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A B S T R A C T   

As part of any Prognostics and Health Management (PHM) system for the shipping industry, the determination of 
the current health of marine systems is fundamental. As such, diagnostic analytics is performed; a process that is 
typically constituted by fault detection, fault isolation, and fault identification. Although some efforts have been 
made to distinguish the faults and malfunctions (fault detection) that can occur in marine systems, the imple
mentation of fault identification to provide a description of any considered fault type and its nature is still an 
unexplored area due to the lack of fault data. To overcome this, a methodology for the identification of anomalies 
in marine systems is presented in this paper. The proposed approach aims to analyse the implementation of time 
series imaging through the application of the first-order Markov chain in tandem with an analysis of both 
ResNet50V2 and Convolutional Neural Networks (CNNs) as part of the image classification task. To highlight the 
performance of this methodology, anomalies have been simulated considering the power parameter of a diesel 
generator. Results demonstrated the potential of time series imaging and image classification approaches, as the 
Markov-CNN achieved an accuracy of 95% when performing the fault classification task.   

1. Introduction 

There is an undeniable need to continue investing in technology 
within the maritime sector, as it has demonstrated its potential to 
enhance the safety conditions. The increasing level of information 
gathering and the enhancement of communication technologies on ships 
through the utilisation of sensors and Artificial Intelligence (AI) can 
enable better coordination between ships by enhancing the decision- 
making processes. An aspect that is fundamental in a sector whereby 
75%–96% of accidents are attributed to human action owing to fatigue 
or bad judgement (Allianz Global Corporate and Specialty, 2012). 
Accordingly, an increase in investment is expected centred on four main 
groups that define the smart shipping industry: 1) smart port, 2) 
autonomous vessels, 3) on-board technologies, and 4) professional ser
vices technologies (London Economics et al., 2021). 

Smart ports have already been an area of extensive research, one 
which relies on automation, big data, AI software systems, digital twins, 
and alternative energy. The port of Valencia, for example, demonstrates 
success in relation to digital twins. A method employed to dynamically 
track the port’s lightning system (Wang et al., 2021b). By contrast, while 
significant advancements have since been perceived, autonomous ships 

are not yet as well established as smart ports technology due to chal
lenges in technology development as well as both the administrative and 
safety requirements that are required for testing. However, it is expected 
that IMO level 3/4 autonomous ships will be completed in the next 5 or 
more years. Meanwhile, numerous efforts by academia have been per
formed in the analysis of such technologies. For instance, Bolbot et al. 
(2021) introduced a novel hybrid, semi-structured process for identi
fying and ranking hazardous scenarios, which was applied to assess the 
safety of an autonomous inland waterways ship at a preliminary design 
phase. 

Another critical area for enabling smart shipping pertains to the on- 
board technologies, those which assist in safe navigation (Uyanik et al., 
2021), ship performance (Bui and Perera, 2021; Farag and Ölçer, 2020), 
maintenance (Cheliotis et al., 2022; Han et al., 2021), connectivity 
(Bolbot et al., 2020), and alternative propulsion (Zhang et al., 2021) 
through the implementation of AI and vessel optimisation systems. 
Although a certain effort has been made to advance towards these 
on-board technologies, there is no real trend in the direction of tech
nology development. All these preceding advancements towards the 
establishment of smart shipping as a technologically advanced industry 
also enable the development of professional services, which can 
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incorporate novel technologies requiring well trained and qualified 
personnel. 

Of all possible smart technologies being analysed in this respect, 
special attention is given to smart maintenance in this study, as further 
research in ship operations related to repairing and maintenance is 
needed. Although potential applications of AI within the shipping sector 
have been identified as performing the most efficient and economical 
maintenance practices (Department for Transport, 2019), and also pre
sent a positive impact on both the safety and security of the personnel, 
there is not yet a clear technological solution for such a matter. How
ever, certain efforts have been perceived with regards to the develop
ment of Prognostics and Health Management (PHM) for shipping 
systems. 

Although some efforts have been made to detect the faults and 
malfunctions (fault detection) that can occur in marine systems, the 
implementation of fault identification to provide a description of any 
considered fault type and its nature is still an unexplored area due to the 
lack of fault data. Most of the identified methodologies that introduced 
novel approaches for fault classification of marine systems presented an 
analysis of a version of a Support Vector Machine (SVM) model. With 
regards to Deep Learning (DL) methodologies, only two studies have 
been identified, which implemented either deep neural network or 
recurrent networks. However, analogous industries have widely ana
lysed the utilisation of DL methodologies for fault classification (Li et al., 
2019; Zhao et al., 2019b). Analogous industries have also explored the 
introduction of time series imaging in the fault classification process, an 
element that has presented promising results in identifying fault pat
terns that could not be perceived when analysing the original time series 
data. Accordingly, to overcome such a fact, a methodology for the 
identification of faults of marine systems is presented. The proposed 
approach aims to analyse the implementation of time series imaging 
through the application of the first-order Markov chain in tandem with 
an analysis of both ResNet50V2 and CNN architectures for image 
classification. 

The following paragraphs are structured as follows. Section 2 pre
sents a literature review with regards to the current research performed 
in both fault classification within the maritime industry and the appli
cation of time series imaging in analogous sectors. Section 3 describes 
the proposed methodology. Section 4 reflects on the results obtained 
after implementing the proposed methodology through a case study and 
a comparative analysis. Lastly, in Section 5 the conclusions and future 
work are outlined. 

2. Literature review 

Wang et al. (2020) presented a fault diagnosis framework constituted 
by an unsupervised (k-means algorithm) and supervised phase (Back 
Propagation (BP) neural network). To validate the performance of the 
framework, a case study on a marine diesel engine was performed, as it 
is considered a critical system. The established fault diagnosis scheme 
demonstrated high accuracy under both working and high-pressure oil 
pump wear exhaust valve leakage conditions, although the diagnostics 
of both the nozzle carbon deposition and piston ring damage conditions 
required an enhancement. 

Cai et al. (2017) introduced another fault diagnosis framework for 
marine diesel engines. The first step was the structuring of the diesel 
engine system into subsystems to reduce the complexity of the analysis. 
Accordingly, the 1) fuel, 2) lubrication, 3) intake and exhaust, and 4) 
cooling systems were identified. Then, a classification model based on 
SVM was established to perform operating state monitoring and fault 
diagnosis. To finalise, the association rule mining algorithm was 
considered to analyse the relationships among the fault characteristics at 
distinct levels. A historical fault database was implemented for such a 
purpose. Hou et al. (2020) also proposed a fault diagnosis framework for 
a marine diesel engine. Specifically, the fuel oil supply system of the 
engine was considered. Analogous to Cai et al., (2017), the classification 

performance of the SVM model was analysed. 
Senemmar and Zhang (2021) developed a new deep learning-based 

framework for fault detection, classification, and location identifica
tion simultaneously in shipboard power systems. A total of three distinct 
methodologies were introduced: 1) deep neural network, 2) gated 
recurrent unit, and 3) LSTM. To implement the case study, fault data 
from an 8-bus shipboard power system were simulated. A 99% accuracy 
was obtained, determining that the GRU-based model as the most 
effective DL model. The DNN model was the one that presented less 
accurate results. 

Tan et al. (2020) investigated the performance of the following 
one-class classifiers: One Class Support Vector Machine (OCSVM), 
Support Vector Data Description (SVDD), Global k-Nearest Neighbors 
(GKNN), Local Outlier Factor (LOF), Isolation Forest (IF), and 
Angle-Based Outlier Detection (ABOD). To that end, a real-data vali
dated numerical simulator developed for a Frigate characterised by a 
combined diesel-electric and gas propulsion plant was utilised for a case 
study implementation. Based on the outlined results, the authors sorted 
the performance of the six analysed algorithms as follows: ABOD >
OCSVM ≈ SVDD > GKNN > IF ≈ LOF. Tan et al. (2021) presented an 
analogous comparative study, although the topic of study in this case 
was multi-label classification for simultaneous fault diagnosis. The 
comparative study consisted of analysing a total of five models: 1) Bi
nary Relevance (BR), 2) Classifier Chains (CC), 3) multi-label k-nearest 
neighbour (MLKNN), 4) Binary Relevance k-nearest neighbour 
(BRKNN), and 5) multi-label twin support vector machine (MLTSVM). 
Analogous to Tan et al. (2020), a dataset generated from a real data 
validates simulator of a Frigate was considered for the performance of 
the case study. Based on the outlined results, it was determined that BR 
outperformed the remaining analysed methods. 

Of all the methodologies implemented, four of the six identified 
studies presented an analysis of a version of SVM. The remaining two 
studies referred to DL approaches, in which the application of either 
deep neural networks or recurrent neural networks have been consid
ered to some extent. However, although analogous industries have 
exploited the potential of powerful methods of image processing and 
time series imaging for fault detection and diagnostics (Zio, 2022), there 
is no evidence that such practices have been analysed and formalised 
within the shipping sector. 

For instance, Fahim et al. (2021) proposed a self-attentive weight-
sharing capsule network (WSCN) to perform both fault detection and 
classification in the transmission line domain. Prior to the imple
mentation of WSCN, the authors encoded the time-series signal into an 
image by implementing the Gramian Angular Field (GAF) algorithm. 
The authors highlighted that transforming the time-series signal into an 
image is significant in revealing certain fault features and patterns that 
cannot be extracted from the original time-series signal. A 
Western-System-Coordinating-Council WSCC 9-bus and 3-machine test 
model modified with the series capacitor was analysed to determine the 
robustness of the self-attention WSCN. 

Fahim et al. (2021b) introduced a unified unsupervised learning 
framework for short circuit fault analysis of a power transmission line. 
Analogous to Fahim et al. (2021), GAF was applied to transform the 
time-series oscillographs into images. A stacked denoising-autoencoder 
was integrated and modelled to guarantee the robustness of the frame
work against noise. Field data was considered for a case study with three 
types of fault classification results. Fahim et al. (2021c), Fahim et al. 
(2020), and Fahim et al. (2020b) also implemented GAF for image 
representation of sampled signals. Such images would then be consid
ered as inputs of the proposed model. 

Yao et al. (2020) proposed a framework for fault diagnosis with 
Full-scope Simulator based on the State Information Imaging (FDFSSII). 
FSFSSII aimed to construct a series of grey images that presented the 
operating transient (both normal and fault condition) according to the 
real time monitoring data. A case study based on the nuclear plant-wide 
fault diagnosis system was presented. 
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Kiangala and Wang (2020) developed a classification model based on 
time-series imaging and CNN. The image representation was obtained 
by implementing GAF. A case study based on data collected from the 
conveyor system was applied. 

Of all the studies identified about time series imaging applied to fault 
classification, only two distinct approaches could be perceived: 1) GAF, 
and 2) FSFSSII. Specifically, all studies except one, which implemented 
the FSFSSII approach, considered GAF for encoding the signals into 
images. Thus, there is a need for exploring new methods for image 
representation from time series, as time series imaging has demonstrated 
their ability of discovering fault features and patterns that cannot be 
obtained from the original version of the time series. Accordingly, the 
main purpose of this study is to explore the first-order Markov chain 
model as a potential approach for performing time series imaging 
applied to fault classification. As a classifier, both a ResNet50V2 
network and a CNN are analysed. ResNet50V2 has demonstrated its 
capability of extracting deep features (Rahimzadeh and Attar, 2020), 
whilst CNN is probably the most widely used method when dealing with 
images. Specifically, it has been widely implemented for image recog
nition tasks (Nisha and Meeral, 2021). To the best of the authors’ 
knowledge, there is no evidence that either time series imaging or both 
ResNet50V2 and CNN have been considered to perform the fault clas
sification task within the sector. Thus, the contribution of this paper can 
be summarised as follows:  

• An image classification approach is considered for performing fault 
classification. Based on the available literature review presented, 
there is no evidence that such approaches have been considered 
within the shipping industry.  

• The analysis of the first-order Markov chain model as a time series 
imaging technique. To the best of the author’s knowledge, only GAF 
and FSFSSII methods have been considered when performing a fault 
classification task.  

• The development of an overall framework that considers both the 
formalisation of a fault classification approach and a simulation 
module to address the lack of fault data and labelled data within the 
shipping industry.  

• A validation process is performed, in which some widely used 
methods that have not been analysed for performing fault classifi
cation within the shipping industry are performed, such as 1D-CNN 
and GAF-CNN. 

3. Methodology 

Having explored the current research regarding fault classification 
within the shipping sector and determined the contribution introduced 
in this study based on the gaps identified, the proposed methodology, 
represented graphically in Fig. 1, is introduced. The first phase refers to 
the pre-processing of the input time series. Phase 2, named Anomalies 
Simulation, aims to simulate non-operational states to perform the 
classification task due to the lack of fault data within the shipping in
dustry. The third phase refers to the encoding of time series sequences 
into images through the application of the first-order Markov chain 
model. Subsequently, in order to perform the fault classification task, 
the fourth phase is implemented, in which image classification is applied 
by applying the deep learning architectures ResNet50V2 and CNN. To 
validate the fault classification performance of the proposed approach, 
phase 5 is presented, in which a comparative study is also performed in 
order to evaluate the effectiveness of the proposed method with regards 
to other widely applied fault classification techniques. 

3.1. Data pre-processing 

As presented in analogous studies on marine machinery systems, the 
data preparation refers to the data imputation, steady states, and out
liers’ identification. The readers are referred to Velasco-Gallego and 
Lazakis (2022, 2021, 2020) for more details. 

The data imputation step is performed by imputing the missing 
values with the method that outperforms within the comparative 
methodology, which is constituted by both univariate and multivariate 
imputation techniques. For identifying the distinct operational states, a 
novel approach based on both first-order Markov-chain and connected 
component analysis is implemented. With regards to the outliers’ 
identification phase, the sequences considered by this study have been 
analysed heuristically and are based on the results obtained in the steady 

Fig. 1. Graphical representation of the proposed methodology.  
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states identification section in order to avert their occurrence. Therefore, 
it is assumed that all the sequences presented in this study as a case study 
do not contain abnormal instances. To finalise, data normalisation is 
also applied, and the sliding window algorithm is considered for the 
generation of sequences. 

3.2. Anomalies simulation 

Due to the lack of fault data and complete degradation data, a 
common approach to validate the performance of fault diagnosis and 
prognosis frameworks is the generation of synthetic data through, for 
instance, the utilisation of physical model simulation methods (Zhang 
et al., 2022). 

Accordingly, to validate the proposed methodology, a total of six 
data patterns that do not refer to normal steady operational conditions 
have been simulated based on the detection of such patterns in analysed 
marine systems datasets. These are identified as point anomalies: 1) only 
one point anomaly is presented in the sequence, 2) two-point anomalies 
are identified in the sequence, 3) multiple point anomalies (>2) can be 
observed in the sequence, 4) collective anomalies, 5) degradation se
quences, and 6) transitional occurrences between operational states. 

Point anomalies refer to those instances that differ from others with 
regards to their attributes (Ramchandran and Sangaiah, 2018). For 
instance, an abrupt change in a steady operational state is considered as 
a point anomaly. To generate such anomalies, two aspects need to be 
determined. The first refers to the anomalous ratio, which establishes 
the intensity of the abnormality. To that end, a ratio between 
pre-defined minimum and maximum intensity thresholds is selected at 
random. The second aspect aims to determine the position within the 
sequence that the anomaly occurs. This aspect is also determined 
randomly based on the size of the analysed sequence. Such an approach 
is conducted for the first three defined scenarios (only one point 
anomaly is presented in the sequence, two-point anomalies are identi
fied in the sequence, and multiple point anomalies can be observed in 
the sequence). Thus, the difference between these scenarios rests on the 
number of point anomalies presented in the sequence. 

The fourth category, collective anomalies, are usually formed due to 
a combination of numerous instances. An example of this is a high 
variability in the exhaust gas outlet temperature parameter of the 
turbocharger in a steady operational state context. To simulate these 
collective anomalies, noise is injected by considering different Gaussian 
distributions of various mean levels, such as those analogously per
formed by Zhao et al. (2019). Specific attention is given to degradation 
patterns due to their criticality in performing the prognosis stage 
adequately. Therefore, although considered a collective anomaly, it is 
analysed as another distinct category in this study. Accordingly, an 
exponential model with Brownian motion is considered to simulate 
degradation patterns due to its effective universality in machinery when 
reflecting the characteristics of accelerated fault degradation in engi
neering (Li et al., 2021). It is considered that the degradation process of 
an item of marine systems can be described as a stochastic process X(t),
t ≥ 0, X(t) being a condition indicator of the item being analysed at time 
t. A representation of X(t), if an exponential model is considered, is 
described hereunder. 

X(t)= θ
′ exp

((

β
′

−
σ2

2

)

t+ σB(t)
)

, (6)  

where θ
′ and β

′ are random parameters representing the individual 
differences of components, σ is a deterministic parameter representing 
the increasing random error, and B(t) is a standard Brownian Motion, 
which represents the stochastic dynamics in the degradation process. 

The last scenario refers to transitional occurrences between opera
tional states that occur due to, for instance, environmental situations or 
variations in the operating condition (Theotokatos et al., 2020). The 
adequate identification of such states is of preeminent importance to 

ensure both computational efficiency and model effectiveness (Velas
co-Gallego and Lazakis, 2022). To generate the distinct steady states 
within the sequence, such a sequence is divided into two sub-sequences. 
The instance from which the division is initiated is selected randomly. 
Then, the values of the instances of one of the sub-sequences are 
increased to create the distinct states. This increment is also selected at 
random by considering two intensity thresholds. 

3.3. Time series imaging 

As comprehensively described in the literature review section, only 
two methods have been identified for encoding original time series into 
images for performing fault classification, none of them being analysed 
within the shipping sector. These are GAF and FSFSSII. However, despite 
its distinct application, the first-order Markov chain has previously been 
considered for the application of time series imaging within the shipping 
industry. Specifically, it was implemented in tandem with connected 
component analysis for the identification of steady states (Velasco-
Gallego and Lazakis, 2022). Moreover, although the process of time 
series imaging was not considered, the first-order Markov chain has been 
successfully applied for data imputation (Velasco-Gallego and Lazakis, 
2021), for instance. Accordingly, this study also analyses the first-order 
Markov chain model by estimating the transition matrix for image 
representation. 

To estimate such a matrix, the definition of the discrete time sto
chastic process is considered. A discrete time stochastic process, (Xn)n∈N, 
which takes values in a finite set S, is considered to have the Markov 
property if the probability distribution of Xn+1 at time n + 1 only hinges 
on the previous state Xn at time n, and not on all the past values of Xk for 
k ≤ n − 1. Thus, 

P(Xn+1 = j|Xn = in, Xn− 1 = in− 1, …, Z0 = i0)= P(Zn+1 = j|Zn = in)= p(i, j)
(1)  

where i0, i1, …, in, j ∈ S.The probability p(i, j) indicates the likelihood 
that the previous state i is followed by the current state j. All the possible 
transition probabilities of a process can be collected in a rxr matrix, 
where each (i, j) entry Pij is p(i, j), 

P=
(
Pij

)

1≤i, j≤r =

⎛

⎜
⎜
⎝

p1,1 p1,2 ⋯ p1,r

p2,1 p2,2 ⋯ p2,r

⋮

pr,1

⋮

pr,2

⋱

⋯

⋮

pr,r

⎞

⎟
⎟
⎠ (2)  

and that satisfies 

0 ≤ Pij ≤ 1, 1 ≤ i, j ≤ r, (3)  

∑r

j=1
Pij = 1, 1 ≤ i ≤ r. (4)  

3.4. Image classification with ResNet50V2 and Convolutional Neural 
Networks (CNNs) 

One of the two networks considered for analysis to perform image 
classification in this study is the ResNet50V2 network, as it has 
demonstrated its capability of extracting deep features (Rahimzadeh and 
Attar, 2020). Furthermore, such a network has not been applied within 
the maritime industry for image classification purposes to the best of the 
authors’ knowledge. 

ResNet50V2 is a type of deep residual network proposed by He et al. 
(2016b). Deep residual networks, a.k.a. ResNets (He et al., 2016), con
sists of many stacked “Residual Units”, which can be expressed in a 
general form as presented in Eq. (5): 

yl = h(xl)+ F (xl, W l), xl+1 = f (yl), (5) 

C. Velasco-Gallego and I. Lazakis                                                                                                                                                                                                           



Ocean Engineering 263 (2022) 112297

5

where xl and xl+1 are input and output of the l-th unit, and F is a re
sidual function. h(xl) = xl is an identity mapping and f is a ReLU (Nair 
and Hinton, 2010) function. The essence of ResNets is to learn the ad
ditive residual function F respecting h(xl) by attaching an identify skip 
connection or “shortcut”. The architecture of ResNet50 is presented in 
Fig. 2. ResNet50V2 is an enhancement of ResNet50 in which a new re
sidual unit has been introduced to both facilitate easier training and 
enhance generalisation. 

Due to the lack of fault data within the shipping industry, the 
ResNet50V2 network has been pretrained by utilising the popular 
dataset ImageNet, which presents more than 1000-class single labels 
(Russakovsky et al., 2015). 

The second analysed method is the CNN, which is a type of feed
forward artificial Neural Networks (NNs) that is constituted by a feature 
extraction step and either a classification or a regression task. As the 
main objective of this study is to develop an approach for fault classi
fication, only the classification task is considered in this context. 

The first stage, feature extraction, is comprised of both convolutional 
layers and pooling layers. The convolutional layer is usually also 
referred to as the main block of CNN models. This consists of a set of 
filters, which are learnt throughout the training process, that convolve 
with the image and generate a feature map. Specifically, the filter slides 
over the entire image so that the dot product between each element of 
both the filter and the input can be estimated at every spatial position. 
To reduce the dimension of the resulting feature map, a pooling layer is 
usually introduced after the application of a convolutional layer. 
Although a loss of information can be perceived by applying such layers, 
they assist in averting overfitting and reducing the computational cost. 
The pooling task is performed by sectioning the input into non- 
overlapping rectangular subregions so that information from each sub
region can be extracted. For this inquiry the max pooling layer is 
implemented. 

The second stage refers to the classification task, implemented by the 
utilisation of fully connected layers. Such layers apply high-level logical 

operations by considering features from preceding layers. The output of 
the final layer is a n dimensional vector, n being the total number of 
classes being considered. 

This step is performed by the implementation of the Python libraries 
Tensorflow and Keras. 

3.5. Validation 

To complement the validation by utilising simulated fault and non- 
operational data, a comparative study is implemented to determine 
the effectiveness of the proposed model based on widely used ap
proaches. The first model considered is the 1D-Convolutional Neural 
Network (CNN) is also applied, as versions of such a model has presented 
promising results when dealing with time series data in analogous tasks, 
such as when predicting the Remaining Useful Life (RUL) (Yao et al., 
2021). 

In addition, to assess the performance of the first-order Markov chain 
model as a time series imaging method, the proposed methodology 
(Markov-ResNet50V2) and the CNN model (Markov-CNN) are modified 
to present the GAF as the time series imaging method (GAF-ResNet50V2, 
and GAF-CNN). To encode time series into images by implementing 
GAF, the pyts package is utilised (Wang and Oates, 2015). 

Based on comprehensive reviews of classification metrics, such as the 
one performed by Grandini et al. (2020), and to adequately assess the 
models included in the comparative study, a total of six metrics has been 
selected: 1) accuracy, 2) balanced accuracy, 3) Micro F1, 4) Macro F1, 5) 
Mattheus Correlation Coefficient (MCC), and 6) Cohen’s Kappa. 

Prior to the definition of such metrics, the confusion matrix needs to 
be defined, as some of the metrics are computed based on such a 
concept. This matrix can be defined as a cross table that describes the 
number of occurrences between two rates (true/actual classification and 
predicted classification). A diagram representing a confusion matrix for 
multi-class classification is presented in Fig. 3. 

Based on this concept, the first metric, accuracy, is defined. This is 
probably the most popular metric when addressing the multi-class 

Fig. 2. ResNet50 architecture for ImageNet (adapted from Rahimzadeh and Attar, 2020).  
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classification task that considers all the elements of the confusion matrix 
(True Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN)) as expressed in Eq. (7). 

Accuracy=
TP + TN

TP + TN + FP + FN
(7) 

The balanced accuracy is another widely used metric, the estimation 
of which is also related to the confusion matrix. This metric can be 
defined as an average of Recalls, as, firstly, an evaluation of the Recall 
for each class is performed and, subsequently, the obtained values are 
averaged to determine the balanced accuracy score. The Recall is the 
fraction of True Positive elements divided by the total number of the 
actual positives (see Eq. (8)). 

Recall=
TP

TP + FN
(8) 

The Micro F1-Score is computed by estimating Micro-Precision (Eq. 
(9)) and Micro-Recall (Eq. (10)). The Micro-averaging is presented in 
this case to avert differences between classes. As the Micro-Average 
Precision and Recall refer to the same values, the Micro-Average F1- 
Score is equal to both Micro-Average Precision and Recall, as the har
monic mean of two equal values is just the value (see Eq. (11)). 

Micro Average Precision=
∑K

k=1TPk

Grand Total
(9)  

Micro Average Recall=
∑K

k=1TPk

Grand Total
(10)  

Micro F1=
∑K

k=1TPk

Grand Total
(11) 

Analogously, the Macro F1-Score is determined by estimating the 
Macro-Precision (Eq. (12)) and Macro-Recall (Eq. (13)). The Macro F1- 
Score is then estimated by determining the harmonic mean of Macro- 
Precision and Macro-Recall (see Eq. (14)). 

Macro Average Precision=
∑K

k=1Precisionk

K
(12)  

Macro Average Recall=
∑K

k=1Recallk

K
(13)  

Macro F1= 2*
(

Macro Average Precision*Macro Average Recall
Macro Average Precision− 1 + Macro Average Recall− 1

)

(14) 

The MCC is defined in terms of a confusion matrix C for K classes, as 
expressed hereunder. 

MCC=
c × s −

∑K
k pk × tk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
s2 −

∑K
k p2

k

)(
s2 −

∑K
k t2

k

)√ , (15)  

where. 

c =
∑K

k
Ckk is the total number of correctly predicted elements. 

s =
∑K

i

∑K

j
Cij is the total number of elements. 

pk =
∑K

i
Cki is the number of times that class k was predicted. 

tk =
∑K

i
Cik is the number of times that class k truly occurred. 

Finally, the last metric considered is the Cohen’s Kappa, which is 
similar to MCC when a muti-class classification task is being considered. 
Cohen’s Kappa metric (K) can be described as follows: 

K =
c × s −

∑K
k pk × tk

s2 −
∑K

k pk × tk
(16)  

4. Results 

A case study is presented in this section in order to validate the 
performance of the proposed methodology. Accordingly, a Diesel GenSet 
(DG), which is used for auxiliary purposes onboard an Aframax size 
tanker ship, is considered. This is one out of three DGs that are utilised 
onboard the ship to provide all the onboard electrical supply that is 
required when the ship is either under way or when the ship is alongside 
loading/offloading cargo. The DG employed in this case study is a four- 
stroke in-line engine comprised of a total of 6 cylinders. Specifically, the 
DG power parameter is discussed further in this paper due to its criti
cality. However, any other parameter could be considered (e.g., exhaust 
gas inlet and outlet temperatures, cooling water inlet and outlet tem
peratures, and turbocharger lube oil pressure and temperature) but, due 
to the size of the paper and results, only the power parameter is pre
sented in this study. Furthermore, although a univariate analysis is being 
presented as a case study due to the lack of fault data, the methodology 
has been structured to consider both a univariate and a multivariate 
approach. 

More than 66,000 instances are analysed for such a parameter, in 
total. These instances have been collected in a 1-min frequency. A 
graphical representation of these can be perceived in Fig. 4. Moreover, 
the descriptive statistics are also presented in Table 1. 

As it can be perceived in Fig. 6, raw data collected from marine 
machinery usually contains both non-operational states and variations 
in the operating conditions, which can adversely alter the fault diagnosis 
analysis. Accordingly, the steady states’ identification phase is applied 
as part of the pre-processing step. In total, 81 operational sequences are 
determined. Each of these sequences are further analysed to establish 
their respective quality, and thus either accept or reject them for the 
training, validation, and test stages. Furthermore, as part of the prepa
ration step, data normalisation is applied so that each sequence lies 
between 0 and 1 values. The sliding window algorithm is subsequently 
applied to successively section each of the identified operational se
quences into subsequences. Various configurations have been performed 
to determine the most appropriate parameters of such an algorithm. 

Fig. 3. Confusion matrix for multi-class classification with n classes. The esti
mation of True Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN) is presented when considering a class k (0 ≤ k ≤ n). 
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After heuristically evaluating each of them, it is determined that the 
most optimal value for the window size parameter is 250 for this study. 

Once the data preparation step is finalised, distinct patterns are 
simulated as introduced in the methodology section. These patterns 
refer to point anomalies: 1) only one point anomaly is presented in the 
sequence, 2) two-point anomalies are identified in the sequence, 3) 
multiple point anomalies (>2) can be observed in the sequence, 4) 
collective anomalies, 5) degradation sequences, and 6) transitional oc
currences between operational states. A graphical representation of the 
distinct patterns simulated can be perceived in Fig. 6. Fig. 5 presents the 
sequence that has been altered to simulate such patterns. As perceived in 
Fig. 6(a)–6(c), point anomalies are presented in the form of spikes and 
refer to those instances that differ from others with regards to their at
tributes. Fig. 6(d) refer to collective anomalies, which are a combination 
of instances that present high variability in a steady operational state 
context. The degradation pattern is presented in Fig. 6(e) and refers to 
an anomaly that presents an exponential increase. Finally, the changes 
between operational states have also been simulated and captured. An 
example of two steady operational states in a sequence is presented in 
Fig. 6(f). 

Subsequently, the time series are encoded into images so that the 
image classification task can be performed. As the first-order Markov 
chain model was implemented at this stage, the number of states that the 
transition matrix contains needs to be adequately estimated. Accord
ingly, more than ten values have been considered. These are within the 
range 40–150. Values lesser than 40 were not considered as the mini
mum dimensions that the image could contain was 32 × 32, as transfer 
learning was implemented, and, specifically, the ImageNet dataset was 
utilised as part of the pre-training process. Of all possibilities, the 
number of states is set to 50, as values greater than 50 do not facilitate a 
significant enhancement in the accuracy of the model and the risk of 
over-fitting increases. 

Figs. 7 and 8 provide output examples of the time series imaging 
phase. Although the provided example images present a dimension of 
10 × 10 for a better visual interpretation, the images used as input in the 
image classification phase present a resolution of 50 × 50, as stated in 
the preceding paragraph. Fig. 7 refers to an image generated from a 
normal operational sequence. Consequently, a clear diagonal can be 
observed, as the instances within an operational steady state do not vary 
in a significant manner. Therefore, the subsequent state of an instance 
usually adopts the state of the preceding instance or one around it, thus 
creating this diagonal. For instance, when considering normal opera
tional sequences, if the current instance relates to state 2, it is highly 
probable that the subsequent instance will refer to state 2 or a near state, 
such as state 1 and 3. A similar characteristic can be perceived when the 
sequence presents a point anomaly (Fig. 8 (a)). However, the diagonal is 
shorter when a normal operational image is considered, as the states are 
defined based on a different range of values; this range having an 
abnormal value greater than the range of the normal operational 
sequence. Such an aspect does not apply when the number of point 
anomalies in a sequence is increased, as the relationship between the 
current and the preceding state is distorted, thus intrinsically disrupting 
the diagonal perceived in normal images. This applies similarly to col
lective anomalies and degradation images, as the huge number of 
abnormal values modified the steady context. With regards to the 
transition occurrences between operation steps, the scenarios are 
slightly different. For this case, a total of two diagonals can be observed, 
each of them referring to an operational steady state. Also, isolated 
pixels can be perceived, which refers to the transition state that occurs 
between steady operational states. By applying the image classification 
phase, it is expected that the deep learning method can learn such 
characteristics and identify the different operational, non-operational, 
and fault patterns presented in the distinct defined categories. 

As part of the image classification phase, the ResNet50V2 network is 
analysed following the architecture described in Fig. 2. Moreover, as 
part of the comparative study, a traditional CNN architecture has also 
been considered. After a heuristic evaluation and the analysis of anal
ogous studies (Almutairi et al., 2021; Yao et al., 2021), the analysed CNN 
architecture for image classification is comprised of two convolutional 
layers with 192 filters and kernel size of 3 × 3. The pooling operation 
presents a 2 × 2 dimension. After the feature extraction stage, a total of 

Fig. 4. Time series plot of the cooling air temperature monitored parameter.  

Table 1 
Descriptive statistics of the monitored parameter.   

Mean Std. Min. 25% 50% 75% Max. 

Power (kW) 151.67 159.15 0.0 0.0 177.95 273.30 555.93  

Fig. 5. Original sequence that has been altered to simulate the distinct abnormal operational sequences.  
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three fully connected layers with 64, 128, and 192 hidden units are 
defined. The same parameters have been considered for the 1D-CNN 
architecture to ensure the adequate performance of the comparative 
study. With regards to the models that consider GAF as a time series 
approach (GAF-ResNet50V2, and GAF-CNN), the input shapes of the 
analysed networks are equal to the models that consider the first-order 
Markov chain as a time series method (Markov-ResNetV2, and 
Markov-CNN). Thus, the dimensions of the GAF images are equal to the 
Markov ones: 50 × 50. 

The results of the classification task after the training process in 
tandem with the comparative analysis are summarised in Table 2. As it 
can be perceived, the models have been ordered by their performance 
based on the accuracy score. The model that led to the most accurate 
results is the Markov-CNN. It presents a performance enhancement of a 
2% when considering the second most accurate model, and a 23% when 
considering the least accurate model. Although the performance 
enhancement with regards to 1D-CNN is not significant, Markov-CNN is 

a turning point in the consideration of time series imaging approaches 
for performing fault classification tasks. The proposed approach, 
Markov-ResNet50V2, present nearly identical results as 1D-CNN, which, 
once again, shows the potential of time series imaging approaches when 
dealing with both time series data and fault classification tasks. How
ever, results may suggest that the implementation of architectures such 
as ResNets may not be appropriate when dealing with the characteristics 
of case studies such as the one presented in this study or their 
complexity. As perceived in Figs. 7 and 8, the images outlined are less 
comprehensive than the ones considered in the computer vision tasks 
that these types of architectures were designed for. Accordingly, as 
precedingly stated, the utilisation of CNNs is sufficient to achieve a high 
calibre performance. However, a more comprehensive analysis of more 
sophisticated image versions obtained from either multivariate or higher 
order Markov chain models need to be performed to sustain such a fact. 
In addition, with regards to the transfer learning task performed in the 
proposed methodology, it can be perceived that its contribution in the 
performance enhancement was insignificant. Once again, it is probably 
due to the characteristics of the case study performed, as large number of 
images were simulated. However, its contribution may be significant 
when dealing with small sets of real-world faults, in which the amount of 
data available is limited. Accordingly, further research needs to be 
addressed to also sustain such a fact. 

After analysing the third most accurate model, a significant drop can 
be observed in the accuracy performance, yielding a decrease of the 
accuracy score of more than 10%. This suggests that the proposed time 
series imaging approach outperforms GAF, which has been widely uti
lised in analogous fault classification studies. 

Therefore, it can be perceived that there is a need to further analyse 
time series imaging approaches and image classification models due to 
their promising results when dealing with fault classification tasks. To 
ensure the enhancement opportunities based on the results obtained 
from this study, future work guidelines are presented hereunder.  

• The main challenge presented when performing this study was the 
lack of fault data. Accordingly, anomalous data needed to be simu
lated. However, to enhance the validation stage of this study and 
determine potential pitfalls that need to be addressed, the imple
mentation of real-world case studies including fault data is of pre
eminent importance.  

• The first-order Markov chain was implemented in this study as a time 
series imaging approach. Thus, a univariate approach was presented. 
Further validation efforts to perform multivariate analysis is 
required. In this sense, an initial validation has been performed by 
the authors as a part of a multivariate analysis by stacking all the 

Fig. 6. Simulated sequence with (a) a point anomaly, (b) two-point anomalies, (c) multiple point anomalies, (d) collective anomalies, (e) degradation, and (f) 
transition occurrences between steady operational states. 

Fig. 7. Example of a normal sequence encoded into an image.  
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individual transition matrices (one for each parameter) to present 
them as the input of the different image classification models being 
analysed. The authors expect to present such results in subsequent 
studies. Moreover, the consideration of other multivariate ap
proaches, such as multivariate Markov chains, are being studied.  

• The study of other time series imaging approaches and classification 
models is also suggested. In this study, a comparative study has been 
performed in which a total of two time series imaging approaches 
and four classification models have been assessed. However, due to 
an increased interest in PHM within the shipping industry and other 
comparable sectors, such as manufacturing and aerospace, numerous 
state-of-the-art methods are being introduced that need to be 
considered to continue advancing the enhancement of fault classifi
cation tasks within the shipping industry. Moreover, other elements 
that both complement the models developed and enhance trans
parency and performance need to be also considered. Examples of 
these are the implementation of explainable artificial intelligence or 
the consideration of evolutionary algorithms for applying hyper
parameters optimisation. 

5. Conclusions 

Fault classification is a preeminent phase of the fault diagnosis 
module; a module that aims at the identification of the failure modes and 
their causes so that a relationship between the monitoring data and the 
fault condition can be established. Despite its importance, this is still an 
unexplored area within the shipping industry. 

As demonstrated in this paper, the methodology presented, which is 
comprised of a time series imaging approach based on the imple
mentation of the first-order Markov chain, and an image classifier, such 

as the ResNet50V2 and CNN architectures, exposed its applicability for 
performing the fault classification task when identifying anomalies of 
marine systems. 

Due to the lack of fault data and data availability within the sector, it 
was necessary to simulate anomalies. In total, six distinct anomalies, 
such as point anomalies and collective anomalies, were considered. 
Moreover, to validate the proposed methodology, a case study on a 
diesel generator of a tanker ship was presented. Specifically, the power 
parameter was analysed. In addition, a comparative study of other po
tential models was introduced. These were recognised as 1D-CNN, GAF- 
CNN, and GAF-ResNet50V2. Results demonstrated that Markov-CNN 
outperformed the remaining analysed methods by achieving an accu
racy of 95%, and thus suggesting the potential of time series imaging and 
image classification approaches for the performance of the fault classi
fication task. To continue analysing the potential of these, further 
research needs to be performed. The validation of the methods with real- 
world fault data, the application of multivariate analysis, and the 
consideration of other novel techniques are within the future research 
agenda and are suggested for other researchers that are keen to 
contribute towards the application of Smart Maintenance within the 
shipping sector. 
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Fig. 8. Example of images generated that contain (a) a point anomaly, (b) two-point anomalies, (c) multiple point anomalies, (d) collective anomalies, (e) degra
dation, and (f) transition occurrences between steady operational states. 

Table 2 
Classification metrics results for performance evaluation of the multi-fault classification task.  

Model Accuracy Balanced Accuracy Micro F1 Macro F1 MCC Cohen’s Kappa 

Markov-CNN 0.95 0.95 0.95 0.94 0.94 0.94 
1D-CNN 0.93 0.94 0.93 0.93 0.92 0.92 
Markov-ResNet50V2 0.93 0.93 0.93 0.93 0.91 0.91 
GAF-CNN 0.83 0.84 0.83 0.83 0.81 0.81 
GAF-ResNet50V2 0.72 0.72 0.72 0.71 0.67 0.67  
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