
  

 

Abstract— Screening programs for sight-threatening diseases 

rely on the grading of a large number of digital retinal images. 

As automatic image grading technology evolves, there emerges a 

need to provide a rigorous definition of image quality with 

reference to the grading task. In this work, on two subsets of the 

CORD database of clinically gradable and matching non-

gradable digital retinal images, a feature set based on statistical 

and on task-specific morphological features has been identified. 

A machine learning technique has then been demonstrated to 

classify the images as per their clinical gradeability, offering a 

proxy for a rigorous definition of image quality.  

 
Clinical Relevance— This work offers a novel strategy to 

define fundus image quality, to contribute to the development of 

automatic fundus image graders for retinal screening. 

I. INTRODUCTION 

Reducing the economic and social impact of avoidable 
blindness and vision impairment, particularly severe in low-
and middle- income countries, has been identified as a key 
action by the World Health Organization [1]. Almost half 
billion people suffer from treatable sight pathologies that, 
however, show symptoms only in their late stages, such as 
diabetic retinopathy, age related macular degeneration and 
glaucoma [1]. The most effective prevention tools are 
population-wide screening programs, which, however, 
produce a large quantity of retinal images that need to be 
graded for pathological markers, creating a bottleneck in the 
availability of professional staff trained to do so. Automatic 
software able to distinguish between healthy and non-healthy 
retinas are starting to be employed by the public health service 
[2] to unburden some stages of such grading process.  

The quality of the digital retinal images has a major impact 
on the classification performance of automatic screening 
tools. Yet, for this task, a formal definition of image quality 
is still elusive. In clinical practice, ophthalmologists rely on 
their experience and knowledge to determine whether the 
clinical content of an image is adequate to formulate a 
diagnosis. Such decision-making process involves several 
complex cognitive tasks [3], which makes it very difficult to 
relate this quality definition strategy to an image processing 
tool. Indeed, the definition of objective quality in fundoscopic 
images is still a matter under very active debate [4], and yet 
necessary in a rigorous approach to high-throughput automatic 
retinal image classifiers. 

To a certain extent, the clinical content of a retinal image 
is associated with its textural content, which in turn is related 
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with morphology (relation to geometrical structuring 
elements) and chromaticity. A typical retinal image, in fact, 
contains many anatomical structures, such as blood vessels 
and optic nerve hea*d, and may include features that can be 
associated to pathological conditions, such as dark and bright 
lesions. Abdel-Hamid et al. [5] implemented a quality 
assessment algorithm that evaluates textural-related elements 
such as sharpness and homogeneity. In the work of Fu et al. 
[6], quality-related features where evaluated on different 
color spaces and combined to train a deep learning network. 
However, artifacts, noise and distortions can contribute to add 
textural elements to the image, making quality classification 
based on texture complicated, and possibly ill-defined. 
Nonetheless, the understandable desire to link a formal 
quality definition to the clinical information content of a 
retinal image is stimulating the search for other definition 
criteria. Dias et al. [7] proposed classic photography-related 
indicators such as color, focus, contrast, and illumination, to 
distinguish between gradable and ungradable retinal images. 
Although the sensitivity reached over 97%, the classifier was 
mainly trained to detect over- (bright) and under-exposed 
(dark) retinal images. More recent feature-specific quality 
descriptors quantify the amount of a specific anatomical 
feature in the retinal image. The majority of them are based on 
segmentation techniques, e.g., to quantify the amount of blood 
vessels [8, 9] or the visibility of the optic disc [10, 11]. 
However, once again, these are prone to errors caused by 
artifacts and distortions. 

In this work, we develop a proxy of image quality, using a 
quality classifier ultimately based on how selected feature and 
detail metrics of the images are affected by artifacts. These 
metrics can be reasonably expected to better correlate to 
information content that e.g., simple brightness / darkness. To 
achieve this, we use the unique features provided by the open 
access CORD database [12], which includes images of the 
retina with clinical gradable quality, alongside the same 
images with template artifacts, to train a machine learning 
classifier to estimate whether images are gradable or not, based 
on classic image quality-related statistical indicators, and 
simple retinal image-specific quantifiers. 

II. RETINAL IMAGE PARAMETRIZATION 

Common quality-related parameters used in photography 
are statistical descriptors based on histogram and Haralick 
features [13]. In this work, eleven of such parameters, along 
with other two parameters that highlight specific anatomical 
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retinal features, are evaluated on the two subsets of retinal 
images included in CORD. 

A. Histogram and Contrast Features 

The six histogram features selected for our study are: 
mean, standard deviation, skewness, kurtosis, interquartile 
range (IQR) and contrast sensitivity function (𝐶𝑆𝐹), where 
the 𝐶𝑆𝐹 of a channel 𝑋 is obtained as: 

𝐶𝑆𝐹(𝑋) = 𝐼𝑄𝑅(𝑋)  𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)⁄ ,    (1) 

and is an expression of the statistical dispersion of the 
between the upper and lower quartile respect to the range of 
intensities of that channel [14].  

To account for uneven illumination and poor focus, seven 
different contrast and blur parameters have been selected: 
contrast ratio (𝐶𝑅), local contrast ratio (𝐿𝐶𝑅), blur metric, full 
intensity range (𝑅), relative intensity range and saturation 
metrics [15, 16]. Contrast ratio is calculated as: 

𝐶𝑅𝑗 = 𝑝𝑗̅ 𝑠𝑗⁄ ,         (2) 

where 𝑝𝑗̅ is the mean intensity of all of the pixels in a 

region of interest (ROI), in the channel 𝑗 while 𝑠𝑗 is the 

standard deviation of the pixels in the same ROI in the 
channel 𝑗. The ROI, in this case, is the whole retinal image 
excluding the black borders (Fig. 1). The higher the 
blurriness, the higher the CR. A similar contrast indicator is 
the local contrast ratio, which is the 𝐶𝑅 calculated on non-
overlapping sub-windows of the retinal image as follows: 

𝐿𝐶𝑅 = (∑
𝑝̅𝑤,𝑖

𝑠𝑤,𝑖

𝑛
𝑖=1 ) 𝑛⁄ ,       (3) 

where 𝑤 is a 𝑁 × 𝑁 window inside the ROI and 𝑛 is the 
total number of sub-windows.  

The blur metric measures the focal blur and the motion 
blur by comparing the original image with its low-pass 
filtered version. The intensity range measures the grayscale 
spread of the image. A larger range usually indicates higher 
contrast in an image. As saturation metrics, the proportion of 
pixels at the highest (𝑃𝑚𝑎𝑥) and lowest (𝑃𝑚𝑖𝑛) intensity level 
are computed, which can reveal over- or underexposure 
respectively. 

B. Haralick Features 

Texture, along with spectrum and context are the three 
fundamental pattern elements used in human interpretation of 
color images. Haralick at al. developed a classification system 
for texture based on the statistical evaluation not of the image 
itself but, rather, of grey-tone spatial-dependence matrices 
obtained from it [13]. This method is based on the assumption 
that grey tone and texture have a mutual interconnection to 
one another, thus highlighting the complexity of the grey tone 
transitions within the image, revealing the presence of 
organized structures or homogeneity, and the prevalence 
between texture and tone. Haralick et al. identified 14 
different textural features of which, in this work, we 
considered 5: 

 Energy:  𝐻1 = ∑ ∑ {𝑝(𝑖, 𝑗)}2
𝑗𝑖  

 Contrast:  𝐻2 = ∑ 𝑛2𝑁−1
𝑛=0 {∑ ∑ 𝑝(𝑖, 𝑗)𝑁

𝑗=1
𝑁
𝑖=1 ||𝑖 − 𝑗| = 𝑛} 

 Correlation: 𝐻3 =
∑ ∑ (𝑖𝑗)𝑝(𝑖,𝑗)−𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

 Homogeneity: 𝐻4 = ∑ ∑
1

1+(𝑖−𝑗)2 𝑝(𝑖, 𝑗)𝑗𝑖  

 Entropy:  𝐻5 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑗 log(𝑝(𝑖, 𝑗))𝑖  

Where 𝑝(𝑖, 𝑗) is the (𝑖, 𝑗)th entry in a normalised co-
occurrence matrix 𝑃. 𝜇𝑥, 𝜇𝑦, 𝜎𝑥 and 𝜎𝑦 are the mean and 

standard deviation of 𝑝𝑥 and 𝑝𝑦 respectively, which represent 

the marginal-probability matrix obtained as ∑ 𝑃(𝑖, 𝑗)𝑁
𝑗=1 , 

where the number of distinctive grey level is 𝑛 = 1, … , 𝑁. 

B. Retinal-specific Textural Features 

In this work, two parameters specifically linked to retinal 
images were included, namely blood vessel density (BVD) 
and blood vessel contrast (BVC). To compute these two 
values for each retinal image, the blood vessels were firstly 
isolated, generating a binary map 𝑀 where blood vessel and 
the background have two different value (0 and 1), using a 
vessel segmentation technique based on a matching filter 
algorithm [8], implementing a kernel with 12 different 
orientations (rotation of 15° steps) and fixing an arbitrary 
threshold 𝑇, as follows: 

𝑀(𝑖, 𝑗) = {
1, 𝑔̃(𝑖, 𝑗) > 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (4) 

where 𝑔̃ is the result of the filtering on the histogram 
equalized green channel 𝑔 of the retinal image. BVD is the 
ratio between the number of pixels that belongs to the blood 
vessels and to the total amount of pixels in the ROI, expressed 
as: 

𝐵𝑉𝐷 =  
∑ 𝑀(𝑖,𝑗)

𝑚,𝑛
𝑖=1,𝑗=1

𝑚×𝑛
,       (5) 

where m and n are the width and height of the image in 
pixels respectively. Blood vessel contrast is defined as the 
contrast of the pixels of the blood vessels with respect to the 
background, and is obtained using the following: 

𝐵𝑉𝐶 = |𝑝̅ ∈ 𝑀(𝑖, 𝑗) − 𝑝̅ ∉ 𝑀(𝑖, 𝑗)|    (6)  

 

III. METHODS 

The retinal image set in CORD consists of 548 fundus 
images acquired via fundus camera (FC), and 80 optical 
coherence tomography (OCT) scans, each also associated 
with a set of monocular and stereoscopic fundus images 
captured through the OCT instrument optics itself. The 
CORD database also contains 231 photos and 160 videos 
from slit lamp examination, not used in this study. Excluding 
the fundus images acquired with the OCT instrument in stereo 
imaging modality, the total amount of retinal images acquired 
via F, and via the OCT instrument, and divided in “clinical 
standard” quality (CSQ) and artifact, is summarized in Table 
I. Example of CSQ and artifact macula-centered retinal 
images are shown in Fig. 1. Twenty different statistical 
features have been evaluated on the RGB, HVI and CIELab 
color spaces of the two datasets of CORD, the CSQ and the 
artifact affected fundus images. The machine learning 
classifier trained with this data is a diagonal adaptation of 
Neighborhood Component Analysis (NCA) [17, 18]. This 
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algorithm is also able to identify each feature significance to 
the classification process. 

TABLE I.  FUNDUS IMAGES IN CORD 

Fundus imaging 

instrument 
Artifact CSQ Total 

FCa
 251 37 288 

OCTa 40 20 60 

a. Images subjected to complete object obstruction were excluded from the total dataset. 

 

 
Figure 1.  Retinal images acquired using a fundus camera Topcon 
TRC-50DX Type IA fitted with the body of a Nikon D300s. Left: 

clinical standard quality retinal image. Right: artifact caused by 

patient movement. 

 
To establish the best channel for quality classification the 

datasets of images captured via FC and via the OCT 
instrument were split into two parts: the classification training 
subset and the test subset. The training process of the 
classifier started by using 1/8th of the total retinal images 
available (starting training subset) and was increased by 1/8th 
of the total retinal images available until the classification 
process was able to correctly classify the remaining images 
(test subset) (Fig. 2). After identifying the most sensitive 
channel for quality classification, features with a NCA weight 
≥ 0.4 were considered for the clustering. The more the weight 
of the feature, the stronger the influence in the classification 
process.  

 
Figure 2.  Visual description of the iteration process used to find the 
minimum training dataset able to classify the test subset correctly. 

 

IV. RESULTS 

The color channels which model shown the best prediction 
rate were the second channel of the CIELab color space as for 
the FC images, and the green channel of the RGB color space 
for the images acquired via the OCT instrument (Table II). For 
the images captured via FC, BVC and IQR resulted the best 
features for classification in the majority of the channels 
tested, with the first being relevant in all but the intensity 
channel of the HIS color space. 

 

TABLE II.  BEST PREDICTIVE FEATURES FOR QUALITY CLASSIFICATION 

Fundus imaging 

instrument 

Best color 

space (channel) 
Most relevant features 

FC CIELab (a) IQR, BVC, Mean 

OCT RGB (Green) Kurtosis, Mean, R 

 
On the contrary, for the images captured via the OCT 

instrument, range and kurtosis were the most significant 
overall. The mean value of the pixel intensity of the resulting 
best channels had also a major role in the quality classification 
in both imaging techniques. The cluster plots for the two 
imaging instruments are shown in Fig. 3 and Fig. 4. 

 
Figure 3.  3D scatter plot of the best three features used to cluster 

FC images. 

 

 
Figure 4.  3D scatter plot of the best three features used to cluster 

images captured via the OCT instrument. 

 

V. DISCUSSION 

The classification models selected for the images captured 
via the FC and the via OCT instrument show better 
classification using the triplet [IQR, mean, BVC] calculated 
for the 𝑎 channel of the CIELab color space and [mean, range, 
kurtosis] calculated for the 𝑔𝑟𝑒𝑒𝑛 channel of the RGB color 
space, respectively. The good performance shown by specific 
textural features was somehow predictable, given that the 
anatomical features (blood vessels, optic disk and macula), 
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which are embedded in texture, are what mostly characterizes 
the information of a retinal image. Less expected was the 
significant contribution to classification performance of 
common histogram features, such as mean value and range as, 
in general, histograms give information about the general 
aspect of the whole image, rather than local information 
content. Histograms appear to differentiate images where 
local information is key, such as those with good anatomical 
features, from images with artifacts or photographic defects.  

The decision of analyzing separately the images obtained 
via FC and OCT (albeit used in FC mode) was made to 
account for the different optics and settings of the two 
instruments and of the related artifact generation in CORD, 
which appears to be more repeatable for the artifacts 
generated on the OCT system than on the FC. A high level of 
repeatability boosts the identification of specific patterns in 
the images, hence improve the classification process. 
Therefore, the clustering of the fundus images generated via 
the OCT instrument is better than for the FC images (Fig. 3 
VS Fig. 4). As for all machine learning classifiers, we would 
expect the clustering performance to improve as the amount 
and diversity of training data increases, advocating for the 
creation of more databases containing examples of artifacts. 
Indeed, at present our dataset contains images from 10 healthy 
subjects only, and increasing diversity, and including 
pathology, may help in improving generalizability. 

VI. CONCLUSION 

Based on an established machine learning technique, a 
small set of digital image features to classify retinal images as 
gradable vs. non-gradable have been identified for two 
imaging instruments. Such features include both classic 
photographic quality indicators, and retinal-specific features, 
denoting that the combination of these two types yields a 
more significant image quality classification, whether the 
retinal image is affected by quality distortions caused by 
camera settings (e.g. defocusing, overexposure) or by 
common fundoscopy artifacts. The method has been enabled 
by the availability of CORD, a dataset of retinal images that 
contain images of gradable quality, and their counterparts 
with artifacts. This work highlighted how creating datasets 
containing images with quality degradations can underpin a 
strategy for defining image quality in fundoscopy.  

Future work will focus on two main objectives: expanding 
CORD with more example of artifacts and quality 
degradations, at the same time increasing diversity and, 
possibly, extending it to pathology, and the implementation 
of different classifiers, possibly identifying different image 
parametrizations, to match a more objective definition of 
image quality in fundoscopy, e.g., related to task-specific 
performance.  

Finally, with this work we aimed to demonstrate the 
importance of dataset of “bad quality” retinal images 
alongside their “good quality” counterparts, as a way to better 
understand the impact of artifacts and common degradations 
in fundoscopy on the clinical content of the images. 
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