E. Grädel, W. Thomas, and T. Wilke (Eds.). 2002. Automata, Logic, and Infinite
Games. LNCS, Vol. 2500. Springer.

[12] D. Janin and I. Walukiewicz. 1995. Automata for the modal µ-calculus and related
results. In Proceedings of the Twentieth International Symposium on Mathematical
Foundations of Computer Science, MFCS’95 (LNCS, Vol. 969). Springer, 552–562.

[13] D. Janin and I. Walukiewicz. 1996. On the Expressive Completeness of the

Propositional µ-Calculus w.r.t. Monadic Second-Order Logic. In Proceedings of
the Seventh International Conference on Concurrency Theory, CONCUR ’96 (LNCS,
Vol. 1119). 263–277.

[14] D. Kozen. 1983. Results on the propositional µ-calculus. Theoretical Computer
Science 27 (1983), 333–354.

[15] D. Kozen and R. Parikh. 1983. A decision procedure for the propositional µ-
calculus. In Proceedings of the Workshop on Logics of Programs 1983 (LNCS).
313–325.

[16] C. Kupke, J. Marti, and Y. Venema. 2020. Size matters in the modal µ-calculus.
arXiv:2010.14430 [cs.LO]

[17] C. Kupke, J. Marti, and Y. Venema. 2022. Succinct graph representations of

µ-calculus formulas. In Proceedings of the 30th EACSL Annual Conference on
Computer Science Logic, CSL 2022 (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

[18] A. Mader. 1995. Modal µ-Calculus, Model Checking and Gauß Elimination.

In Proceedings of the First International Workshop onTools and Algorithms for
Construction and Analysis of Systems, (TACAS ’95) (LNCS, Vol. 1019), E. Brinksma,

R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen (Eds.). Springer, 72–88.

[19] D. Niwiński. 1986. On fixed point clones. In Proceedings of the 13th International
Colloquium on Automata, Languages and Programming (ICALP 13) (LNCS, Vol. 226),
L. Kott (Ed.). 464–473.

https://arxiv.org/abs/2010.14430

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

[20] H. Seidl and A. Neumann. 1999. On guarding nested fixpoints. In Proceedings of
the 8th EACSL Annual Conference on Computer Science Logic, CSL ’99. 484–498.

[21] C. Stirling. 2001. Modal and Temporal Properties of Processes. Springer-Verlag.

[22] I. Walukiewicz. 2000. Completeness of Kozen’s axiomatisation of the proposi-

tional µ-calculus. Information and Computation 157 (2000), 142–182.

[23] T. Wilke. 2001. Alternating tree automata, parity games, and modal µ-calculus.
Bulletin of the Belgian Mathematical Society 8 (2001), 359–391.

	Abstract
	1 Introduction
	1.1 The modal -calculus
	1.2 Graph representations of -calculus formulas
	1.3 The size of formula representations
	1.4 Variable binding and alphabetic equivalence
	1.5 A succinct -invariant representation

	2 Preliminaries
	2.1 Syntax of the -calculus
	2.2 Compositional semantics of the -calculus
	2.3 Parity formulas

	3 Alphabetic equivalence
	4 -Invariance via skeletal renaming
	5 Conclusion
	5.1 Main conclusion
	5.2 Discussion: other ways to represent -cells
	5.3 Suggestions for further research

	Acknowledgments
	References

